Linear algebra 2: exercises for Section 10

Ex. 10.1. Suppose that A is a symmetric 2×2 matrix of determinant 2 for which $\binom{1}{-2}$ is an eigenvector with eigenvalue -1 .

1. What is the other eigenvalue of A ?
2. What is the other eigenspace?
3. Determine A.

Ex. 10.2. Consider the quadratic form $q(x, y)=11 x^{2}-16 x y-y^{2}$.

1. Find a symmetric matrix A for which

$$
q(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot A \cdot\binom{x}{y} .
$$

2. Find real numbers a, b and an orthogonal map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ so that $q(f(u, v))=$ $a u^{2}+b v^{2}$ for all $u, v \in \mathbb{R}$.
3. What values does $q(x, y)$ assume on the unit circle $x^{2}+y^{2}=1$?

Ex. 10.3. What values does the quadratic form $q(x, y, z)=2 x y+2 x z+y^{2}-2 y z+z^{2}$ assume when (x, y, z) ranges over the unit sphere $x^{2}+y^{2}+z^{2}=1$ in \mathbb{R}^{3} ?

Ex. 10.4. Suppose that A is an anti-symmetric $n \times n$ matrix over the real numbers.

1. Show that every eigenvalue of A over the complex numbers lies in $i \mathbb{R}$.
2. If n is odd, show that 0 is an eigenvalue of A.
