Linear algebra 2: exercises for Section 2

Ex. 2.1. What is the remainder when one divides the polynomial $x^{5}+x$ by $x^{2}+1$?
Ex. 2.2. Give the minimal polynomial and the characteristic polynomial of the matrices

$$
\left(\begin{array}{lll}
2 & -3 & 3 \\
3 & -4 & 3 \\
3 & -3 & 2
\end{array}\right), \quad\left(\begin{array}{ccc}
0 & -1 & 3 \\
1 & -2 & 3 \\
3 & -3 & 2
\end{array}\right)
$$

Ex. 2.3. Suppose that a 2×2 matrix A has two distinct eigenvalues λ and μ. Show that the image of the matrix $A-\lambda$ is the eigenspace with eigenvalue μ.

Ex. 2.4. Is the matrix $\left(\begin{array}{rrr}0 & 0 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ diagonalizable over \mathbb{R} ? And over \mathbb{C} ?
Ex. 2.5. If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is the projection on a plane, what is the minimum polynomial of f ? What is the minimum polynomial of relection in a plane?

Ex. 2.6. Compute the characteristic polynomial of the matrix

$$
A=\left(\begin{array}{lll}
1 & -9 & 4 \\
1 & -4 & 1 \\
1 & -7 & 3
\end{array}\right)
$$

Compute A^{3} (use Cayley-Hamilton!)
Ex. 2.7. Let V be the 4 dimensional vector space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$ of degree at most 3. Let $T: V \rightarrow V$ be the map that sends a polynomial p to its derivative $T(p)=p^{\prime}$. Show that T is a linear map. Is T diagonalizable?

Ex. 2.8. For each $\alpha \in \mathbb{R}$, determine the characteristic and minimal polynomials of

$$
A_{\alpha}=\left(\begin{array}{ccc}
1-\alpha & \alpha & 0 \\
2-\alpha & \alpha-1 & \alpha \\
0 & 0 & -1
\end{array}\right)
$$

For which values of α is A_{α} diagonalizable?

