Linear algebra 2: exercises for Section 3

Ex. 3.1. Let A be a nilpotent $n \times n$ matrix. Show that $\mathrm{id}_{n}+A$ is invertible.
Ex. 3.2. Let A be a nilpotent $n \times n$ matrix. Show that $A^{n}=0$.
Ex. 3.3. Let N be a 9×9 matrix for which $N^{3}=0$. Suppose that N^{2} has rank 3. Prove that N has rank 6 .

Ex. 3.4. Let N be a 12×12 matrix for which $N^{4}=0$.

1. Show that the kernel of N^{2} contains the image of N^{2}.
2. Show that the rank of N is at most 9 .
3. Show that the rank of N is equal to 9 if the kernel of N^{2} is equal to the image of N^{2}.

Ex. 3.5. For which $x \in R$ is the following matrix nilpotent?

$$
\left(\begin{array}{rrr}
2 x & x & -1 \\
-4 & -1 & -3 \\
5 & 2 & 3
\end{array}\right)
$$

Ex. 3.6. For each of the matrices

$$
\left(\begin{array}{rrr}
4 & -4 & 12 \\
1 & -1 & 3 \\
-1 & 1 & -3
\end{array}\right) \quad\left(\begin{array}{rrr}
2 & 0 & 8 \\
0 & 1 & 1 \\
-1 & 1 & -3
\end{array}\right)
$$

give a basis of \mathbb{R}^{3} for which the matrix sends each basis vector either to 0 or to the next basis vector in the basis.

Ex. 3.7. Do the same for the matrix

$$
\left(\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
-5 & -2 & 2 & -1 \\
-3 & 0 & 2 & -1 \\
-5 & -2 & 2 & -1
\end{array}\right)
$$

