Linear algebra 2: exercises for Section 4

Ex. 4.1. Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a rotation around the line through the origin and the point $(1,1,1)$ by 120 degrees. Decompose \mathbb{R}^{3} as a direct sum of two subspaces that are each stable under ϕ.

Ex. 4.2. Consider the vector space $V=\mathbb{R}^{3}$ with the linear map $\phi: V \rightarrow V$ given by the matrix

$$
\left(\begin{array}{rrr}
-1 & 0 & 1 \\
-2 & -1 & 1 \\
-3 & -1 & 2
\end{array}\right)
$$

Decompose \mathbb{R}^{3} as a direct sum of two subspaces that are each stable under ϕ.
Ex. 4.3. Same question for

$$
\left(\begin{array}{rrr}
0 & 1 & 1 \\
5 & -4 & -3 \\
-6 & 6 & 5
\end{array}\right)
$$

Ex. 4.4. Consider the vector space $V=\mathbb{R}^{4}$ with the linear map $\phi: V \rightarrow V$ that permutes the standard basis vectors in a cycle of length 4 . What is the characteristic polynomial of ϕ ? Decompose \mathbb{R}^{4} into a direct sum of 3 subspaces that are all stable under ϕ.

Ex. 4.5. An endomorphism f of a vector space V is said to be a projection if $f^{2}=f$. Suppose f is such a projection.

1. Show that the image of f is equal to the kernel of $f-\mathrm{id}_{V}$, i.e., the eigenspace E_{1} at eigenvalue 1.
2. Show that V is the direct sum of the kernel E_{0} of f and E_{1}.
3. Show that $f=f_{0} \oplus f_{1}$ where f_{0} is the zero-map on E_{0} and f_{1} is the identity map on E_{1}.

Ex. 4.6. An endomorphism f of a vector space V is said to be a reflection if f^{2} is the identity on V. Suppose f is such a reflection. Show that V is the direct sum of two subspaces U and W for which $f=\mathrm{id}_{U} \oplus\left(-\mathrm{id}_{W}\right)$.

