Linear algebra 2: exercises for Section 5 (part 2)

Ex. 5.9. Let $\phi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map given by $\phi(x)=A x$ where A is the matrix

$$
\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We proved in class that generalized eigenspaces for ϕ are ϕ-invariant. What are these spaces in this case? Give all other ϕ-invariant subspaces of \mathbb{R}^{3}.

Ex. 5.10. Compute the characteristic polynomial of the matrix

$$
A=\left(\begin{array}{rrrr}
1 & -2 & 2 & -2 \\
1 & -1 & 2 & 0 \\
0 & 0 & -1 & 2 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Does A have a Jordan normal form as 4×4 matrix over \mathbb{R} ? What is the Jordan normal form of A as a 4×4 matrix over \mathbb{C} ?

Ex. 5.11. Suppose that for a 20×20 matrix A the rank of A^{i} for $i=0,1, \ldots 9$ is given by the sequence $20,15,11,7,5,3,1,0,0,0$. What sizes are the Jordan-blocks in the Jordan normal form of A ?

Linear algebra 2: exercises for Section 6

Ex. 6.1. Define $\phi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\phi_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+x_{2}+\cdots+x_{i}$ for $i=1,2, \ldots n$. Show that $\phi_{1}, \ldots, \phi_{n}$ is a basis of $\left(\mathbb{R}^{n}\right)^{*}$, and compute its dual basis of \mathbb{R}^{n}.

Ex. 6.2. Let V be an n-dimensional vector space, let $v_{1}, \ldots, v_{n} \in V$ and let $\phi_{1}, \ldots, \phi_{n} \in$ V^{*}. Show that $\operatorname{det}\left(\left(\phi_{i}\left(v_{j}\right)\right)_{i, j}\right)$ is non-zero if and only if v_{1}, \ldots, v_{n} is a basis of V and $\phi_{1}, \ldots, \phi_{n}$ is a basis of V^{*}.

Ex. 6.3. Let V be the 3-dimensional vector space of polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$ of degree at most 2. In each of the following cases, we define $\phi_{i} \in V^{*}$ for $i=0,1,2$. In each case, indicate whether $\phi_{0}, \phi_{1}, \phi_{2}$ is a basis of V^{*}, and if so, give the dual basis of V.

1. $\phi_{i}(f)=f(i)$
2. $\phi_{i}(f)=f^{(i)}(0)$, i.e., the i th derivative of f evaluated at 0 .
3. $\phi_{i}(f)=f^{(i)}(1)$
4. $\phi_{i}(f)=\int_{-1}^{i} f(x) d x$

Ex. 6.4. For each positive integer n show that there are constants $a_{1}, a_{2}, \ldots, a_{n}$ so that

$$
\int_{0}^{1} f(x) e^{x} d x=\sum_{i=1}^{n} a_{i} f(i)
$$

for all polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree less than n.
Ex. 6.5. Suppose V is a finite dimensional vector space and W is a subspace. Let $f: V \rightarrow V$ be a linear map so that $f(w)=w$ for $w \in W$. Show that $f^{T}\left(v^{*}\right)-v^{*} \in W^{o}$ for all $v^{*} \in V^{*}$.

Conversely, if you assume that $f^{T}\left(v^{*}\right)-v^{*} \in W^{o}$ for all $v^{*} \in V^{*}$, can you show that $f(w)=w$ for $w \in W$?

* Ex. 6.6. Let V be a finite-dimensional vector space and let $U \subset V$ and $W \subset V^{*}$ be subspaces. We identify V and $V^{* *}$ via α_{V} (so $W^{\circ} \subset V$). Show that

$$
\operatorname{dim}\left(U^{\circ} \cap W\right)+\operatorname{dim} U=\operatorname{dim}\left(U \cap W^{\circ}\right)+\operatorname{dim} W
$$

Ex. 6.7. Let $\phi_{1}, \ldots, \phi_{n} \in\left(\mathbb{R}^{n}\right)^{*}$. Prove that the solution set C of the linear inequalities $\phi_{1}(x) \geq 0, \ldots, \phi_{n}(x) \geq 0$ has the following properties:

1. $\alpha, \beta \in C \Longrightarrow \alpha+\beta \in C$.
2. $\alpha \in C, t \in \mathbb{R}_{\geq 0} \Longrightarrow t \alpha \in C$.
3. If $\phi_{1}, \ldots, \phi_{n}$ form a basis of $\left(\mathbb{R}^{n}\right)^{*}$, then

$$
C=\left\{t_{1} \alpha_{1}+\ldots+t_{n} \alpha_{n}: t_{i} \in \mathbb{R}_{\geq 0}, \forall i \in\{1, \ldots, n\}\right\},
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ is the basis of \mathbb{R}^{n} dual to $\phi_{1}, \ldots, \phi_{n}$.

