Linear algebra 2: exercises for Section 8

Ex. 8.1. Let V_{1}, V_{2}, U, W be vector spaces over a field F, and let $b: V_{1} \times V_{2} \rightarrow U$ be a bilinear map. Show that for each linear map $f: U \rightarrow W$ the composition $f \circ b$ is bilinear.

Ex. 8.2. Let V, W be vector spaces over a field F. If $b: V \times V \rightarrow W$ is both bilinear and linear, show that b is the zero map.

Ex. 8.3. Give an example of two vector spaces V, W over a field F and a bilinear map $b: V \times V \rightarrow W$ for which the image of b is not a subspace of W.

Ex. 8.4. Let V, W be two 2 -dimensional subspaces of the standard \mathbb{R}-vector space \mathbb{R}^{3}. The restriction of the standard inner product $\mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ to $\mathbb{R}^{3} \times W$ is a bilinear map $b: \mathbb{R}^{3} \times W \rightarrow \mathbb{R}$.

1. What is the left kernel of b ? And the right kernel?
2. Let $b^{\prime}: V \times W \rightarrow \mathbb{R}$ be the restriction of b to $V \times W$. Show that b^{\prime} is degenerate if and only if the angle between V and W is 90°.

Ex. 8.5. Let V, W be finite-dimensional vector spaces over a field F and $b: V \times W \rightarrow F$ a bilinear form with left kernel V_{0} and right kernel W_{0}. Show that b induces the nondegenerate bilinear form

$$
b^{\prime}: V / V_{0} \times W / W_{0} \rightarrow F, \quad\left(v+V_{0}, w+W_{0}\right) \longmapsto b(v, w) .
$$

and conclude that $\operatorname{dim}\left(V / V_{0}\right)=\operatorname{dim}\left(W / W_{0}\right)$.
Ex. 8.6. Let V be a vector space over \mathbb{R}, and let $b: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear map. Let the "quadratic form" associated to b be the map $q: V \rightarrow \mathbb{R}$ that sends $x \in V$ to $b(x, x)$. Show that b is uniquely determined by q.

Ex. 8.7. Let V be a vector space over \mathbb{R}, and let $b: V \times V \rightarrow \mathbb{R}$ be a bilinear map. Show that b can be uniquely written as a sum of a symmetric and a skew-symmetric bilinear form.

