Linear algebra 2: exercises for Section 8 (part 2)

Ex. 8.8. Let V be the 3 -dimensional vector space of polynomials of degree at most 2 with coefficients in \mathbb{R}. For $f, g \in V$ define the bilinear form $\phi: V \times V \rightarrow \mathbb{R}$ by

$$
\phi(f, g)=\int_{-1}^{1} x f(x) g(x) d x
$$

1. Is ϕ non-degenerate or degenerate?
2. Give a basis of V for which the matrix associated to ϕ is diagonal.
3. Show that V has a 2-dimensional subspace U for which $U \subset U^{\perp}$.

Ex. 8.9. Let e_{1}, \ldots, e_{n} be the standard basis of $V=\mathbb{R}^{n}$, and define a symmetric bilinear form ϕ on V by $\phi\left(e_{i}, e_{j}\right)=2$ for all $i, j \in\{1, \ldots, n\}$. Give the signature of ϕ and a diagonalizing basis for ϕ.

Ex. 8.10. Suppose V is a vector space over \mathbb{R} of finite dimension n with a non-degenerate bilinear form $\phi: V \times V \rightarrow \mathbb{R}$, and suppose that U is a subspace of V with $U \subset U^{\perp}$. Then show that the dimension of U is at most $n / 2$.

Ex. 8.11. For $x \in \mathbb{R}$ consider the matrix

$$
A_{x}=\left(\begin{array}{rr}
x & -1 \\
-1 & x
\end{array}\right)
$$

1. What is the signature of A_{1} and A_{-1} ?
2. For which x is A_{x} positive definite?
3. For which x is $\left(\begin{array}{rrr}x & -1 & 1 \\ -1 & x & 1 \\ 1 & 1 & 1\end{array}\right)$ positive definite?

Ex. 8.12. Let V be a vector space over \mathbb{R}, let $b: V \times V \rightarrow \mathbb{R}$ be an skew-symmetric bilinear form, and let $x \in V$ be an element that is not in the left kernel of b.

1. Show that there exist $y \in V$ such that $b(x, y)=1$ and a linear subspace $U \subset V$ such that $V=\langle x, y\rangle \oplus U$ is an orthogonal direct sum with respect to b.
Hint. Take $U=\langle x, y\rangle^{\perp}=\{v \in V: b(x, v)=b(y, v)=0\}$.
2. Conclude that if $\operatorname{dim} V<\infty$, then then there exists a basis of V such that the matrix representing b with respect to this basis is a block diagonal matrix with blocks B_{1}, \ldots, B_{l} of the form

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

and zero blocks B_{l+1}, \ldots, B_{k}.

