Linear algebra 2: exercises for Section 9

Ex. 9.7. Let A be an orthogonal $n \times n$ matrix with entries in \mathbb{R}. Show that $\operatorname{det} A= \pm 1$. If A is be an orthogonal 2×2 matrix with entries in \mathbb{R} and $\operatorname{det} A=1$, show that A is a rotation matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ for some $\theta \in \mathbb{R}$.

Ex. 9.8. For which values of $\alpha \in \mathbb{C}$ is the matrix $\left(\begin{array}{cc}\alpha & \frac{1}{2} \\ \frac{1}{2} & \alpha\end{array}\right)$ unitary?
Ex. 9.9. Let V be the vector space of continuous complex-valued functions defined on the interval $[0,1]$, with the inner product $\langle f, g\rangle=\int_{0}^{1} f(x) \overline{g(x)} d x$. Show that the set $\left\{x \mapsto e^{2 \pi i k x}: k \in \mathbb{Z}\right\} \subset V$ is orthonormal. Is it a basis of V ?

Ex. 9.10. Show that the matrix of a normal transformation of a 2-dimensional real inner product space with respect to an orthonormal basis has one of the forms

$$
\left(\begin{array}{cc}
\alpha & \beta \\
-\beta & \alpha
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
\alpha & \beta \\
\beta & \delta
\end{array}\right) .
$$

Ex. 9.11. Let V be the vector space of infinitely differentiable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying $f(x+2)=f(x)$ for all $x \in \mathbb{R}$. Consider the inner product on V given by $\langle p, q\rangle=\int_{-1}^{1} p(x) \overline{q(x)} d x$. Show that the operator $D: p \mapsto p^{\prime \prime}$ is self-adjoint.

Ex. 9.12. Let n be a positive integer. Show that there exists an orthogonal antisymmetric $n \times n$-matrix with real coefficients if and only if n is even.

Ex. 9.13. Consider \mathbb{R}^{n} with the standard inner product, and let $V \subset \mathbb{R}^{n}$ be a subspace. Let A be the $n \times n$-matrix of orthogonal projection on V. Show that A is symmetric.

