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Exercise 61. Let p be a prime number, and let n be a non-negative integer.

(a) Prove: every group of order pn is cyclic if and only if n ≤ 1.

(b) Prove: every group of order pn is abelian if and only if n ≤ 2.

Exercise 62. (a) Let G be a group. By a G-set or left G-set we mean a set X equipped

with an action of G on X . A right G-set is a set X equipped with a map X × G → X ,

(x, σ) 7→ xσ, with the property that for all x ∈ X , σ, τ ∈ G one has x1 = x and

(xσ)τ = x(στ). Prove that each left G-set X can be turned into a right G-set by defining

xσ = σ−1x, and that every right G-set arises in this way.

(b) Let G, H be groups. By a G-H-biset we mean a set X that is both a left G-set and

a right H-set, with the property that for all σ ∈ G, x ∈ X , ρ ∈ H one has (σx)ρ = σ(xρ).

Prove that every G × H-set X can be turned into a G-H-biset by putting σx = (σ, 1)x

and xρ = (1, ρ−1)x, for σ ∈ G, x ∈ X , ρ ∈ H, and that every G-H-biset arises in this way.

Exercise 63. Let G be a group. A G-set X is called free if for each x ∈ X the stabilizer of

x in G equals {1}, and it is called regular if it is both transitive and free. A regular G-set

is also called a G-torsor.

(a) Show that for each group G there is a G-torsor, and that any two G-torsors are

G-isomorphic.

(b) Show that the group of G-automorphisms of any G-torsor is isomorphic to G. To

which extent is your isomorphism independent of choices?

Exercise 64. Let P be a Platonic solid. By a flag of P we mean a triple (v, e, f) where

f , e, v are a face of P , an edge of f , and one of the endpoints of e, respectively. Let F be

the set of flags of P , and denote by G the symmetry group of P . Explain that the natural

action of G on F makes F into a G-torsor.

Exercise 65. (a) Let G, H be groups. By a G-H-bitorsor we mean a G-H-biset (see

Exercise 62(b)) that is regular both as a G-set (see Exercise 63) and as an H-set (cf.

Exercise 62(a)). Prove: a G-H-bitorsor exists if and only if G ∼= H.

(b) Let G be a group, and let X , Y be G-G-bitorsors. By a G-G-isomorphism X → Y

we mean a bijection f :X → Y with the property that for all σ ∈ G, x ∈ X we have

σf(x) = f(σx) and (f(x))σ = f(xσ); if such a map exists, we say that X and Y are

G-G-isomorphic. A G-G-automorphism of X is a G-G-isomorphism X → X .

Prove that the group of G-G-automorphisms of X is isomorphic to the center Z(G)

of G.
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Exercise 66. (a) Let N be a group. Show that left and right multiplication by elements

of N makes N into a N -N -bitorsor, as defined in Exercise 65.

(b) Let G be a group and let N ⊂ G be a normal subgroup. Show that left and right

multiplication by elements of N makes every coset γN of N in G into a N -N -bitorsor.

(c) Give an example of a group G, a normal subgroup N of G, and an element γ ∈ G,

such that the N -N -bitorsors N from (a) and γN from (b) are not N -N -isomorphic.

Exercise 67. Let G be a group. We define OutG = (AutG)/ InnG, the group of auto-

morphisms of G modulo the normal subgroup of inner automorphisms of G; one often calls

OutG the group of outer automorphisms of G.

(a) Let X , Y be G-G-bitorsors. Call two elements of X × Y equivalent if there are

x ∈ X , σ ∈ G, y ∈ Y such that the first element equals (xσ, y) and the second element

equals (x, σy). Prove that this is an equivalence relation on X × Y , and that the set

X ∗ Y (say) of equivalence classes is a G-G-torsor through the actions σ[x, y] = [σx, y],

[x, y]σ = [x, yσ]; here σ ∈ G, x ∈ X , y ∈ Y , and [x, y] denotes the equivalence class to

which (x, y) belongs.

(b) Prove that the operation ∗ from (a) turns the set of G-G-isomorphism classes (cf.

Exercise 65(b)) of G-G-bitorsors into a group, and that this group is isomorphic to the

group OutG.

Exercise 68. (This exercise combines Exercises 66(b) and 67.) Let G be a group, and let

N ⊂ G be a normal subgroup.

(a) Prove that for every γ, δ ∈ G the N -N -bitorsor γN ∗ δN , with ∗ as in Exercise

67(a), is N -N -isomorphic to the N -N -bitorsor γδN .

(b) Show that (a) and Exercise 67(b) give rise to a group homomorphism G/N →

OutN . Can you describe this group homomorphism in a direct way?

Exercise 69. Let G be a group. In class we defined a G-group to be a group A together

with a group homomorphism G → AutA, denoted σ 7→ (a 7→ σa).

Let A be a G-group. If a set X is both a G-set and an A-set, then the three actions

(of G on A, of G on X , and of A on X) are called compatible if for all σ ∈ G, a ∈ A, x ∈ X

one has σ(ax) = (σa)(σx).

Let X be a set. Prove that equipping X with an action of G and an action of A such

that the three actions are compatible, is equivalent to equipping it with an action of A⋊G;

here the semidirect product A⋊G is formed with respect to the given G-group structure

on A.

Exercise 70. (a) Let G be a group, let A be a G-group (see Exercise 69), and let X be

a group that is both a G-group and an A-group. Assume that the compatibility condition
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of Exercise 69 is satisfied. Prove that, in a natural way, X is a A⋊G-group and X ⋊A is

a G-group, and that the semidirect products X ⋊ (A⋊G) and (X ⋊A)⋊G are naturally

isomorphic; so it may be written X ⋊ A⋊G.

(b) With X , A, G equal to, respectively, the additive group of F4, the multiplicative

group F∗

4, and the group AutF4 of field automorphisms of F4, define actions as in (a) such

that the compatibility conditions are satisfied and such that the group F4 ⋊ F∗

4
⋊ AutF4

is isomorphic to the symmetric group S4.

Exercise 71. Let G be a group, and let A be a G-module, i.e., a G-group that is abelian; we

write A additively. A 1-cocycle or crossed homomorphism from G to A is a map c:G → A

with the property that for all σ, τ ∈ G one has c(στ) = c(σ)+σc(τ). The set of 1-cocycles

from G to A forms, with point-wise addition, an abelian group, which is denoted Z1(G,A).

A 1-coboundary from G to A is a map c:G → A for which there exists b ∈ A such that for

all σ ∈ G one has c(σ) = b− σb. The set of 1-coboundaries from G to A is a subgroup of

Z1(G,A), which is denoted B1(G,A). Finally, the first cohomology group H1(G,A) of G

with coefficients in A is defined by H1(G,A) = Z1(G,A)/B1(G,A).

(a) Suppose G is an infinite cyclic group, with generator ρ. Prove that for every a ∈ A

there is exactly one 1-cocycle G → A that maps ρ to a, and that one has Z1(G,A) ∼= A.

To which description of H1(G,A) does this give rise?

(b) Suppose now that G = 〈ρ〉 is a finite cyclic group, and let m be its order. Prove:

H1(G,A) ∼= {a ∈ A :
∑

m−1

i=0
ρia = 0}/{b− ρb : b ∈ A}.

Exercise 72. Let G be a group of order 2, and let A be the group Z/4Z. Prove that

the number of G-module structures on A equals 2, and compute the groups Z1(G,A),

B1(G,A), H1(G,A) defined in Exercise 71 for both of them.
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