Log seminar - exercise class

October 28, 2020

- 1. Verify that the three definitions 2, 2.5 and 3 of the first lecture give isomorphic log schemes.
- 2. Given a divisor D on a scheme X, define the notion of the corresponding divisorial log structure. Show for a few of the examples we have treated that they are in fact divisorial log structures.
- 3. Describe the toric variety corresponding to the fan generated by the cones $\langle e_1, e_1 + e_2 \rangle$ and $\langle e_1 + e_2, e_2 \rangle$.
- 4. Fact: a toric variety coming from a (rational, strongly convex, polyhedral) cone is smooth if and only if the cone is generated by a subset of a basis of the lattice. Use this to give a non-smooth toric variety.
- 5. Show that all toric varieties, with the natural log structure, are log smooth over the point with trivial log structure.
- 6. Analogously to Jan's talk, we can define the stack $\mathcal{M}_{g,n}$, consisting of genus g curves $C \to S$ with n disjoint sections $p_1, \ldots, p_n : S \to C$. Show that $\mathcal{M}_{0,3}$ is Spec \mathbb{Z} , and $\mathcal{C}_{0,3}$, the universal curve over $\mathcal{M}_{0,3}$, is \mathbb{P}^1 with sections $0, 1, \infty$.
- 7. Show that $\mathcal{M}_{0,4} = \mathbb{P}^1 \setminus \{0,1,\infty\}$, and give the universal curve $\mathcal{C}_{0,4}$ and its four sections. Can you guess what $\overline{\mathcal{M}}_{0,4}$ and $\overline{\mathcal{C}}_{0,4}$ are?
- 8. If you know what a stable curve is: prove that a genus 0 stable curve (such a curve necessarily has ≥ 3 marked points) has no non-trivial automorphisms. (Hint: look at the dual graph). (This exercise actually implies that $\overline{\mathcal{M}}_{0,n}$ is a scheme by Theorem 3.19e of https://www.math.unibonn.de/people/schmitt/ModCurves/Script.pdf)
- 9. Show that dlog: $M \to \Omega_X$ is a morphism of monoids (where Ω_X is a monoid under addition).

- 10. Compute the sheaf of differentials and the sheaf of log differentials in the following cases:
 - (a) $\mathbb{A}^1_s \to \mathbb{A}^1_t$ given by $t = s^2$, with divisorial log structure respectively from s = 0 and t = 0.
 - (b) $\mathbb{A}^1_{x,y} \to \mathbb{A}^1_{u,v}$ given by (u,v)=(x,xy), with divisorial log structure respectively from xy=0 and uv=0.
 - (c) $\mathbb{A}^2_{x,y} \to \mathbb{A}^1_t$ given by t = xy, with divisorial log structure respectively from xy = 0 and t = 0. (Note that the basechange to t = 0 gives the log smooth curve treated by Jesse.)