Toric Geometry

Margherita Pagano

The aim of this talk is to introduce the notion of toric variety and show how toric varieties admit a canonical log-scheme structure. The main reference for this talk is Chapter I of Fulton, "Introduction to Toric Varieties"

1 Affine Toric Varieties

Definition 1. Let L be a lattice ($a \mathbb{Z}$-module isomoprhic to \mathbb{Z}^{n} for some positive integer n), then a convex polyhedral cone is a subset of $L_{\mathbb{R}}=L \otimes_{\mathbb{Z}} \mathbb{R}$ of the form:

$$
\sigma=\left\{r_{1} v_{1}+\ldots r_{s} v_{s} \mid r_{i} \geq 0\right\}
$$

for some $v_{1}, \ldots, v_{s} \in L_{\mathbb{R}}$.
The vectors v_{1}, \ldots, v_{s} are called generators for the cone σ. We define the dimension of a cone σ as the dimension of the \mathbb{R} vector space generated by σ We define the dual of a cone σ as

$$
\sigma^{\vee}:=\left\{u \in L_{\mathbb{R}}^{*} \mid\langle u, v\rangle \geq 0 \text { for all } v \in \sigma\right\}
$$

Moreover, we define a face $\tau \subseteq \sigma$ as the intersection of σ with any supporting hyperplane 1

$$
\tau=\sigma \cap u^{\perp}=\{v \in \sigma \mid\langle u, v\rangle=0\}
$$

for some $u \in \sigma^{\vee}$.

Example 1.

1. If we take $L=\mathbb{Z}^{2}$ and σ the cone generated by e_{1} and e_{2}, then, $\sigma^{\vee}=\sigma$. Hence, the faces of σ are subsets of σ of the form $\sigma \cap u^{\perp}$ for $u \in \sigma$. For $u \in \sigma$ we have that $u^{\perp} \cap \sigma \neq\{0\}$ if and only if $u=e_{1}, e_{2}, 0$. Hence, as you might expect, the faces of σ are $\left\{\sigma, e_{1}, e_{2},\{0\}\right\}$.
2. If we take $L=\mathbb{Z}^{2}$ and σ the cone generated by e_{1} and $-e_{1}$, then σ^{\vee} is generated by $e_{2},-e_{2}$ and the only face of σ is σ itself.

We will list some fact about convex polyhedral cones without proving them

Fact 1.

1. $\left(\sigma^{\vee}\right)^{\vee}=\sigma$;
2. Any face of a convex polyhedral cone is also a convex polyhedral cone;
3. Any intersection of faces is also a face;
4. Any face of a face is a face;
5. The dual of a convex polyhedral cone is a convex polyhedral cone (Farkas' Theorem).
[^0]Remark 1. The proof of all these properties uses the following result from the theory of convex sets:
(\star) If σ is a convex polyhedral co ne and $v_{0} \notin \sigma$, then there is some $u_{0} \in \sigma^{\vee}$ with $\left\langle u_{0}, v_{0}\right\rangle<0$.
The proof of all these results can be found in Section 2, Chapter 1 of Fulton, "Introduction to Toric Varieties".
The first step, in order to associate to a convex polyhedral cone σ an affine variety, is to define a monoid attached to the cone, S_{σ}. We define

$$
S_{\sigma}=\sigma^{\vee} \cap M=\{u \in M \mid\langle u, v\rangle \geq 0 \text { for all } v \in \sigma\}
$$

1. $\sigma \in \mathbb{R}^{2}$ be the cone generated by $\left\{e_{2}, 2 e_{1}-e_{2}\right\}$. Then,

$$
S_{\sigma}=\left\{\alpha e_{1}^{*}+\beta e_{2}^{*} \in M \mid\left(\alpha e_{1}^{*}+\beta e_{2}^{*}\right)\left(e_{2}\right) \geq 0 \text { and }\left(\alpha e_{1}^{*}+\beta e_{2}^{*}\right)\left(2 e_{1}-e_{2}\right) \geq 0\right\}
$$

Hence

$$
S_{\sigma}=\left\{\alpha e_{1}^{*}+\beta e_{2}^{*} \in M \mid \beta \geq 0 \text { and } 2 \alpha \geq \beta\right\}=\left\{\alpha e_{1}^{*}+\beta e_{2}^{*} \in M \mid 2 \alpha \geq \beta \geq 0\right\}
$$

which is generated by $\left\{e_{1}^{*}, e_{1}^{*}+e_{2}^{*}, e_{1}^{*}+2 e_{2}^{*}\right\}$.
2. $\sigma \in \mathbb{R}^{2}$ be the cone generated by $\left\{e_{2}, \lambda e_{1}-e_{2}\right\}$, with λ positive irrational number. Then,

$$
S_{\sigma}=\left\{\alpha e_{1}^{*}+\beta e_{2}^{*} \in M \mid \lambda \alpha \geq \beta \geq 0\right\}
$$

Suppose by contradiction that S_{σ} is finitely generated, generated by $\left\{\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{k}, \beta_{k}\right)\right\}$. Using the irrationality of λ we get that there exist α, β such that $\alpha e_{1}^{*}+\beta e_{2}^{*} \in S_{\sigma}$ and

$$
\max _{j}\left\{\frac{\beta_{j}}{\alpha_{j}}\right\}<\frac{\beta}{\alpha}<\lambda
$$

There exists some natural numbers n_{1}, \ldots, n_{k} such that

$$
\frac{\beta}{\alpha}=\frac{n_{1} \beta_{1}+\cdots+n_{k} \beta_{k}}{n_{1} \alpha_{1}+\cdots+n_{k} \alpha_{k}}
$$

let $i_{0}:=\max _{j=1, \ldots, k}\left\{n_{j} \beta_{k}\right\}$, then

$$
\frac{\beta}{\alpha} \leq \frac{n_{i_{0}} \beta_{i_{0}}}{n_{i_{0}} \alpha_{i_{0}}}=\frac{\beta_{i_{0}}}{\alpha_{i_{0}}} \leq \max _{j}\left\{\frac{\beta_{j}}{\alpha_{j}}\right\}
$$

which give us the desired contradiction.
3. More in general, if σ is the cone generated by e_{2} and $\lambda e_{1}-e_{2}$, with λ positive, then S_{σ} is finitely generated if and only if λ is rational if and only if σ admits a set of generators from \mathbb{Z}^{2}. Indeed, if $\lambda=m / n$ is rational, then

$$
\sigma=\left\langle e_{2}, m e_{1}-n e_{2}\right\rangle
$$

and σ^{\vee} is generated by $e_{1}^{*}, e_{1}^{*}+e_{2}^{*}, \ldots, e_{1}^{*}+m e_{2}^{*}$.
Definition 2. A covex polyhedral cone is said to be rational if its generators can be taken from L.
It can be proven that if σ is rational then also its dual σ^{\vee} is rational. Using the latter result it is possible to prove the following:

Lemma 1 (Gordon's Lemma). If σ is a rational convex polyhedral cone, then $S_{\sigma}:=\sigma^{\vee} \cap M$ is a finitely generated semigroup.

Proof. See Proposition 1, Chapter 1 of Fulton, "Introduction to Toric Varieties".
Example 2. Let $L=\mathbb{Z}^{2} \subseteq \mathbb{R}^{2}$ with canonical basis e_{1}, e_{2} and let e_{1}^{*}, e_{2}^{*} be the canonical basis of $M=L^{*}$.

Definition 3. A cone is called strongly convex if it contains no nonzero linear subspace.
Remark 2. It can be proven that being strongly convex is equivalent to ask that there is a vector $u \in \sigma^{\vee}$ such that $\sigma \cap u^{\perp}=\{0\}$, namely $\{0\}$ is a face of σ.

Any additive semigroup determines a "group ring" $\mathbb{C}[S]$, which is a commutative \mathbb{C} algebra. As a \mathbb{C} vector space it has a basis $\left\{X^{u}\right\}_{u \in S}$, and the multiplication is determined by $X^{u} X^{v}=X^{u+v}$. Clearly generators of the semigroup S determine generators for the \mathbb{C} algebra $\mathbb{C}[S]$.

Definition 4. We associated to a strongy convex rational cone the finitely generated \mathbb{C} scheme

$$
U_{\sigma}:=\operatorname{Spec}\left(\mathbb{C}\left[S_{\sigma}\right]\right)
$$

U_{σ} is called affine toric varity.
We have the following key proposition
Proposition 2. If $\tau \subseteq \sigma$ is a face of σ, then $U_{\tau} \rightarrow U_{\sigma}$ embeds U_{τ} as a principal open subset of U_{σ}.
Proof. First one should prove the following: if $\tau=\sigma \cap u^{\perp}$ then we can assume that $u \in \sigma^{\vee} \cap M$, then

$$
S_{\tau}=S_{\sigma}+\mathbb{Z}_{\geq 0} \cdot(-u)
$$

Therefore, every element of the basis of $\mathbb{C}\left[S_{\tau}\right]$ can be written in the form $X^{w-p u}$ with $w \in S_{\sigma}$. Hence, $\mathbb{C}\left[S_{\tau}\right]=\left(\mathbb{C}\left[S_{\sigma}\right]\right)_{\left\{1,1 / X^{u}, \ldots\right\}}$.

Example 3.

1. Let $L=\mathbb{Z}^{n}$ with canonical basis $\left\{e_{1}, \ldots, e_{n}\right\}$ and let σ be the cone with generators e_{1}, \ldots, e_{k} for some $k \leq n$. Then S_{σ} is generated by $\left\{e_{1}^{*}, \ldots, e_{k}^{*}, \pm e_{k+1}^{*}, \cdots \pm e_{n}^{*}\right\}$. Hence,

$$
\mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[X_{1}, \ldots, X_{k}, X_{k+1}, X_{k+1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]
$$

and U_{σ} is a product (fibred product) of the affine k space with an $(n-k)$ dimensional torus.
2. Back to Example 2.1: σ is generated by e_{2} and $2 e_{1}-e_{2}$. Hence σ^{\vee} is generated by $e_{1}^{*}, e_{1}^{*}+e_{2}^{*}, e_{1}^{*}+2 e_{2}^{*}$.

$$
\mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[X_{1}, X_{1} X_{2}, X_{1} X_{2}^{2}\right]=\mathbb{C}[U, V, W] /\left(V^{2}-U W\right)
$$

3. A singular example: let σ be the cone generated but $e_{1}, e_{2}, e_{3}, e_{1}+e_{3}-e_{2}$. Then S_{σ} is generated by $\left\{e_{1}^{*}, e_{3}^{*}, e_{1}^{*}+e_{2}^{*}, e_{2}^{*}+e_{3}^{*}\right\} ;$ hence

$$
\mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[X_{1}, X_{3}, X_{2} X_{1}, X_{2} X_{3}\right]=\mathbb{C}[U, V, W, T] /(U T-V W)
$$

Remark 3. All of the semigroups of the form S_{σ} for some strongly convex rational polyhedral cone σ are sub-semigroups of the group $M=S_{0}$. As a semigroup, M has generators $\pm e_{1}^{*}, \ldots, \pm e_{n}^{*}$ so $\mathbb{C}[M]=$ $\mathbb{C}\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]$. Hence $C\left[S_{\sigma}\right]$ is a subalgebra of $\mathbb{C}[M]$ and in particular it is a domain.

In particular, by the previous proposition, we get that every toric affine variety contains $U_{\{0\}}$ as a principal open subset and

$$
U_{\{0\}}=\operatorname{Spec}(\mathbb{C}[M])=\operatorname{Spec}\left(\mathbb{C}\left[X_{1}, X_{1}^{-1}, \ldots, X_{n}, X_{n}^{-1}\right]\right)
$$

is the n dimensional torus!
Fact 2. It can be proven, using the properties of a strongly convex rational cone σ, that every affine toric variety is normal. Furthermore, the cone σ is regular (i.e. it admits a system of generators that can be completed to a basis of the lattice L) if and only if the associated toric variety is regular.

2 Fans and toric varieties

Definition 5. By a fan Δ in L is meant a finite set of rational strongly convex polyhedral cones σ in $L_{\mathbb{R}}$ such that

1. Each face of a cone in Δ is also a cone in Δ;
2. The intersection of two cones in Δ is a face of each.

From a fan Δ the toric variety $X(\Delta)$ is constructed by taking the disjoint union of the affine toric varieties U_{σ}, and gluing as follows: for cones σ, τ the intersection is a face of each, so $U_{\sigma \cap \tau}$ is identified as a principal open subvariety of both; glue U_{σ} and U_{τ} by this identification on this open subvarieties. Note that, these identifications are compatible, using the order preserving nature of the correspondence from cones to affine varieties.

Example 4.

1. Take $L=\mathbb{Z}$ and $\Delta=\left\{\sigma_{+}:=\mathbb{R}_{\geq 0}, \sigma_{-}:=\mathbb{R}_{\leq 0},\{0\}\right\}$. Then, $U_{+}=\operatorname{Spec}(\mathbb{C}[X]), U_{-}=\operatorname{Spec}(\mathbb{C}[Y])$ and the gluing on the overlap is given by:

$$
\begin{aligned}
U_{0}=\operatorname{Spec}\left(\mathbb{C}\left[X, X^{-1}\right]\right) & \rightarrow U_{0}=\operatorname{Spec}\left(\mathbb{C}\left[Y, Y^{-1}\right]\right) \\
X & \mapsto Y^{-1}
\end{aligned}
$$

Hence, $X(\Delta)=\mathbb{P}_{\mathbb{C}}^{1}$.
2. $n=2$ and Δ the fan "generated" by $\sigma_{0}=\left\{e_{1}, e_{1}+e_{2}\right\}$ and $\sigma_{1}=\left\{e_{2}, e_{1}+e_{2}\right\}$. Then

$$
U_{\sigma_{0}}=\operatorname{Spec}\left(\mathbb{C}\left[X, X^{-1} Y\right]\right)
$$

and

$$
U_{\sigma_{1}}=\operatorname{Spec}\left(\mathbb{C}\left[Y, X Y^{-1}\right]\right)
$$

On the intersection we glue through the isomorphism sending $X^{-1} Y$ to $\left(X Y^{-1}\right)^{-1}$. Namely, the resulting variety is a blow-up of the affine plane on the origin.

3 The log structure

We start this section with a brief recall of what Pim has introduced during his talk.
A pre \log structure on a scheme X is a sheaf of monoids M on the topological space X together with a morphism of monoids $\alpha: M \rightarrow \mathcal{O}_{X}$. Moreover, we define the log structure $M^{a} \rightarrow \mathcal{O}_{X}$ associated to it as the pushout of the following square

Finally a chart of X is a strict morphism $X \rightarrow(P \rightarrow \mathbb{Z}[P])$ and a \log scheme X is f if étale locally it has a chart modelled over an fs monoid.

On an affine toric variety we have a natural pre-log structure given by $S_{\sigma} \hookrightarrow \mathbb{C}\left[S_{\sigma}\right]$. Hence, we can put on U_{σ} the associated \log structure. A chart on U_{σ} is given by the map on \log scheme induced by the following map on pre log schemes

$$
\left(S_{\sigma}, U_{\sigma}\right) \rightarrow\left(S_{\sigma}, \operatorname{Spec}\left(\mathbb{Z}\left[S_{\sigma}\right]\right)\right)
$$

Proposition 3. S_{σ} is fine and saturated.

Proof. Saturatedness follows almost immediately from the definition of S_{σ}.
We recall that by fine we mean finitely generated and integral. We have already mentioned the fact σ being rational implies S_{σ} finitely generated. We have in some sense already proven also the integrality of S_{σ}. Indeed, σ being strongly convex is equivalent to $\{0\}$ being a face of σ, which implies that S_{σ} is a submonoid of $S_{\{0\}}=\mathbb{Z}^{n}$, which is of course integral.

Hence an affine toric variety admits a fs log structure.
In a similar way one can show that every toric variety $X(\Delta)$ admits a fs \log structure.

4 Extra

As you may expect many properties of a toric variety can be deduced from the fan associated to it. We will mention some of them.

Definition 6. We say that a cone is regular if it admits a system that can be completed to a basis of the lattice N. A fan is regular if every cone in the fan is regular.

Proposition 4. A fan Δ is regular if and only if the associated toric variety $X(\Delta)$ is smooth.
Definition 7. A fan is complete if its cones covers \mathbb{R}^{n}, i.e. $|\Delta|=\mathbb{R}^{n}$.
Proposition 5. A fan Δ is complete if and only if the associated toric variety $X(\Delta)$ is compact.
Proposition 6. Toric varieties are normal (i.e. integrally closed) and separated.
Finally it can be proven that it is possible to give the following definition of toric variety:
Theorem 7. A toric variety is an algebraic normal variety X that contains a torus T as a dense open subset, together with an action $T \times X \rightarrow X$ that extends the natural action of the torus T on itself.

A proof of all these results can be found in Section 3.4 of Jean-Paul Brasselet, "Introduction to Toric Varieties".

[^0]: ${ }^{1}$ A hyperplane such that σ is entairely cointained in one of the two closed half-space bounded by the hyperplane and σ has at least one bundary point on the hyperplane

