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The aim of this talk is to introduce the notion of toric variety and show how toric varieties admit a
canonical log-scheme structure. The main reference for this talk is Chapter I of Fulton, "Introduction to
Toric Varieties".

1 Affine Toric Varieties
Definition 1. Let L be a lattice (a Z-module isomoprhic to Zn for some positive integer n), then a convex
polyhedral cone is a subset of LR = L⊗Z R of the form:

σ = {r1v1 + . . . rsvs | ri ≥ 0}

for some v1, . . . , vs ∈ LR.

The vectors v1, . . . , vs are called generators for the cone σ. We define the dimension of a cone σ as the
dimension of the R vector space generated by σ We define the dual of a cone σ as

σ∨ := {u ∈ L∗R | 〈u, v〉 ≥ 0 for all v ∈ σ}.

Moreover, we define a face τ ⊆ σ as the intersection of σ with any supporting hyperplane 1

τ = σ ∩ u⊥ = {v ∈ σ | 〈u, v〉 = 0}

for some u ∈ σ∨.

Example 1.

1. If we take L = Z2 and σ the cone generated by e1 and e2, then, σ∨ = σ. Hence, the faces of σ are
subsets of σ of the form σ∩u⊥ for u ∈ σ. For u ∈ σ we have that u⊥∩σ 6= {0} if and only if u = e1, e2, 0.
Hence, as you might expect, the faces of σ are {σ, e1, e2, {0}}.

2. If we take L = Z2 and σ the cone generated by e1 and −e1, then σ∨ is generated by e2,−e2 and the
only face of σ is σ itself.

We will list some fact about convex polyhedral cones without proving them

Fact 1.

1. (σ∨)∨ = σ;

2. Any face of a convex polyhedral cone is also a convex polyhedral cone;

3. Any intersection of faces is also a face;

4. Any face of a face is a face;

5. The dual of a convex polyhedral cone is a convex polyhedral cone (Farkas’ Theorem).
1A hyperplane such that σ is entairely cointained in one of the two closed half-space bounded by the hyperplane and σ has

at least one bundary point on the hyperplane
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Remark 1. The proof of all these properties uses the following result from the theory of convex sets:

(?) If σ is a convex polyhedral co ne and v0 /∈ σ, then there is some u0 ∈ σ∨ with 〈u0, v0〉 < 0.

The proof of all these results can be found in Section 2, Chapter 1 of Fulton, "Introduction to Toric Varieties".

The first step, in order to associate to a convex polyhedral cone σ an affine variety, is to define a monoid
attached to the cone, Sσ. We define

Sσ = σ∨ ∩M = {u ∈M | 〈u, v〉 ≥ 0 for all v ∈ σ}.

1. σ ∈ R2 be the cone generated by {e2, 2e1 − e2}. Then,

Sσ = {αe∗1 + βe∗2 ∈M | (αe∗1 + βe∗2)(e2) ≥ 0 and (αe∗1 + βe∗2)(2e1 − e2) ≥ 0}.

Hence
Sσ = {αe∗1 + βe∗2 ∈M | β ≥ 0 and 2α ≥ β} = {αe∗1 + βe∗2 ∈M | 2α ≥ β ≥ 0}

which is generated by {e∗1, e∗1 + e∗2, e
∗
1 + 2e∗2}.

2. σ ∈ R2 be the cone generated by {e2, λe1 − e2}, with λ positive irrational number. Then,

Sσ = {αe∗1 + βe∗2 ∈M | λα ≥ β ≥ 0}.

Suppose by contradiction that Sσ is finitely generated, generated by {(α1, β1), . . . , (αk, βk)}. Using the
irrationality of λ we get that there exist α, β such that αe∗1 + βe∗2 ∈ Sσ and

max
j

{
βj
αj

}
<
β

α
< λ.

There exists some natural numbers n1, . . . , nk such that

β

α
=
n1β1 + · · ·+ nkβk
n1α1 + · · ·+ nkαk

let i0 := maxj=1,...,k{njβk}, then

β

α
≤ ni0βi0
ni0αi0

=
βi0
αi0
≤ max

j

{
βj
αj

}

which give us the desired contradiction.

3. More in general, if σ is the cone generated by e2 and λe1 − e2, with λ positive, then Sσ is finitely
generated if and only if λ is rational if and only if σ admits a set of generators from Z2. Indeed, if
λ = m/n is rational, then

σ = 〈e2,me1 − ne2〉

and σ∨ is generated by e∗1, e∗1 + e∗2, . . . , e
∗
1 +me∗2.

Definition 2. A covex polyhedral cone is said to be rational if its generators can be taken from L.

It can be proven that if σ is rational then also its dual σ∨ is rational. Using the latter result it is possible to
prove the following:

Lemma 1 (Gordon’s Lemma). If σ is a rational convex polyhedral cone, then Sσ := σ∨ ∩M is a finitely
generated semigroup.

Proof. See Proposition 1, Chapter 1 of Fulton, "Introduction to Toric Varieties".

Example 2. Let L = Z2 ⊆ R2 with canonical basis e1, e2 and let e∗1, e∗2 be the canonical basis of M = L∗.
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Definition 3. A cone is called strongly convex if it contains no nonzero linear subspace.

Remark 2. It can be proven that being strongly convex is equivalent to ask that there is a vector u ∈ σ∨
such that σ ∩ u⊥ = {0}, namely {0} is a face of σ.

Any additive semigroup determines a "group ring" C[S], which is a commutative C algebra. As a C vector
space it has a basis {Xu}u∈S , and the multiplication is determined by XuXv = Xu+v’. Clearly generators
of the semigroup S determine generators for the C algebra C[S].

Definition 4. We associated to a strongy convex rational cone the finitely generated C scheme

Uσ := Spec(C[Sσ]).

Uσ is called affine toric varity.

We have the following key proposition

Proposition 2. If τ ⊆ σ is a face of σ, then Uτ → Uσ embeds Uτ as a principal open subset of Uσ.

Proof. First one should prove the following: if τ = σ ∩ u⊥ then we can assume that u ∈ σ∨ ∩M , then

Sτ = Sσ + Z≥0 · (−u).

Therefore, every element of the basis of C[Sτ ] can be written in the form Xw−pu with w ∈ Sσ. Hence,
C[Sτ ] = (C[Sσ]){1,1/Xu,... }.

Example 3.

1. Let L = Zn with canonical basis {e1, . . . , en} and let σ be the cone with generators e1, . . . , ek for some
k ≤ n. Then Sσ is generated by {e∗1, . . . , e∗k,±e∗k+1, · · · ± e∗n}. Hence,

C[Sσ] = C[X1, . . . , Xk, Xk+1, X
−1
k+1, . . . , Xn, X

−1
n ]

and Uσ is a product (fibred product) of the affine k space with an (n− k) dimensional torus.

2. Back to Example 2.1: σ is generated by e2 and 2e1− e2. Hence σ∨ is generated by e∗1, e∗1 + e∗2, e
∗
1 + 2e∗2.

C[Sσ] = C[X1, X1X2, X1X
2
2 ] = C[U, V,W ]/(V 2 − UW )

3. A singular example: let σ be the cone generated but e1, e2, e3, e1 + e3 − e2. Then Sσ is generated by
{e∗1, e∗3, e∗1 + e∗2, e

∗
2 + e∗3}; hence

C[Sσ] = C[X1, X3, X2X1, X2X3] = C[U, V,W, T ]/(UT − VW )

Remark 3. All of the semigroups of the form Sσ for some strongly convex rational polyhedral cone σ
are sub-semigroups of the group M = S0. As a semigroup, M has generators ±e∗1, . . . ,±e∗n so C[M ] =
C[X1, X

−1
1 , . . . , Xn, X

−1
n ]. Hence C[Sσ] is a subalgebra of C[M ] and in particular it is a domain.

In particular, by the previous proposition, we get that every toric affine variety contains U{0} as a principal
open subset and

U{0} = Spec(C[M ]) = Spec(C[X1, X
−1
1 , . . . , Xn, X

−1
n ])

is the n dimensional torus!

Fact 2. It can be proven, using the properties of a strongly convex rational cone σ, that every affine toric
variety is normal. Furthermore, the cone σ is regular (i.e. it admits a system of generators that can be
completed to a basis of the lattice L) if and only if the associated toric variety is regular.
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2 Fans and toric varieties
Definition 5. By a fan ∆ in L is meant a finite set of rational strongly convex polyhedral cones σ in LR
such that

1. Each face of a cone in ∆ is also a cone in ∆;

2. The intersection of two cones in ∆ is a face of each.

From a fan ∆ the toric variety X(∆) is constructed by taking the disjoint union of the affine toric varieties
Uσ, and gluing as follows: for cones σ, τ the intersection is a face of each, so Uσ∩τ is identified as a principal
open subvariety of both; glue Uσ and Uτ by this identification on this open subvarieties. Note that, these
identifications are compatible, using the order preserving nature of the correspondence from cones to affine
varieties.

Example 4.

1. Take L = Z and ∆ = {σ+ := R≥0, σ− := R≤0, {0}}. Then, U+ = Spec(C[X]), U− = Spec(C[Y ]) and
the gluing on the overlap is given by:

U0 = Spec(C[X,X−1])→ U0 = Spec(C[Y, Y −1])

X 7→ Y −1

Hence, X(∆) = P1
C.

2. n = 2 and ∆ the fan "generated" by σ0 = {e1, e1 + e2} and σ1 = {e2, e1 + e2}. Then

Uσ0
= Spec(C[X,X−1Y ])

and
Uσ1

= Spec(C[Y,XY −1]).

On the intersection we glue through the isomorphism sending X−1Y to (XY −1)−1. Namely, the
resulting variety is a blow-up of the affine plane on the origin.

3 The log structure
We start this section with a brief recall of what Pim has introduced during his talk.

A pre log structure on a scheme X is a sheaf of monoids M on the topological space X together with a
morphism of monoids α : M → OX . Moreover, we define the log structure Ma → OX associated to it as the
pushout of the following square

α−1O×X M

O×X Ma

α

Finally a chart of X is a strict morphism X → (P → Z[P ]) and a log scheme X is fs if étale locally it has a
chart modelled over an fs monoid.

On an affine toric variety we have a natural pre-log structure given by Sσ ↪→ C[Sσ]. Hence, we can put on
Uσ the associated log structure. A chart on Uσ is given by the map on log scheme induced by the following
map on pre log schemes

(Sσ, Uσ)→ (Sσ, Spec(Z[Sσ])).

Proposition 3. Sσ is fine and saturated.
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Proof. Saturatedness follows almost immediately from the definition of Sσ.
We recall that by fine we mean finitely generated and integral. We have already mentioned the fact σ

being rational implies Sσ finitely generated. We have in some sense already proven also the integrality of Sσ.
Indeed, σ being strongly convex is equivalent to {0} being a face of σ, which implies that Sσ is a submonoid
of S{0} = Zn, which is of course integral.

Hence an affine toric variety admits a fs log structure.

In a similar way one can show that every toric variety X(∆) admits a fs log structure.

4 Extra
As you may expect many properties of a toric variety can be deduced from the fan associated to it. We will
mention some of them.

Definition 6. We say that a cone is regular if it admits a system that can be completed to a basis of the
lattice N . A fan is regular if every cone in the fan is regular.

Proposition 4. A fan ∆ is regular if and only if the associated toric variety X(∆) is smooth.

Definition 7. A fan is complete if its cones covers Rn, i.e. |∆| = Rn.

Proposition 5. A fan ∆ is complete if and only if the associated toric variety X(∆) is compact.

Proposition 6. Toric varieties are normal (i.e. integrally closed) and separated.

Finally it can be proven that it is possible to give the following definition of toric variety:

Theorem 7. A toric variety is an algebraic normal variety X that contains a torus T as a dense open subset,
together with an action T ×X → X that extends the natural action of the torus T on itself.

A proof of all these results can be found in Section 3.4 of Jean-Paul Brasselet, "Introduction to Toric
Varieties".
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