Toric Geometry

Margherita Pagano

The aim of this talk is to introduce the notion of *toric variety* and show how toric varieties admit a canonical log-scheme structure. The main reference for this talk is Chapter I of Fulton, "Introduction to Toric Varieties".

1 Affine Toric Varieties

Definition 1. Let L be a lattice (a \mathbb{Z} -module isomorphic to \mathbb{Z}^n for some positive integer n), then a **convex** polyhedral cone is a subset of $L_{\mathbb{R}} = L \otimes_{\mathbb{Z}} \mathbb{R}$ of the form:

$$\sigma = \{r_1 v_1 + \dots r_s v_s \mid r_i \ge 0\}$$

for some $v_1, \ldots, v_s \in L_{\mathbb{R}}$.

The vectors v_1, \ldots, v_s are called generators for the cone σ . We define the dimension of a cone σ as the dimension of the \mathbb{R} vector space generated by σ We define the dual of a cone σ as

$$\sigma^{\vee} := \{ u \in L_{\mathbb{R}}^* \mid \langle u, v \rangle \ge 0 \text{ for all } v \in \sigma \}.$$

Moreover, we define a face $\tau \subseteq \sigma$ as the intersection of σ with any supporting hyperplane ¹

$$\tau = \sigma \cap u^{\perp} = \{ v \in \sigma \mid \langle u, v \rangle = 0 \}$$

for some $u \in \sigma^{\vee}$.

Example 1.

- 1. If we take $L = \mathbb{Z}^2$ and σ the cone generated by e_1 and e_2 , then, $\sigma^{\vee} = \sigma$. Hence, the faces of σ are subsets of σ of the form $\sigma \cap u^{\perp}$ for $u \in \sigma$. For $u \in \sigma$ we have that $u^{\perp} \cap \sigma \neq \{0\}$ if and only if $u = e_1, e_2, 0$. Hence, as you might expect, the faces of σ are $\{\sigma, e_1, e_2, \{0\}\}$.
- 2. If we take $L = \mathbb{Z}^2$ and σ the cone generated by e_1 and $-e_1$, then σ^{\vee} is generated by $e_2, -e_2$ and the only face of σ is σ itself.

We will list some fact about convex polyhedral cones without proving them

Fact 1.

- 1. $(\sigma^{\vee})^{\vee} = \sigma$;
- 2. Any face of a convex polyhedral cone is also a convex polyhedral cone;
- 3. Any intersection of faces is also a face;
- 4. Any face of a face is a face;
- 5. The dual of a convex polyhedral cone is a convex polyhedral cone (Farkas' Theorem).

¹A hyperplane such that σ is entairely cointained in one of the two closed half-space bounded by the hyperplane and σ has at least one bundary point on the hyperplane

Remark 1. The proof of all these properties uses the following result from the theory of convex sets:

 (\star) If σ is a convex polyhedral co ne and $v_0 \notin \sigma$, then there is some $u_0 \in \sigma^{\vee}$ with $\langle u_0, v_0 \rangle < 0$.

The proof of all these results can be found in Section 2, Chapter 1 of Fulton, "Introduction to Toric Varieties".

The first step, in order to associate to a convex polyhedral cone σ an affine variety, is to define a monoid attached to the cone, S_{σ} . We define

$$S_{\sigma} = \sigma^{\vee} \cap M = \{ u \in M \mid \langle u, v \rangle \geq 0 \text{ for all } v \in \sigma \}.$$

1. $\sigma \in \mathbb{R}^2$ be the cone generated by $\{e_2, 2e_1 - e_2\}$. Then,

$$S_{\sigma} = \{\alpha e_1^* + \beta e_2^* \in M \mid (\alpha e_1^* + \beta e_2^*)(e_2) \ge 0 \text{ and } (\alpha e_1^* + \beta e_2^*)(2e_1 - e_2) \ge 0\}.$$

Hence

$$S_{\sigma} = \{\alpha e_1^* + \beta e_2^* \in M \mid \beta \ge 0 \text{ and } 2\alpha \ge \beta\} = \{\alpha e_1^* + \beta e_2^* \in M \mid 2\alpha \ge \beta \ge 0\}$$

which is generated by $\{e_1^*, e_1^* + e_2^*, e_1^* + 2e_2^*\}.$

2. $\sigma \in \mathbb{R}^2$ be the cone generated by $\{e_2, \lambda e_1 - e_2\}$, with λ positive irrational number. Then,

$$S_{\sigma} = \{ \alpha e_1^* + \beta e_2^* \in M \mid \lambda \alpha \ge \beta \ge 0 \}.$$

Suppose by contradiction that S_{σ} is finitely generated, generated by $\{(\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k)\}$. Using the irrationality of λ we get that there exist α, β such that $\alpha e_1^* + \beta e_2^* \in S_{\sigma}$ and

$$\max_{j} \left\{ \frac{\beta_{j}}{\alpha_{j}} \right\} < \frac{\beta}{\alpha} < \lambda.$$

There exists some natural numbers n_1, \ldots, n_k such that

$$\frac{\beta}{\alpha} = \frac{n_1 \beta_1 + \dots + n_k \beta_k}{n_1 \alpha_1 + \dots + n_k \alpha_k}$$

let $i_0 := \max_{j=1,\dots,k} \{n_j \beta_k\}$, then

$$\frac{\beta}{\alpha} \le \frac{n_{i_0}\beta_{i_0}}{n_{i_0}\alpha_{i_0}} = \frac{\beta_{i_0}}{\alpha_{i_0}} \le \max_j \left\{ \frac{\beta_j}{\alpha_j} \right\}$$

which give us the desired contradiction.

3. More in general, if σ is the cone generated by e_2 and $\lambda e_1 - e_2$, with λ positive, then S_{σ} is finitely generated if and only if λ is rational if and only if σ admits a set of generators from \mathbb{Z}^2 . Indeed, if $\lambda = m/n$ is rational, then

$$\sigma = \langle e_2, me_1 - ne_2 \rangle$$

and σ^{\vee} is generated by $e_{1}^{*}, e_{1}^{*} + e_{2}^{*}, \dots, e_{1}^{*} + me_{2}^{*}$.

Definition 2. A covex polyhedral cone is said to be **rational** if its generators can be taken from L.

It can be proven that if σ is rational then also its dual σ^{\vee} is rational. Using the latter result it is possible to prove the following:

Lemma 1 (Gordon's Lemma). If σ is a rational convex polyhedral cone, then $S_{\sigma} := \sigma^{\vee} \cap M$ is a finitely generated semigroup.

Proof. See Proposition 1, Chapter 1 of Fulton, "Introduction to Toric Varieties".

Example 2. Let $L = \mathbb{Z}^2 \subseteq \mathbb{R}^2$ with canonical basis e_1, e_2 and let e_1^*, e_2^* be the canonical basis of $M = L^*$.

Definition 3. A cone is called **strongly convex** if it contains no nonzero linear subspace.

Remark 2. It can be proven that being strongly convex is equivalent to ask that there is a vector $u \in \sigma^{\vee}$ such that $\sigma \cap u^{\perp} = \{0\}$, namely $\{0\}$ is a face of σ .

Any additive semigroup determines a "group ring" $\mathbb{C}[S]$, which is a commutative \mathbb{C} algebra. As a \mathbb{C} vector space it has a basis $\{X^u\}_{u\in S}$, and the multiplication is determined by $X^uX^v=X^{u+v}$. Clearly generators of the semigroup S determine generators for the \mathbb{C} algebra $\mathbb{C}[S]$.

Definition 4. We associated to a strongy convex rational cone the finitely generated \mathbb{C} scheme

$$U_{\sigma} := Spec(\mathbb{C}[S_{\sigma}]).$$

 U_{σ} is called **affine toric varity**.

We have the following key proposition

Proposition 2. If $\tau \subseteq \sigma$ is a face of σ , then $U_{\tau} \to U_{\sigma}$ embeds U_{τ} as a principal open subset of U_{σ} .

Proof. First one should prove the following: if $\tau = \sigma \cap u^{\perp}$ then we can assume that $u \in \sigma^{\vee} \cap M$, then

$$S_{\tau} = S_{\sigma} + \mathbb{Z}_{>0} \cdot (-u).$$

Therefore, every element of the basis of $\mathbb{C}[S_{\tau}]$ can be written in the form X^{w-pu} with $w \in S_{\sigma}$. Hence, $\mathbb{C}[S_{\tau}] = (\mathbb{C}[S_{\sigma}])_{\{1,1/X^u,\dots\}}$.

Example 3.

1. Let $L = \mathbb{Z}^n$ with canonical basis $\{e_1, \dots, e_n\}$ and let σ be the cone with generators e_1, \dots, e_k for some $k \leq n$. Then S_{σ} is generated by $\{e_1^*, \dots, e_k^*, \pm e_{k+1}^*, \dots \pm e_n^*\}$. Hence,

$$\mathbb{C}[S_{\sigma}] = \mathbb{C}[X_1, \dots, X_k, X_{k+1}, X_{k+1}^{-1}, \dots, X_n, X_n^{-1}]$$

and U_{σ} is a product (fibred product) of the affine k space with an (n-k) dimensional torus.

2. Back to Example 2.1: σ is generated by e_2 and $2e_1 - e_2$. Hence σ^{\vee} is generated by $e_1^*, e_1^* + e_2^*, e_1^* + 2e_2^*$.

$$\mathbb{C}[S_{\sigma}] = \mathbb{C}[X_1, X_1 X_2, X_1 X_2^2] = \mathbb{C}[U, V, W]/(V^2 - UW)$$

3. A singular example: let σ be the cone generated but $e_1, e_2, e_3, e_1 + e_3 - e_2$. Then S_{σ} is generated by $\{e_1^*, e_3^*, e_1^* + e_2^*, e_2^* + e_3^*\}$; hence

$$\mathbb{C}[S_{\sigma}] = \mathbb{C}[X_1, X_3, X_2 X_1, X_2 X_3] = \mathbb{C}[U, V, W, T]/(UT - VW)$$

Remark 3. All of the semigroups of the form S_{σ} for some strongly convex rational polyhedral cone σ are sub-semigroups of the group $M = S_0$. As a semigroup, M has generators $\pm e_1^*, \ldots, \pm e_n^*$ so $\mathbb{C}[M] = \mathbb{C}[X_1, X_1^{-1}, \ldots, X_n, X_n^{-1}]$. Hence $C[S_{\sigma}]$ is a subalgebra of $\mathbb{C}[M]$ and in particular it is a domain.

In particular, by the previous proposition, we get that every toric affine variety contains $U_{\{0\}}$ as a principal open subset and

$$U_{\{0\}} = \operatorname{Spec}(\mathbb{C}[M]) = \operatorname{Spec}(\mathbb{C}[X_1, X_1^{-1}, \dots, X_n, X_n^{-1}])$$

is the n dimensional torus!

Fact 2. It can be proven, using the properties of a strongly convex rational cone σ , that every affine toric variety is **normal**. Furthermore, the cone σ is **regular** (i.e. it admits a system of generators that can be completed to a basis of the lattice L) if and only if the associated toric variety is regular.

2 Fans and toric varieties

Definition 5. By a fan Δ in L is meant a finite set of rational strongly convex polyhedral cones σ in $L_{\mathbb{R}}$ such that

- 1. Each face of a cone in Δ is also a cone in Δ ;
- 2. The intersection of two cones in Δ is a face of each.

From a fan Δ the toric variety $X(\Delta)$ is constructed by taking the disjoint union of the affine toric varieties U_{σ} , and gluing as follows: for cones σ, τ the intersection is a face of each, so $U_{\sigma \cap \tau}$ is identified as a principal open subvariety of both; glue U_{σ} and U_{τ} by this identification on this open subvarieties. Note that, these identifications are compatible, using the order preserving nature of the correspondence from cones to affine varieties.

Example 4.

1. Take $L = \mathbb{Z}$ and $\Delta = \{\sigma_+ := \mathbb{R}_{\geq 0}, \sigma_- := \mathbb{R}_{\leq 0}, \{0\}\}$. Then, $U_+ = \operatorname{Spec}(\mathbb{C}[X]), U_- = \operatorname{Spec}(\mathbb{C}[Y])$ and the gluing on the overlap is given by:

$$U_0 = \operatorname{Spec}(\mathbb{C}[X, X^{-1}]) \to U_0 = \operatorname{Spec}(\mathbb{C}[Y, Y^{-1}])$$

 $X \mapsto Y^{-1}$

Hence, $X(\Delta) = \mathbb{P}^1_{\mathbb{C}}$.

2. n=2 and Δ the fan "generated" by $\sigma_0=\{e_1,e_1+e_2\}$ and $\sigma_1=\{e_2,e_1+e_2\}$. Then

$$U_{\sigma_0} = \operatorname{Spec}(\mathbb{C}[X, X^{-1}Y])$$

and

$$U_{\sigma_1} = \operatorname{Spec}(\mathbb{C}[Y, XY^{-1}]).$$

On the intersection we glue through the isomorphism sending $X^{-1}Y$ to $(XY^{-1})^{-1}$. Namely, the resulting variety is a blow-up of the affine plane on the origin.

3 The log structure

We start this section with a brief recall of what Pim has introduced during his talk.

A pre log structure on a scheme X is a sheaf of monoids M on the topological space X together with a morphism of monoids $\alpha: M \to \mathcal{O}_X$. Moreover, we define the log structure $M^a \to \mathcal{O}_X$ associated to it as the pushout of the following square

$$\begin{array}{ccc} \alpha^{-1}\mathcal{O}_X^{\times} & \longrightarrow & M \\ \downarrow^{\alpha} & & \downarrow \\ \mathcal{O}_X^{\times} & \longrightarrow & M^{a} \end{array}$$

Finally a chart of X is a strict morphism $X \to (P \to \mathbb{Z}[P])$ and a log scheme X is fs if étale locally it has a chart modelled over an fs monoid.

On an affine toric variety we have a natural pre-log structure given by $S_{\sigma} \hookrightarrow \mathbb{C}[S_{\sigma}]$. Hence, we can put on U_{σ} the associated log structure. A chart on U_{σ} is given by the map on log scheme induced by the following map on pre log schemes

$$(S_{\sigma}, U_{\sigma}) \to (S_{\sigma}, \operatorname{Spec}(\mathbb{Z}[S_{\sigma}])).$$

Proposition 3. S_{σ} is fine and saturated.

Proof. Saturatedness follows almost immediately from the definition of S_{σ} .

We recall that by fine we mean finitely generated and integral. We have already mentioned the fact σ being rational implies S_{σ} finitely generated. We have in some sense already proven also the integrality of S_{σ} . Indeed, σ being strongly convex is equivalent to $\{0\}$ being a face of σ , which implies that S_{σ} is a submonoid of $S_{\{0\}} = \mathbb{Z}^n$, which is of course integral.

Hence an affine toric variety admits a fs log structure.

In a similar way one can show that every toric variety $X(\Delta)$ admits a fs log structure.

4 Extra

As you may expect many properties of a toric variety can be deduced from the fan associated to it. We will mention some of them.

Definition 6. We say that a cone is **regular** if it admits a system that can be completed to a basis of the lattice N. A fan is regular if every cone in the fan is regular.

Proposition 4. A fan Δ is regular if and only if the associated toric variety $X(\Delta)$ is smooth.

Definition 7. A fan is **complete** if its cones covers \mathbb{R}^n , i.e. $|\Delta| = \mathbb{R}^n$.

Proposition 5. A fan Δ is complete if and only if the associated toric variety $X(\Delta)$ is compact.

Proposition 6. Toric varieties are normal (i.e. integrally closed) and separated.

Finally it can be proven that it is possible to give the following definition of toric variety:

Theorem 7. A toric variety is an algebraic normal variety X that contains a torus T as a dense open subset, together with an action $T \times X \to X$ that extends the natural action of the torus T on itself.

A proof of all these results can be found in Section 3.4 of Jean-Paul Brasselet, "Introduction to Toric Varieties".