Linear algebra 2: exercises for Section 5 (part 2) **Ex. 5.9.** Let $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map given by $\phi(x) = Ax$ where A is the matrix $$\left(\begin{array}{ccc} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{array}\right).$$ We proved in class that generalized eigenspaces for ϕ are ϕ -invariant. What are these spaces in this case? Give all other ϕ -invariant subspaces of \mathbb{R}^3 . Ex. 5.10. Compute the characteristic polynomial of the matrix $$A = \begin{pmatrix} 1 & -2 & 2 & -2 \\ 1 & -1 & 2 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$ Does A have a Jordan normal form as 4×4 matrix over \mathbb{R} ? What is the Jordan normal form of A as a 4×4 matrix over \mathbb{C} ? **Ex. 5.11.** Suppose that for a 20×20 matrix A the rank of A^i for i = 0, 1, ... 9 is given by the sequence 20, 15, 11, 7, 5, 3, 1, 0, 0, 0. What sizes are the Jordan-blocks in the Jordan normal form of A? ## Linear algebra 2: exercises for Section 6 **Ex. 6.1.** Define ϕ_i : $\mathbb{R}^n \to \mathbb{R}$ by $\phi_i(x_1, \dots, x_n) = x_1 + x_2 + \dots + x_i$ for $i = 1, 2, \dots n$. Show that ϕ_1, \dots, ϕ_n is a basis of $(\mathbb{R}^n)^*$, and compute its dual basis of \mathbb{R}^n . **Ex. 6.2.** Let V be an n-dimensional vector space, let $v_1, \ldots, v_n \in V$ and let $\phi_1, \ldots, \phi_n \in V^*$. Show that $\det((\phi_i(v_j))_{i,j})$ is non-zero if and only if v_1, \ldots, v_n is a basis of V and ϕ_1, \ldots, ϕ_n is a basis of V^* . **Ex. 6.3.** Let V be the 3-dimensional vector space of polynomial functions $\mathbb{R} \to \mathbb{R}$ of degree at most 2. In each of the following cases, we define $\phi_i \in V^*$ for i = 0, 1, 2. In each case, indicate whether ϕ_0, ϕ_1, ϕ_2 is a basis of V^* , and if so, give the dual basis of V. - 1. $\phi_i(f) = f(i)$ - 2. $\phi_i(f) = f^{(i)}(0)$, i.e., the *i*th derivative of f evaluated at 0. - 3. $\phi_i(f) = f^{(i)}(1)$ - 4. $\phi_i(f) = \int_{-1}^i f(x) dx$ **Ex. 6.4.** For each positive integer n show that there are constants a_1, a_2, \ldots, a_n so that $$\int_{0}^{1} f(x)e^{x}dx = \sum_{i=1}^{n} a_{i}f(i)$$ for all polynomial functions $f: \mathbb{R} \to \mathbb{R}$ of degree less than n. **Ex. 6.5.** Suppose V is a finite dimensional vector space and W is a subspace. Let $f: V \to V$ be a linear map so that f(w) = w for $w \in W$. Show that $f^T(v^*) - v^* \in W^o$ for all $v^* \in V^*$. Conversely, if you assume that $f^T(v^*) - v^* \in W^o$ for all $v^* \in V^*$, can you show that f(w) = w for $w \in W$? * **Ex. 6.6.** Let V be a finite-dimensional vector space and let $U \subset V$ and $W \subset V^*$ be subspaces. We identify V and V^{**} via α_V (so $W^{\circ} \subset V$). Show that $$\dim(U^{\circ} \cap W) + \dim U = \dim(U \cap W^{\circ}) + \dim W.$$ **Ex. 6.7.** Let $\phi_1, \ldots, \phi_n \in (\mathbb{R}^n)^*$. Prove that the solution set C of the linear inequalities $\phi_1(x) \geq 0, \ldots, \phi_n(x) \geq 0$ has the following properties: - 1. $\alpha, \beta \in C \implies \alpha + \beta \in C$. - 2. $\alpha \in C$, $t \in \mathbb{R}_{>0} \implies t\alpha \in C$. - 3. If ϕ_1, \ldots, ϕ_n form a basis of $(\mathbb{R}^n)^*$, then $$C = \{t_1\alpha_1 + \ldots + t_n\alpha_n : t_i \in \mathbb{R}_{>0}, \forall i \in \{1, \ldots, n\}\},\$$ where $\alpha_1, \ldots, \alpha_n$ is the basis of \mathbb{R}^n dual to ϕ_1, \ldots, ϕ_n .