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SUMMARY

These notes describe the classical approach to moduli for curves of genus 2 and
3, following the papers [Igu60] en [GK06]. In the final section, an interesting link to
Del Pezzo surfaces is described. These notes are very sketchy and vague, probably
even wrong in places, so read at your own risk.

1. INVARIANT THEORY

We wish to study the varieties representing isomorphism classes of curves over,
say, an algebraically closed field k of characteristic 0. First hyperelliptic curves: it
does not get any simpler than this. Indeed, considering that giving a hyperelliptic
curve is the same as giving its branch locus in P1,

Mhyp
g ∼= (S2(g+1) ·Aut(P1))\(P1)2(g+1)

gen ,

where the suffix gen means that no two points should coincide (we use the fact
that we work in characteristic 0 here). Using our knowledge of Aut(P1), we see
that if we denote P1

∗ = P1\{0, 1, ∞}, this simplifies to

Mhyp
g ∼= S2g+2\(P1

∗)
2g−1.

We need a description of the quotient as a variety. Observes that Mhyp
g is unira-

tional for all g. Phrasing this differently: any genus 2 hyperelliptic curve can be
obtained by substituting suitable values for the s, t, u in the assignment

(s, t, u) y2 = x(x − 1)(x − s)(x − t)(x − u).

It remains to be described what the S6-action does to these parameters.
Non-hyperelliptic genus 3 curves can be identified with smooth quartics in P2.

The moduli variety of quartics embedded in P2 is obviously given by P14 (con-
sider the vector of coefficients). Let U be the non-singular part of this moduli
space. Then Aut(P2) = PGL(3, k) acts on P14 by substitution on the correspond-
ing ternary forms. So, denoting by Mnh

3 the moduli space of non-hyperelliptic
curves, we have

Mnh
3
∼= PGL(3, k)\U,

1
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which is certainly not as explicit as one would like. Again, we do have unirational-
ity.

The question is (1) what varieties represent these quotients, and (2) how to add
points to Mnh

3 to obtain M3. On an abstract level, Mumford developed his geo-
metric invariant theory to deal with this. The theory is very well adapted to solving
existence problems and problems regarding compactification; however, this GIT
is also much too hard for me.

On a more elementary level, one can work with a black box with more modest
prerequisites, to wit classical invariant theory. This theory is a 19th century appara-
tus for churning out invariants of a geometric object. These invariants give vital
information about the object: indeed, they characterize it up to isomorphism. The
invariants form a ring over our algebraically closed ground field k, and it can be
proved that this ring is finitely generated. Incidentally, it was his proof of this the-
orem that got Hilbert branded as a theologian by Gordan. A nice introduction to
this theory, with some applications, is given in [Mes91].

Although this theory works quite nicely, there is a catch; more than one, even.
First of all, classical invariant theory typically works only on an open subset of the
moduli space. The reason for this is that the theory works by considering certain
canonical morphisms associated to the curves in question, which are embeddings
only generically. Another problem we need to solve is to determine the structure
of this open set of the moduli space: that is, to describe all relations between the
invariants, to see what values they can take, and to check when tuples of invariants
correspond to equivalent curves. In general, this is a rather daunting task; indeed,
the intractability of these problems makes one appreciate the abstract approach to
existence using representable functors or GIT.

Now to actually get started.

Definition 1.1. Let V be a vector space over C of dimension n. Then Sym(V∗) is a graded
ring with a right action of GL(V). A covariant of d-ary forms of order m is a linear map

ϕ : Sym(V∗)d −→ Sym(V∗)m

such that for some k
ϕ(Fγ) = det(γ)k ϕ(F)γ.

Intuitively, a covariant associates polynomials to polynomials in a GL-equivariant way.
Similarly, Sym(V) is a graded ring, on which GL(V) on the right by the inversion

of the transposition of the action on Sym(V∗). Denoting this action by G 7→ Gγ∗ , a
contravariant of d-ary forms of order m is a linear map

ϕ : Sym(V∗)d −→ Sym(V)m

such that for some k
ϕ(Fγ) = det(γ)k ϕ(F)γ∗ .

A variant is a co- or contravariant, and an invariant is a variant of order 0. This will
be an element of Sym(Sym(V∗)d)SL(V). Note that an invariant will in general not be
invariant under GL(n, C)!

Note that a variant is determined by what it does to the generic d-ary form, so
we can view variants as forms again (over some transcendental extension of C).

There are ways to make new variants out of old ones. Some examples::
- The pairing V ×V∗ → C gives rise to pairings (or differential operations)

Sym(V∗)× Sym(V) −→ Sym(V∗).

and
Sym(V∗)× Sym(V) −→ Sym(V).
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The wonderful thing is that substituting variants in similar pairings gives
rise to new variants, the order of which is the difference of the original
orders.

- Another operation, specific to ternary forms, is as follows. For a form ϕ,
define D(ϕ) to be half its Hessian, with adjoint D(ϕ)∗. Choose a dot prod-
uct ( , ) for matrices. Then, given a covariant ϕ and a contravariant ψ, one
can construct four invariants

J30(ϕ, ψ) := det(D(ϕ))

J11(ϕ, ψ) := (D(ϕ), D(ψ))

J22(ϕ, ψ) := (D(ϕ)∗, D(ψ)∗)

J03(ϕ, ψ) := det(D(ψ))

- For binary forms F, G, the coefficients of which are homogeneous polyno-
mials of degree r and s say, give rise to their i-th transvectant

(F, G)i(x, y) :=
(r − i)!(s− i)!

r!s!
(

∂2

∂x1∂y2
− ∂2

∂y1∂x2
)iF(x1, y1)G(x2, y2)|(xj ,yj)=(x,y).

The idea is that by starting with a few variants (including, for example, the
generic d-ary form itself) and repeating these operations a number of times, one
will end up with the complete ring of invariants. This is difficult in practice, but
in our examples below, the answers have been found.

Note that since our invariants can be chosen to be expressions with rational
coefficients, they are Galois equivariant. This means that the field of moduli of a
curve is exactly the field generated by its moduli point. There are examples where
the field of moduli is not a field of definition. For example, in the hyperelliptic
case, one will in general have to take a quadratic extension of the field of moduli
because every hyperelliptic curve has an involution. For details, see [Mes91]. And
even if the curve is definable over its field of moduli, there will not necessarily be a
unique model over it, what with the moduli space being coarse and all. Problems
like these will occur no matter what definition of moduli is used.

1.1. Genus 2. Quite a lot is known in genus 2, even over Z. The classic account is
the original paper [Igu60]. It uses the old language by Weil, but this does not make
it less readable (amazing as it may seem, people could do quite decent algebraic
geometry before EGA).

In characteristic 6= 2, every hyperelliptic curve can be written in the form y2 =
f (x), where f is a sextic. As we saw earlier, f is only determined up to the action
of Aut(P1). Classical invariant theory of sextics can be used to define the moduli
of such a sextic (and hence of the hyperelliptic curve). The algebra of invariants
turns out to be generated by five moduli, namely

A = ( f f ′)6,

B = (( f f ′)4(( f f ′)4)′)4,

C = (( f f ′)4(( f f ′)4(( f f ′)4)′)2)4

and two more invariants D and R which are even more hopeless to write down.
These invariants were found by Clebsch, and have coefficients in Q. The problem
that now confronts us is threefold: what are the relations between these moduli,
what moduli do actually arise, and what happens in characteristic 2, where hyper-
elliptic forms do not allow an expression as above?

Igusa solved all these problems simultaneously by constructing the moduli
space of hyperelliptic curves over Z. The idea is to define a normal form of a
hyperelliptic curve C that works over any ring, as follows. Choose a Weierstrass
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point P of the curve, and a non-Weierstrass point Q. Let Q′ 6= Q be such that
Q + Q′ = KC. If we define D = 3P + Q, then the complete linear system |D| has
dimension 3, so we get a morphism

X
|D|−→ P2.

Riemann-Roch gives that this morphism is almost an immersion: only P and Q are
mapped to the same double point. Now we normalize: we put the double point
at (0 : 1 : 0) with tangents X = 0 and Z = 0, and take Y = 0 to be tangent to the
image of Q′. This yields the following affine equation for our curve:

XY2 + (1 + aX + bX2)Y + X2(c + dX + X2).

Conversely, any curve of this form (or rather, its normalization) is hyperelliptic.
The sextic associated to the Weierstrass points of our normal form is given by

(1 + aX + bX2)2 − 4X3(c + dX + X2).

A logical step now is to modify A, B, C, D and R such that the values they assume
on this sextic are polynomials in Z with content 1. Igusa does this by a subtle
transformation of this old basis, defining 5 invariants J2, J4, J6, J8 and J10 that are
polynomials in a, b, c, d with coefficients in Z and content 1 that also generate the
old rings of invariants over fields of characteristic 6= 2. Now the miracle is that
Igusa’s forms reduce modulo 2 to the invariants in that characteristic. Igusa gives no
intrinsic reason why this should be so.

To give an example: if the characteristic is not equal to 2, then the value of J4 at
the sextic c0X5 − c1X4 + . . .− c5 is given by

−2−3(52c2
0c3c5 − 15c2

0c2
4 − 15c0c1c2c5 + 7c0c1c3c4 + 2−1c0c2

2c4

−c0c2c2
3 + 22c3

1c5 − c2
1c2c4 − c2

1c2
3 + c1c2

2c3 − 2−43c4
2).

So we have five polynomials over Z. J10 corresponds to the discriminant of a
sextic, so it will not be zero. Furthermore, one can check that the ideal of relations
between the J2i is generated by J2 J6 − J2

4 − 4J8. Two questions remain:
(1) Given (j2, . . . , j10), does there exist a curve with these invariants?
(2) When are the sextics corresponding to, say, (j2, . . . , j10) and (j′2, . . . , j′10)

projectively equivalent?
These are quite non-trivial questions. To my knowledge, Igusa was the first to

prove that the answer to the first question is affirmative.
The answer to the second question was known already in the nineteenth cen-

tury: (j2, . . . , j10) and (j′2, . . . , j′10) are projectively equivalent if and only if j′2i =
r2i j2i for some non-zero r.

Putting all of this together, one obtains

Theorem 1.1. The coarse moduli scheme of genus 2 curves over Z is given by

Spec(Z[X1, X2, X3, X4]/(X1X3 − X2
2 − 4X4))Z/5Z,

where 1 ∈ Z/5Z acts by sending Xi to ζ i
5Xi.

There is some fine print I won’t get into. One should see a monomial Xe1
1 Xe2

2 Xe3
3 Xe4

4
as corresponding to the invariant Je1

1 Je2
2 Je3

3 Je4
4 Je5

5 with e1 + 2e2 + 3e3 + 4e4 + 5e5 = 0,
which is truly invariant under GL(2, C).

By essentially the same argument as in the first paragraph, we can show that
this moduli scheme is unirational (”the generic point has characteristic 0”). In-
deed, it was known already before Igusa that it is rational. The more intricate
properties of the moduli space were only vaguely grasped before Igusa’s results.
To name a few:
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- The singular locus of M2 is given by the rational curves J2 = J6 = J8 = 0
and 2 = J2 = J6 = 0. The points on the former curve are represented by
curves of the form

Y2 = X(X − 1)(X − 1− ζ5)(X − 1− ζ5 − ζ2
5)(X − 1− ζ5 − ζ2

5 − ζ3
5),

at least when the characteristic does not equal 2. The points on the latter
correspond to curves Y2 − Y = X5 + αX3 over a field of characteristic 2.
The intersection corresponds to Y2 − Y = X5 over a field of characteristic
2.

- Looking at the tangent space of the singularity, one sees that M2 is not
embeddable in Ak

Z for k smaller than 10. An embedding into A10
Z , though,

is easily given, since our ring is obviously generated by

J5
2 J−1

10 , J3
2 J4 J−1

10 , J2
2 J6 J−1

10 , J2 J8 J−1
10 , J4 J6 J−1

10 ,

J4 J2
6 J−2

10 , J2
6 J8 J−2

10 , J5
6 J−3

10 , J6 J3
8 J−3

10 , J5
8 J−4

10 .

When working over a field of characteristic 6= 2, an embedding in affine
space of dimension 8 can be constructed, and this is again the minimum
dimension.

1.2. Genus 3. As we have seen, this moduli space splits up into a part consisting
of nonsingular quartics (open and of dimension 6) and a part consisting of hy-
perelliptic curves (closed and of dimension 5). For both parts, classical invariant
theory gives a reasonably explicit description, but the problem of ’gluing’ these de-
scriptions has apparently not been solved explicitly yet. Only existence has been
proved by the abstract machinery mentioned before.

The determination of the complete ring of invariants of smooth quartics was
accomplished by Dixmier and Ohno. There are six independent invariants due to
Dixmier, which give a subring of finite index of the complete ring of invariants;
Ohno later found six additional invariants to generate the complete ring of invari-
ants, and gave all relations between these twelve invariants over C, together with
the normalizations of these invariants over Z. Of course, these invariants are quite
horrible to write out (the largest one has degree 21).

A good reference for this is the paper [GK06]. In this paper, the invariants are
used in combination with a stratification by A.M. Vermeulen to find conditions on
the Dixmier-Ohno invariants that have to hold when the curve has, say, 7 hyper-
flexes (points with a tangent line of multiplicity 4).

Let us note that, like its lower genus predecessors, M3 is rational over k (as
are M4, M5 and M6). This was proved by P. Katsylo in a horrendous flurry of
manipulations of the classical invariants. As the genus grows, the Mg will stop
being rational: they will be ‘of general type’, which is more or less the opposite of
rationality (quoth Mumford).

2. SOME FUN: DEL PEZZO SURFACES

The amusing connections in this section were explained to me by E. Looijenga.
Because I am not very fluent in the theory of geometric surfaces, it is necessarily
of a very sketchy nature. [Dem80] seems a reasonable reference. We again work
over an algebraically closed field of characteristic 0.

Let us start with a general construction. Starting with P2, which has canonical
sheaf KP2 isomorphic to −3H, one can choose r points and blow them up. This
gives a surface

X π−→ P2
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with exceptional divisors E1, . . . , Er. It is natural to choose {π∗H, E1, . . . , Er} as
basis for Pic(X). With respect to this basis, the intersection product has matrix

9− r −1 −1 . . . −1 −1
−1 −1 0 . . . 0 0
−1 0 −1 . . . 0 0

...
...

...
. . .

...
...

−1 0 0 . . . −1 0
−1 0 0 . . . 0 −1


.

This form is negative definite on K⊥
X . A natural question is to ask how to obtain all

the other ‘exceptional bases’, i.e. how to describe the other sets

{E′1, . . . , E′7}
that, together with KX , form a basis of Pic(X) with intersection matrix as above.
Let us call the set of these bases ExcX . The following proposition answers our
question:

Proposition 2.1. Consider the group

WX := Aut( , )(Pic(X), KX).

of automorphisms of Pic(X) fixing KX and leaving the intersection pairing invariant. The
set ExcX is a torsor under this group. WX is isomorphic to the Weyl group W(E7).

In the case r = 7, there is a theorem which makes all this exceedingly relevant
to us:

Theorem 2.2. Let X be as above be obtained from seven points in ‘general position’. The
linear system K−1

X gives a morphism X −→ P2 of degree 2 with a smooth quartic as its
ramification locus.

Conversely, given a smooth quartic C, construct the double covering X of P2 branched
exactly along this quartic (an affine equation for this double covering is Z2 = f (X, Y),
where f is an affine equation for C). Then X has 56 exceptional divisors, two for every
bitangent of C. One can choose seven of these and blow X down to P2.

This gives a correspondence between smooth quartics and Del Pezzo surfaces.

In fact, this extends to a correspondence between smooth quartics with a level
2 structure and Del Pezzo surfaces X with a given element of ExcX . Under this
construction, such a surface corresponds to an ordered choice of seven points in
general position in P2 up to automorphisms of P2. And in fact all these correspon-
dences are algebraic.

So let (P2)7
gen be the seven-tuples of points in (P2)7 in general position. Then

Mnh
3 (2) ∼= Aut(P2)\(P2)7

gen
∼= (P2

∗)
3
gen,

and, using proposition 2.1,

Mnh
3
∼= WX\Mnh

3 (2) ∼= (W(E7) ·Aut(P2))\(P2)7
gen

∼= W(E7)\(P2
∗)

3
gen.

In fact, one can show, using some geometric invariant theory, that a similar isomor-
phism holds on the entire M3 if we relax the generality conditions on our seven
points. The resemblance with the situation in genus 2 is quite striking: it can be
shown that there, too,

M2(2) ∼= Aut(P1)\(P1)6
gen

∼= (P1
∗)

3
gen.

This is no coincidence. Such ‘point spaces’ occur more frequently when consid-
ering moduli: viz. [DO88].
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