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Abstract

We give an explicit version of Shimura’s reciprocity law for singular values
of Siegel modular functions. We use this to construct examples of class
invariants of quartic CM fields that are smaller than Igusa invariants.

1 Introduction

The values f(τ) of classical modular functions at CM points generate abelian
extensions of K = Q(τ), hence are acted on by ideals and idèles of K via the
Artin isomorphism. Shimura’s reciprocity law expresses these actions in terms
of a GL2-action on the modular functions f themselves.

An explicit version of this action allows one to search for class invariants
of imaginary quadratic fields in a more systematic way [5], i.e., for modular
function values f(τ) that generate the ring class field K(j(τ)) over K. ‘Small’
class invariants can then replace j(τ) in applications such as the construction of
(cryptographic) elliptic curves over finite fields, and finding defining equations
of class fields.

Complex multiplication of higher-dimensional abelian varieties also gener-
ates class fields [19] and enables the construction of cryptographic curves [3,20].
A big speedup would be obtained if one would replace for example Igusa invari-
ants in [20] by smaller class invariants.

Shimura gave various higher-dimensional analogues of his reciprocity law [12–
17], and our main result (Theorems 2.2–2.4 below) is a sufficiently explicit ver-
sion for finding class invariants of orders in CM-fields, i.e., orders in K = Q(

√
d)

with d a totally negative algebraic number. It takes the following form.
Fix a CM point τ ∈ Hg in the Siegel upper half space, and let N be a

positive integer. Assume that the CM-type Φ of τ is primitive, and let Φr be
its reflex. Let FN be the field of Siegel modular functions of level N with q-
expansion coefficients in Q(ζN ). Assume for the sake of this introduction that τ
has CM by a maximal order OK ⊂ K. Then given an ideal a of Kr coprime
to N , Theorem 2.4 (our main result) gives explicit U ∈ GSp2g(Z/NZ) and
M ∈ GSp2g(Q)+ with

f(τ)a = fU (Mτ). (1.1)
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Here a acts on f(τ) via the Artin map, and the actions of U and M on FN and
Hg are given in Section 2.

We use the reciprocity law to determine the ideal group corresponding to
the field

H(N) = Kr(f(τ) : f ∈ FN ).

In the case of maximal orders, it is be

H(N) =
{
a : NΦr(a) = µOK , µµ ∈ Q, µ ≡ 1 mod× N

}
.

Theorem 2.2 gives the general case, where the CM order of τ is not necessarily
maximal.

If one considers only the Galois group Gal(H(N)/H(1)), then U and M of
(1.1) become particularly simple to express. Given a, let µ be as in the definition
of H(1), and let U be the transpose of the matrix of multiplication by µ with
respect to the symplectic basis corresponding to τ . Theorem 2.3 then states

f(τ)a = fU (τ). (1.2)

We have programmed the actions (1.1) and (1.2) into Sage [11] and will make
the program available online at [21]. Via Sage, these programs use PARI [25] for
most of the number field functionality, such as computation of ray class groups.

The action (1.2) allows us to show that f(τ) is in H(1) by considering only
the action of some matrices U on FN . If f(τ) is inH(1), then the main theorems
(more precisely, Theorems 2.2 and 2.4) allow us to verify Kr(f(τ)) = H(1), i.e.,
that f(τ) is a class invariant, and to compute the minimal polynomial Hf of
f(τ) over Kr numerically.

The polynomialHf becomes simpler to express and compute if its coefficients
are in the maximal totally real subfield Kr

0 ⊂ Kr. Proposition 2.7 gives a
sufficient condition for this to happen. We give a detailed example in Section 6.

Rather than reproving the reciprocity law in our setting, we will quote a
version proven by Shimura in the language of idèles (Section 3) and rework it
into a version with ideals and a more explicit group action (Section 4).

The action of U becomes most explicit when expressing f in terms of theta
constants. This is Section 5 and will be used for our examples in Section 6.
Finally, Section 7 treats the applications mentioned in the introduction in more
detail. These final three sections can be read independently of Section 4.

2 Definitions and statement of the main results

2.1 The upper half space

Fix a positive integer g. The Siegel upper half space H = Hg is the set of g × g
symmetric complex matrices with positive definite imaginary part. It paramet-
rizes g-dimensional principally polarized abelian varieties A over C together
with a symplectic basis b1, . . . , b2g of their first homology.

In more detail, an abelian variety over C is always of the form A = Cg/Λ
for a lattice Λ of rank 2g. A polarization is given by a Riemann form, i.e.,
an R-bilinear form E on Cg that restricts to a bilinear form Λ × Λ → Z and
such that (u, v) 7→ E(iu, v) is symmetric and positive definite. Given a basis
of Λ, there is a matrix, which by abuse of notation we also denote by E, such
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that E(u, v) = utEv. We say that E is principally polarized if E has determin-
ant 1. In that case, there exists a symplectic basis, i.e., a basis such that E is
given in terms of (2× 2)-blocks as

Ω =

(
0

−1

1

0

)
.

To a point τ ∈ Hg, we associate the principally polarized abelian variety with
Λ = τZg + Zg and symplectic basis τe1, . . . , τeg, e1, . . . , eg, where ei is the i-th
basis element of Zg. Conversely, given a principally polarized abelian variety
and a symplectic basis, we can apply a C-linear transformation of Cg to write
it in this form.

2.2 The algebraic groups

Given a commutative ring R, let

GSp2g(R) = {A ∈ Mat2g(R) : AtΩA = νΩ with ν ∈ R×}.

Note that ν defines a homomorphism of algebraic groups GSp2g → Gm, and
denote its kernel by Sp2g. for g = 1, we have simply GSp2g(R) = GL2(R),
ν = det, Sp2g(R) = SL2(R).

The homomorphism ν has a section ι−1 : t 7→ ι(t)−1, where

ι(t) =

(
1 0
0 t−1

)
.

For any ring R for which this makes sense, we also define

GSp2g(R)+ = {A ∈ GSp2g(R) : ν(A) > 0}.

The group GSp2g(Q)+ acts on Hg by(
a b
c d

)
τ = (aτ + b)(cτ + d)−1,

where a, b, c, d are (g × g)-blocks. Changes of symplectic bases correspond
to the action of Sp2g(Z) ⊂ GSp2g(Q)+ (see Lemma 4.6 below). It follows
that Sp2g(Z)\H parametrizes the isomorphism classes of principally polarized
abelian varieties of dimension g.

It is known that the natural map Sp2g(Z) → Sp2g(Z/NZ) is surjective [10,
Thm. VII.21], and we denote its kernel by ΓN .

2.3 Modular forms and group actions

A Siegel modular form of weight k and level N is a function f : H → C such
that for all A = (ac

b
d ) ∈ ΓN , we have f(Aτ) = det(cτ + d)kf(τ), and which is

“holomorphic at the cusps”. We will not define holomorphicity at the cusps,
as it is automatically satisfied for g > 1 by the Koecher principle [6], and is a
standard (textbook) condition for g = 1.

Any modular form f has a Fourier expansion or q-expansion

f(τ) =
∑
ξ

aξq
ξ, aξ ∈ C, qξ := exp(2πiTr(ξτ)/N),
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where ξ runs over the symmetric matrices in Matg(
1
2Z) with integral diagonal

entries. The numbers aξ are the coefficients of the q-expansion.
Let FN and F∞ be the fields

FN =

{
g1

g2
:
gi are Siegel modular forms of equal weight and level N,

with q-expansion coefficients in Q(ζN ), and g2 6= 0

}
and F∞ = ∪NFN .

Proposition 2.1. There are well-defined right group actions given by

F∞ � GSp2g(Q)+ fA(τ) = f(Aτ),

FN � Sp2g(Z) fA(τ) = f(Aτ),

FN � Sp2g(Z/NZ) f (A mod N) = fA if A ∈ Sp2g(Z),

FN � ι((Z/NZ)×) the inverse of the natural Galois action

of (Z/NZ)× on the Fourier coefficients,

i.e., if f =
∑
ξ aξq

ξ, then f ι(t) =
∑
ξ a

t−1

ξ qξ,

FN � GSp2g(Z/NZ) extending the actions of both ι((Z/NZ)×)

and Sp2g(Z/NZ) simultaneously.

We will give a proof in Section 3.
Given A ∈ GSp2g(Z/NZ) and f ∈ FN , how would one compute fA? First,

take t = ν(A), and notice A = ι(t)−1B with B = ι(t)A ∈ Sp2g(Z/NZ). Next,

lift B to B0 ∈ Sp2g(Z), and note fA = (f ι(t
−1))B0 . The only part that is not

completely explicit is the lifting from Sp2g(Z/NZ) to Sp2g(Z). However, when
f ∈ FN is expressed in terms of theta constants, we will give a formula for the
action of Sp2g(Z/NZ) on f (Section 5) that does not require finding a lift.

2.4 Complex multiplication

Suppose A is a g-dimensional polarized abelian variety over C with complex
multiplication, i.e., such that End(A)⊗Q contains a CM-field K of degree 2g.

It is known that any such A can be obtained as follows. Let Φ = {φ1, . . . , φg}
be a CM-type, i.e., a set of g embeddings K → C such that no two are complex
conjugate. By abuse of notation, write Φ(x) = (φ1(x), . . . , φg(x)) ∈ Cg for x ∈
K. Let b be a lattice in K, i.e., a non-zero fractional ideal of an order of K. Let
ξ ∈ K be such that for all φ ∈ Φ, the complex number φ(ξ) lies on the positive
imaginary axis, and such that the bilinear form Eξ : K × K → Q : (x, y) 7→
Tr(xyξ) maps b×b to Z. Let A = Cg/Φ(b) and let a polarization on A be given
by Eξ extended R-linearly from b to Cg. Finally, let O = {x ∈ K : xb ⊂ b} be
the multiplier ring of b, and embed it into End(A) by taking xΦ(u) = Φ(xu)
and extending this linearly.

Any CM-point τ thus corresponds to a quadruple (Φ, b, ξ, B) with Φ, b and
ξ as above and B = (b1, . . . , b2g) a symplectic basis of b for the pairing Eξ. We
will make the reciprocity law explicit in terms of such quadruples, and note that
one obtains τ with the formula

τ = (Φ(bg+1)| · · · |Φ(b2g))
−1(Φ(b1)| · · · |Φ(bg)).

We will assume that Φ is a primitive CM-type, or, equivalently, K =
End(A)⊗Q ( [7, Thms. 1.3.3 and 1.3.5]). We then have O = End(A).
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2.5 The type norm

The type norm NΦ : K → C is the map

NΦ : x 7→
∏
φ∈Φ

φ(x).

Its image generates the reflex field Kr of Φ, and there is a reflex type norm map

NΦr : Kr → K : x 7→
∏
ψ∈Ψ

ψ(x),

where the product is taken over the reflex type, i.e., those embeddings ψ : Kr →
K such that there is a map φ : K → C with φ ◦ ψ = idKr and φ|K ∈ Φ.

Recall that O is an order in K and let F be the smallest positive integer such
that FOK ⊂ O. For any positive integer N , let I(NF ) be the group of fractional
ideals of OKr coprime to NF . Let NΦr,O be the type norm homomorphism from
I(NF ) to the group of invertible fractional O-ideals coprime to NF defined by

NΦr,O(a)OL =
∏
ψ∈Ψ

ψ(a)OL,

where L is the normal closure of K. The existence and uniqueness of this map
for O = OK is [19, Proposition 29 in § 8.3], and the general case then follows
from the fact that the set of invertible fractional O-ideals coprime to NF is
naturally in bijection with the same set for OK .

2.6 The class fields generated by complex multiplication

Fix a CM-point τ and let the notation be as above. We will study the field
H(N) generated over Kr by the values of f(τ) as f ranges over the elements
of FN that do not have a pole at τ . It is an abelian extension of Kr, and our
first theorem gives the corresponding ideal group. To state it, we need some
additional definitions.

For x ∈ K, we write x ≡ 1 mod× NO if we have (x − 1)/N ∈ O ⊗ Zp for
all primes p dividing N . In other words, we have x ≡ 1 mod× NO if and only
if there exist a, b ∈ O with x = (1 +Na)/(1 +Nb). Note that x ≡ 1 mod× 1O
holds for all elements of K.

The following theorem is analogous to [19, Main Theorem 3 in §17]. We will
prove it using the reciprocity law. Recall that F is the smallest positive integer
satisfying FOK ⊂ O.

Theorem 2.2. The extension H(N)/Kr is abelian and of conductor divid-
ing NF . Its Galois group is isomorphic via the Artin isomorphism to the group
I(NF )/HΦ,O(N), where I(NF ) is the group of fractional OKr-ideals coprime
to NF , and

HΦ,O(N) =

a ∈ I(NF ) : ∃µ ∈ K with
NΦr,O(a) = µO
µµ = N(a) ∈ Q
µ ≡ 1 mod× NO

 .

Note that H(N) depends only on O and Φ.
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2.7 The explicit reciprocity laws

The previous section stated Gal(HN/H1) = (I(NF ) ∩ HΦ,O(1))/HΦ,O(N) for
certain ideal groups HΦ,O(1) and HΦ,O(N). The following reciprocity law makes
the Galois action of I(NF ) ∩HΦ,O(1) explicit.

Theorem 2.3. Given a CM point τ ∈ H and a positive integer N , let the
notation be as above. For any a ∈ I(NF ) ∩HΦ,O(1), let [a] be its class modulo
HΦ,O(N), and let µ be as in the definition of HΦ,O(1). Then the action of [a]
on f(τ) for any f ∈ FN is given by

f(τ)[a] = f ε(µ)(τ),

where ε(µ) is the transpose of the matrix of multiplication by µ with respect to
the basis b1, . . . , b2g of Section 2.4.

This defines a reciprocity map g as follows. Let S be the image in the
group GSp2g(Z/NZ) of the stabilizer Stabτ ⊂ Sp2g(Z) of τ . Then we get a
homomorphism

g :
I(N) ∩HΦ,O(1)

HΦ,O(N)
−→GSp2g(Z/NZ)/S

[a] 7−→ε(µ)

such that

f(τ)a = fg(a)(τ) and g((α)) = ε(NΦr(α)) for α ∈ Kr.

The following more general version of the reciprocity law gives the action of
any a ∈ I(NF ).

Theorem 2.4. Given a CM point τ ∈ H and a positive integer N , let the nota-
tion be as above. For any a ∈ I(NF ), choose a symplectic basis C of NΦr,O(a)−1b
with respect to EN(a)ξ.

Let M t be the basis transformation from B to C. In other words, if B and
C are matrices with the elements of B and C as columns, written in terms of
some Q-basis of K, then C = BM t.

Then M is in GSp2g(Q)+ and is N -integral and invertible mod N . Moreover,
its inverse U is in GSp2g(Z/NZ), and for any f ∈ FN , we have

f(τ)[a] = fUM (τ) = fU (Mτ). (2.1)

Remark 2.5. Computing symplectic bases is easy. Use the symplectic_form

command on integer matrices in Sage [11] or FrobeniusFormAlternating in
Magma [2], or see [22, Algorithm 4.2].

2.8 Complex conjugation

Now assume f(τ) is a class invariant, i.e., a generator of H(1)/Kr with f ∈ FN .
A priori, the coefficients of its minimal polynomial Hf over Kr are elements
of Kr. But in many cases there is a way to make sure they are elements of the
smaller field Kr

0.
LetM := Q(f(τ) : f ∈ F1) be the field of moduli of the principally polarized

abelian variety corresponding to τ , and let M0 = MKr
0. Then by definition,

we have H(1) =M0K
r, and H(1)/M0 is an extension of degree at most 2.

We will concern ourselves with the case where this degree is exactly 2.
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Lemma 2.6. Suppose τ corresponds to a pair (b, ξ).

1. The degree of H(1)/M0 is 2 if and only if there is an ideal a ∈ I(F ) and
an element µ ∈ K× such that NΦr,O(a)b = µb and µµ ∈ Q.

2. If g ≤ 2 and O = OK , then the conditions in part 1 are satisfied and we
can take

(a) g = 1, a = NΦ(b/b) and µ = 1; or

(b) g = 2, a = NΦ(b) and µ = NK/Q(b).

3. If b = O, then the conditions in part 1 are satisfied and we can take
a = OKr and µ = 1.

Proposition 2.7. Assume degH(1)/M0 = 2 and suppose f(τ) is a class in-
variant with f ∈ FN .

Let (a, µ) be as in Lemma 2.6.1 and assume without loss of generality that
a is coprime to N . Let M ∈ Mat2g(Q) be such that M t transforms the
symplectic basis b1, . . . , bg, bg+1, . . . , b2g of b corresponding to τ into the basis
µ−1b1, . . . , µ

−1bg,−µ−1bg+1, . . . ,−µ−1b2g of µ−1b = NΦr,O(a)−1b. Then M is
finite and invertible modulo N . Let U ∈ GSp2g(Z/NZ) be its inverse and
U ′ = Uι(−1). Then the following are equivalent:

1. f(τ) ∈M0

2. fU
′
(τ) = f(τ)

If these conditions are satisfied, then the minimal polynomial of f(τ) over Kr

has coefficients in Kr
0.

So to ensure that the minimal polynomial of f(τ) over Kr is defined over Kr
0,

we can restrict to f that satisfy fU
′

= f .

3 The adèlic version

Shimura developed his reciprocity laws for various types of multivariate modular
functions, modular forms, and theta functions in a series of papers [12–17]. See
also the textbook [18, 26.10]. We choose not to reprove the reciprocity law in
the language of ideal groups, but instead to take a streamlined version proven
by Shimura in the adèlic langage, and to work out exactly what it means in our
situation in terms of ideal groups.

We start by citing Shimura’s adèlic action of GSp2g, and linking it to the
actions of Proposition 2.1. In particular, this will prove Proposition 2.1, albeit
in a rather indirect way.

Let A be the ring of adèles of Q and call an element of its unit group positive
if its R-component is positive. Let Ẑ = lim← Z/NZ be the ring of finite integral

adéles, so A = (Ẑ⊗Q)×R.

Proposition 3.1. Let Aut(F∞) be the automorphism group of the field F∞.
There is a unique homomorphism GSp2g(A)+ → Aut(F∞) satisfying

1. for x ∈ A× and f ∈ F∞, we define f ι(x) as f where x−1 acts on its Fourier
coefficients,
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2. for A ∈ GSp2g(Q)+, f ∈ F∞, τ ∈ H, we have fA(τ) = f(Aτ),

3. for any N , the group S = {A ∈ GSp2g(Ẑ) : A ≡ 1 mod× N} ·GSp2g(R)+

acts trivially on any f ∈ FN , where we write A ≡ 1 mod× N if Ap ≡
1 mod NMat2g(Zp) for all p|N .

Proof. Existence is a special case of [15, Thm. 5(v,vi,vii)]. Uniqueness follows
from the proof of [17, Proposition 1.3].

Remark 3.2. Our reference for existence in Proposition 3.1, though directly
applicable to our situation, may not be satisfactory to some readers, as it does
not contain the proof. The action is constructed in [12, Section 2.7] for a field
kS(VS). The field kS(VS) is defined without q-expansions, hence that reference
only contains a weak version of 1, but 2 is [12, (2.7.2)] and 3 follows immediately
from [12, (2.5.3a)].

Our stronger version of 1, as well as the link between F∞ and kS(VS), is
given in [15]. Both that reference and [14, § 6] claim that the proof is exactly
the same as in the Hilbert modular case, which is [14].

Next, we make the action of GSp2g(Ẑ) on FN explicit as a first step towards
making the reciprocity law more explicit.

Proposition 3.3. The action of Proposition 3.1 has the following property:

4. For any positive integer N , any f ∈ FN , and any

A = (Af , A∞) ∈ GSp2g(Ẑ)×GSp2g(R)+ ⊂ GSp2g(A)+,

we have fA ∈ FN , and fA depends only on (Af mod N) ∈ GSp2g(Z/NZ).
Moreover, the induced action of GSp2g(Z/NZ) on FN is exactly as in
Proposition 2.1.

Proof. The fact fA ∈ FN follows from the construction of the action (see [12, 2.7
and (2.5.3)] and Remark 3.2 above). That fA depends only on (Af mod N) is
Proposition 3.1.3. It follows that the action induces an action of GSp2g(Z/NZ)
on FN . To prove that this action is as in Proposition 2.1, it remains only to
compute this action for B ∈ Sp2g(Z/NZ) and for B = ι(t) with t ∈ (Z/NZ)×.

In case of B ∈ Sp2g(Z/NZ), we lift B to A ∈ Sp2g(Z) (possible by [10]). As
we have

Sp2g(Z) = GSp2g(Q)+ ∩ (GSp2g(Ẑ)×GSp2g(R)+),

we can then apply Proposition 3.1.2 to find that the action of B is as in Pro-
position 2.1. In case of B = ι(t) with t ∈ (Z/NZ)×, we lift t to Ẑ× and apply
Proposition 3.1.1.

Proposition 2.1 now follows without having to do any work.

Proof of Proposition 2.1. Restricting the action of Proposition 3.1 to elements
A ∈ GSp2g(Q)+ gives the action of that group according to part 2 of Propos-

ition 3.1. Restricting the action instead to Af ∈ GSp2g(Ẑ) and f ∈ FN yields
the actions of GSp2g(Z/NZ) and its subgroups by Proposition 3.3.
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Let τ ∈ H correspond to a simple principally polarized abelian variety
Cg/τZg + Zg with complex multiplication by K. Let ε : K → Mat2g(Q) be
the ring homomorphism sending x ∈ K to the matrix of multiplication by x
with respect to the symplectic basis corresponding to τ .

The type norm NΦr and the map ε induce adèlic maps NΦr : Kr×
A → K×A

and ε : K×A → GSp2g(A)+.
Shimura gives the following reciprocity law, stated in a very sleek manner

using the action of Proposition 3.1.

Theorem 3.4 (Shimura’s reciprocity law for Siegel modular functions). Let
τ ∈ Hn and the notation be as above and let g = ε ◦NΨ. Then for any f ∈ F∞
such that f(τ) is finite and any x ∈ Kr×

A , we have

f(τ) ∈ Kr
ab and f(τ)x = fg(x)−1

(τ).

Proof. This is exactly equation (3.43) of [17, p. 57]. (Actually, that reference
works with the abelian variety A = C2/(τZn + δZn) for an integer δ ≥ 3, but
that variety has CM by K if and only if ours has, so that the result for δ = 1
follows.) The matrix ε(x) ∈ Mat2g(Q) is defined differently and less explicitly
in [17], namely by ρ(x)(τ, 1) = (τ, 1)ε(x) where ρ(x) ∈ Matg(C) is the matrix
of multiplication by x with respect to the standard basis of Cg. But since (τ, 1)
is exactly what maps the standard basis of Z2g to Cg, our matrix ε(x) satisfies
the definition of [17].

Remark 3.5. As in Remark 3.2, a more original reference is [12, (2.7.3)] (equi-
valently [13, (6.2.3)]).

See also [18, 26.8(4)] for a textbook version.

4 Proof of the main result

Our main result is an explicit version of Shimura’s reciprocity law. In other
words, given f ∈ FN and the image [a] of the idèle x in a ray class group of Kr,

we would like to give fg(x)−1

in terms of the actions of Proposition 2.1. First
of all, we need to determine an appropriate modulus for our ray class group
groups. This is done in Section 4.1.

Next, we will write g(x) = SUM with M ∈ GSp2g(Q)+, U ∈ GSp2g(Ẑ),
S ∈ Stabf , and both M and (U mod N) explicit in terms of a. Then we can

conclude fa(τ) = fg(x)−1

(τ) = f (U mod N)(Mτ).

Remark 4.1. The strong approximation theorem for GSp2g(A) in fact tells us (

[17, Lemma 1.1]) that such a decomposition always exists, even with U ∈ ι(Ẑ×).

However, we will be satisfied with having only U ∈ GSp2g(Ẑ).

4.1 The conductor

Let the notation be as above and recall End(A) = O, and FOK ⊂ O.

Lemma 4.2. For a ∈ K, we have a ∈ O if and only if ε(a) ∈ Mat2g(Z).

Proof. We have a ∈ O if and only if ab ⊂ b, which is equivalent to ε(a) ∈
Mat2g(Z).
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Corollary 4.3. For a ∈ K, we have a ≡ 1 mod× NO if and only if ε(a) ≡
1 mod× N .

Proof. Lemma 4.2 stays valid when considered locally at a prime number p, i.e.,
replacing O by O ⊗ Zp and Z by Zp for a prime p. We have a ≡ 1 mod× NO
if and only if (a− 1)/N ∈ O⊗Zp for all p|N . The corollary follows if we apply
the lemma to (a− 1)/N locally at all primes dividing N .

Recall the abelian extension H(N) = Kr(f(τ) : f ∈ FN ) of Kr.

Proposition 4.4. The conductor of H(N) divides NF .

Proof. What we need to prove is equivalent to the statement that WNF acts
trivially on FN for WNF = {x ∈ Kr×

A : x ≡ 1 mod× NF}. So take any
x ∈ WNF , and let y = ε(NΦr(x))−1. Then Theorem 3.4 tells us that for all
f ∈ FN , we have f(τ)x = fy(τ).

We have NΦr(x) ≡ 1 mod× NF , hence NΦr(x) ≡ 1 mod× NO. By Corol-
lary 4.3, we find that y is in the set S of Proposition 3.1. It follows from that
proposition that fy = f , hence x acts trivially on f(τ) for all f ∈ FN .

Before we compute the actual ideal group corresponding to the field H(N)
(i.e., prove Theorem 2.2), we first determine the action of I(NF ) (i.e., prove
Theorems 2.4 and 2.3).

4.2 The mundane properties of M

Theorem 2.4 starts by stating that the matrix M of that theorem is in the
group GSp2g(Q)+. The purpose of the current section is to prove this.

Recall that M ∈ GL2g(Q) is defined by C = BM t where the columns of B
and C are symplectic bases of the lattices b and NΦr,O(a)−1b with respect to
polarizations Eξ and EN(a)ξ.

Lemma 4.5. Let M be as above. Then we have M ∈ GSp2g(Q)+.

Proof. This follows by taking y = N(a)−1 in the following lemma.

Lemma 4.6. Let (Cg/Λ, E) be a principally polarized abelian variety, and B
a (g × 2g) complex matrix whose columns form a symplectic basis of Λ. Given
M ∈ GL2g(Q), let Λ′ be the lattice in Cg generated by the columns of BM t.
Then the following are equivalent:

1. there exists y ∈ Q× such that yE is a principal polarization for Cg/Λ′

and the columns of BM t form a symplectic basis,

2. M ∈ GSp2g(Q)+.

Moreover, if this is the case, then the point in H corresponding to C is τ ′ = Mτ ,
and we have y = ν(M)−1.

Proof. Interpret B as a (2g×2g) real matrix by identifying C with R+ iR. Let
F be the matrix of E with respect to the standard basis of R2g. Then we have
BtFB = Ω.

Note that yE satisfies all properties in the definition of a principal polariz-
ation, except possibly that yE : (u, v) 7→ yE(iu, v) is positive definite, and that

10
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E maps Λ′ × Λ′ to Z with determinant 1. The first property is equivalent to
y > 0, while the second follows from symplecticity of C. In particular, part 1
is equivalent to the existence of y > 0 in Q with y(BM)tFBM = Ω. In other
words, part 1 is equivalent to the existence of y > 0 in Q with M tΩM = y−1Ω,
i.e., to M ∈ GSp2g(Q)+. This also shows ν(M) = y−1.

Finally, write B = (B1|B2) and note τ = B−1
2 B1. We get BM t = (B1a

t +
B2b

t|B1c
t +B2d

t), hence τ ′ = (B1c
t +B2d

t)−1(B1a
t +B2b

t). Cancelling B−1
2 B2

on the right hand side, we find τ ′ = (τct + dt)−1(τat + ct). The fact that τ and
τ ′ are symmetric matrices yields τ ′ = (aτ + b)(cτ + d)−1 = M tτ .

4.3 Decomposing g(x) modulo the stabilizer

The bridge between adèlic and ideal theoretic class field theory is the surjection

Kr×
A /Kr× → I(NF )/P (NF )

that maps the class of an idèle x ≡ 1 mod× NF to the class of the ideal a with
ordp(a) = ordp(xp) modulo the ray P (NF ) = {(α) : α ≡ 1 mod× NF}.

Let a be a fractional OKr-ideal coprime to NF . Let the notation be as in
Theorem 2.4, and pick any idèle x = (xv)v ∈ Kr×

A such that

1. for any finite prime p of Kr, we have ordp(a) = ordp(xp), and

2. for any valuation v of Kr with v(NF ) > 0, we have xv = 1.

Then we immediately have

g(x) ≡ 12g mod× NF, (4.1)

where g = ε ◦NΦ is as in Theorem 3.4.
At the same time, we also have the following.

Lemma 4.7. Let g(x) be as above and M as in Theorem 2.4. Then the matrix

A = g(x)M−1 lies in GSp2g(Ẑ)×GSp2g(R)+.

Proof. Let’s recall the situation of Theorem 2.4: we have a symplectic basis
B = (b1| . . . |bg) of b with respect to Eξ and a symplectic basis C = (c1| . . . |cg) =
BM t of NΦr,O(a)−1b with respect to EN(a)ξ.

Note ν ◦ g = NKr/Q, so the fact that Kr has no real embeddings implies
ν(g(x))∞ > 0, i.e., g(x)∞ ∈ GSp2g(R)+. We also have M ∈ GSp2g(Q)+ by
Lemma 4.5, hence A∞ ∈ GSp2g(R)+. It now suffices to prove for every prime

number p that Ap is in GSp2g(Zp). for x ∈ Kr×
A , write xp ∈ Kr ⊗ Zp for the

part corresponding to primes over p.
We have the following identity of Zp-submodules of K ⊗ Zp of rank 2g:

(NΦr(a)−1b)⊗ Zp = NΦr(x)−1
p (b⊗ Zp),

and we have already chosen a basis c1, . . . , c2g of the left hand side, and by
definition of M , it consists of the columns of (b1| · · · |b2g)M t. We take the Zp-
basis NΦr(x)−1

p b1, . . . , NΦr(x)−1
p b2g of the right hand side and notice that At

p

is the matrix that transforms one basis to the other. In particular, we have
Ap ∈ GL2g(Zp). As the basis on the left is symplectic for N(a)ξ and the
one on the right is symplectic for N(x)pξ, we apply the proof of Lemma 4.6
and find Ap ∈ GSp2g(Qp). As we already had Ap ∈ GL2g(Zp), we conclude
Ap ∈ GSp2g(Zp).

11



Preprint, version of 29 December 2011. First posted online: 18 November 2011

Proof of Theorem 2.4. We already know M ∈ GSp2g(Q)+ by Lemma 4.5, which
is the first statement in Theorem 2.4.

Next, we have g(x) = AM with A ∈ GSp2g(Ẑ)×GSp2g(R)+ by Lemma 4.7.

The reciprocity law (Thm. 3.4) now tells us f(τ)x = fAM (τ). By Proposi-
tion 3.3, we find that A acts as (A mod N) does on f . Moreover, we have
A ≡M−1 mod× NF by (4.1), so the definition of U in Theorem 2.4 is equival-
ent to U = (A mod N). Conclusion: f(τ)x = fU (Mτ).

Proof of Theorem 2.3. Theorem 2.3 is a special case of Theorem 2.4 as follows.
Pick ci = µ−1bi. Then Mτ = τ since multiplication by Φ(µ) is a C-linear
isomorphism that transforms one symplectic basis into the other. At the same
time, the matrix M is the transpose of the matrix of multiplication by µ−1,
hence U is the transpose of the matrix of multiplication by µ.

4.4 Determining the ideal group

Next, we prove Theorem 2.2. A similar result exists in terms of fields of moduli
of torsion points (Main Theorem 3 in §17 of [19]), but we give a proof directly
in the language of our fields FN using the reciprocity laws.

Proof of Theorem 2.2. Note that Theorem 2.3 already implies that HΦ,O(N)
acts trivially onH(N), so that it remains to prove only the converse, and without
loss of generality only for integral ideals a.

Let a ∈ I(NF ) be an integral ideal with f(τ)a = f(τ) for all f ∈ FN . Let
U and M be as in Theorem 2.4, so that for all f ∈ FN , we get f(τ) = f(τ)a =
fU (Mτ) with U ∈ GSp2g(Z/NZ) and M ∈ GSp2g(Q)+ such that (M mod NF )
is defined and invertible with inverse U . We claim that without loss of generality,
we have U = 1, M ≡ 1 mod× N and Mτ = τ .

Proof of the claim: By taking f = ζN , we find ζ
ν(U)
N = ζN , hence U ∈

Sp2g(Z/NZ). Then lift U to Sp2g(Z), and use the lift to change the chosen
basis c1, . . . , cg of Theorem 2.3. We find that without loss of generality, we
have U = 1, which implies M ≡ 1 mod× N . We now have f(τ) = f(Mτ) for
all f ∈ FN , and by [12, (2.5.1)], this implies τ ∈ ΓNMτ , i.e., τ = γMτ for
some γ ∈ ΓN . We use γ to change the basis c1, . . . , cg again, and conclude also
Mτ = τ . This proves the claim.

Let X = M−1, so X ≡ 1 mod× N and Xτ = τ . Let c = NΦr,O(a). We have
c ⊂ O and X sends a basis c1, . . . , c2g of c−1b to a basis b1, . . . , b2g of b ⊂ c−1b,
hence X ∈ Mat2g(Z). The congruences on M now tell us X ∈ ΓN .

The fact Xτ = τ shows that there is an isomorphism h : Cg/Φ(c−1b) →
Cg/Φ(b) = A preserving symplectic bases. The identity map on Cg induces
an isogeny the other way around, which scales the polarization by N(a). Their
composite is an µ ∈ End(A) = O, which therefore satisfies µ−1b = c−1b and
µµ = N(a) ∈ Q. This last identity shows that ν is coprime to F , so if we look
at the coprime-to-F part of µ−1b = c−1b and use that the coprime-to-F part
of b is invertible, then we find µO = c.

By definition of µ, h, and X, the endomorphism µ acts as M t on the
chosen symplectic bases (i.e., ε(µ) = M). Corollary 4.3 therefore shows µ ≡
1 mod× NO.

12
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4.5 Complex conjugation

Next, we prove the results in Section 2.8.

Proof of Lemma 2.6. Recall M0 = Kr
0(f(τ) : f ∈ F1), and consider the exten-

sion H(1) =M0K
r/M0. Part 1 is to prove that this extension has degree 2 if

and only if there exist a ∈ I(F ) and µ ∈ K× such that NΦr,O(a)b = µb and
µµ ∈ Q.

Any non-trivial automorphism γ0 of this extension restricts to complex con-
jugation on Kr, so γ : x 7→ xγ0 is an element of Gal(H(1)/Kr). Note that γ and
complex conjugation are equal on M0.

Next, suppose τ corresponds to (b, ξ), and let A be the corresponding prin-
cipally polarized abelian variety. Then by [7, Prop. 3.5.5], the abelian variety
A corresponds to (b, ξ). The automorphism γ then corresponds to the class of
an ideal a of Kr such that NΦr(a)b = µb and N(a) = µµ for some µ ∈ K×.
This proves one implication of part 1; the other follows by reading our argument
backwards.

In case g = 1 and O = OK , we can simply take a = NΦ(b/b) and µ = 1.
If g = 2 and O = OK , take a = NΦ(b) and µ = N(b) (see the proof of [22,
Corollary I.9.3] for details). This shows part 2.

Finally, if b = O, then b = O = O, so a = 1 and µ = 1 suffice.

Proof of Proposition 2.7. Assume that H(1)/M0 is an extension of degree 2, so
a, µ and γ0 as in the proof of Lemma 2.6 exist. By scaling a (and scaling µ
accordingly), we can assume a to be coprime to NF .

Let f(τ) be any class invariant with f ∈ FN . Now f(τ) is inM0 if and only

if f(τ)γ0 = f(τ), i.e., if and only if f(τ)[a] = f(τ).
The action of complex conjugation on f(τ) is easy to describe. Note that

f ι(−1 mod N) is f with its Fourier coefficients replaced by their complex conjug-
ates. Since complex conjugation is continuous, we get

f(τ) = f ι(−1 mod N)(−τ). (4.2)

Let’s look at the action of [a] via the reciprocity law Theorem 2.4. Let
b1, . . . , b2g be the symplectic basis of b corresponding to τ . Then

µ−1b1, . . . , µ
−1bg,−µ−1bg+1, . . . ,−µ−1b2g

is a symplectic basis of µ−1b = NΦr,O(a)−1b w.r.t. µµξ = N(a)ξ, and the period
matrix corresponding to this symplectic basis is −τ .

In particular, the transformation M t between these bases (as in Proposi-
tion 2.7) satisfies the conditions of Theorem 2.4, so that we get M ∈ GSp2g(Q)+

and M is finite and invertible modulo M . Let U ∈ GSp2g(Z/NZ) be its inverse,

so we get f(τ)[a] = fU (Mτ) = fU (−τ).

Combining this with (4.2), we find f(τ)[a] = fU
′
(τ) with U ′ = Uι(−1). We

conclude that indeed fU
′
(τ) = f(τ) if and only if f(τ) ∈M0.

Finally, if f(τ) is in M0 and generates H(1) over Kr, then we get

[Kr
0(f(τ)) : Kr

0] ≤ [M0 : Kr
0] = [H(1) : Kr] = [Kr(f(τ)) : Kr],

so the minimal polynomial of f(τ) over Kr is also the minimal polynomial
over Kr

0. This finishes the proof of Proposition 2.7.

13
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5 Theta constants

For c1, c2 ∈ Qg, the theta constant with characteristic c1, c2 is

θ[c1, c2](τ) =
∑
v∈Zg

exp(πi(v + c1)τ(v + c1)t + 2πi(v + c1)ct2).

Its quotients come with an explicit action of Sp2g(Z).

Lemma 5.1. Given A ∈ Sp2g(Z), there is a holomorphic ρ = ρA : Hg → C∗

such that for all c1, c2 ∈ Qg, we have

θ[c1, c2](Aτ) = ρ(τ) exp(2πir)θ[d1, d2](τ),

where

A =

(
a b
c d

)
,

(
d1

d2

)
= At

(
c1 − 1

2diag(cdt)

c2 − 1
2diag(abt)

)
, and

r =
1

2
((dd1 − cd2)t(−bd1 + ad2 + diag(abt))− d

t

1d2).

Proof. This is Formula 8.6.1 and Lemma 8.4.1(b) of [1].

For quotients of theta constants, this implies the following:

Proposition 5.2. Given D ∈ 2Z and c1, c2, c
′
1, c
′
2 ∈ D−1Zg, we have

θ[c1, c2]

θ[c′1, c
′
2]
∈ F2D2 ,

where A ∈ Sp2g(Z/2D
2Z) acts by

θ[c1, c2]

θ[c′1, c
′
2]

(Aτ) =
exp(2πir)

exp(2πir′)

θ[d1, d2]

θ[d′1, d
′
2]

(τ),

with d1, d2 and r, as in Lemma 5.1 and d′1, d′2, r′ analogously.

Proof. The action of A ∈ Sp2g(Z) is implied by Lemma 5.1, as the factors ρ
cancel. The theta constants themselves depend only on c1, c2 modulo 2Zg,
which proves that the action of A is trivial if A ≡ 1 mod 2D2. Multiplying
the numerator and denominator by θ[0, 0]7 and using ρA(τ)8 = (det cτ + d)4

( [1, Exercise 8.11(9)]), we find that the function is a quotient of modular forms
of equal weight with Fourier coefficients in Q(ζ2D2).

It is known that the field generated by all quotients f as in Proposition 5.2
equals the field F∞ (see e.g. [18, 27.15]). In particular, every element of F∞ is a
rational functions in theta functions. We can evaluate the action of Sp2g(Z/NZ)
on such a rational function via Proposition 5.2 without the need of lifting
to Sp2g(Z).

The action of ι((Z/NZ)×) on quotients of theta constants is even more
explicit. Indeed, we have the following.

14
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Lemma 5.3. Let D be an even positive integer and c1, c2 ∈ D−1Zg. Let
N = 2D2. The action of t ∈ (Z/NZ)× on FN is given by θ[c1, c2]t = θ[c1, tc2].

Proof. The Fourier coefficients correspond to the factors exp(2πi(v + c1)ct2) in
the definition of θ[c1, c2]. These factors are N -th roots of unity, so the action is
simply raising them to the power t, i.e., multiplying c2 by t.

We actually restrict to theta constants with ci ∈ [0, 1)g, because we have

θ[c1 + n1, c2 + n2] = exp(2πic1n
t
2)θ[c1, c2] for n1, n2 ∈ Zg. (5.1)

In particular, we only need to consider finitely many theta constants for any
given D.

6 Class invariants

Given an order O in a CM-field K and Φ a CM-type of K, a class invariant is
a value f(τ) with f ∈ F∞ that generates the class field H(1) over Kr.

For example, if K is quadratic and O = Z + τZ, then j(τ) is a class in-
variant, and its minimal polynomial over K is called the Hilbert class polyno-
mial HO ∈ Z[X]. Weber [26] gave class invariants of imaginary quadratic orders
with minimal polynomial that are much smaller than HO.

As mentioned in the introduction, we would like to have smaller class in-
variants than the values of j (for g = 1) or of Igusa invariants (for g = 2). For
any f ∈ FN , we can check the inclusion Kr(f(τ)) ⊂ H(1), i.e., f(τ) ∈ H(1),
using Theorem 2.3. If f is sufficiently general, then the inclusion of fields is a
bijection, which can be verified using (2.1). Equation (2.1) also allows us to
numerically approximate the minimal polynomial of f(τ) over Kr.

6.1 A detailed example

As an example, we will look for small f that are quotients of products of theta
constants with c1, c2 ∈ {0, 1

2}
2, i.e., g = 2, D = 2, N = 8. The ones for

which 4c1c
t
2 is odd are identically zero, and we are left with 10 theta constants,

called the even theta constants, which happen to have Fourier coefficients in Z.
Following [4], we use the notation θ[(a, b), (c, d)] = θ16b+8a+4d+2c, so the even
theta constants are θk for k ∈ {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}.

Let K = Q(α) = Q[X]/(X4 + 27X2 + 52) be a quartic CM-field with real
quadratic subfieldK0 = Q(

√
521). This is the fieldK from [22, Example III.3.2].

Take the CM-type Φ of K consisting of the two embeddings K → C that map
α to the positive imaginary axis. Let w be the (positive) square root of 13. The
real quadratic subfield of the reflex field Kr is Q(w).

We start by finding one pair (b, ξ) and the corresponding τ as in [23]. In
our case, this is b = O, ξ = 2(−5882941509α3 − 146560028765α)−1, and τ
corresponding to the symplectic basis

1
4 (−12075α3 + 5774α2 − 300821α+ 143846,

27037α3 − 9188α2 + 673565α− 228898,

12075α3 − 24150α2 + 300821α− 601642,

29924α2 + 745488)
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of b.
Next, we compute the image of the map

g :
I(N) ∩HΦ,O(1)

HΦ,O(N)
−→ GSp2g(Z/NZ)/S

from Section 2.7. When listing the elements of HΦ,O(1), the following lemma
seriously limits the elements of the class group to be checked.

Lemma 6.1. In the case g = 2, the square of every element a of HΦ,O(1) is an
ideal from Kr

0 times a principal ideal.

Proof. One can check that if r is the non-trivial automorphism of Kr
0, then

a2 = r(NKr/Kr
0
(a))−1NΦ(µ)OKr . See also [22, Proof of Lemma I.8.4].

In the specific example we are treating right now, the class group of Kr has
odd order and the class number of Kr

0 is one, so that actually HΦ,O(1) is the
group of principal ideals. So we restrict to principal ideals (α) and have g((α)) =
ε(NΦr(α)). We only need (α) up to HΦ,O(N), i.e., we only need α modulo 8.
So we compute a set of 6 generators of the group (OKr/(8))× ∼= C2

12 × C4
2 and

compute NΦr and ε with respect to the chosen symplectic basis of b.
The generators map to 6 matrices in GSp2g(Z/8Z), and the 8th powers of

the theta constants fall into 4 orbits for these matrices: {θ8
0, θ

8
6, θ

8
1}, {θ8

2, θ
8
4, θ

8
3},

{θ8
8, θ

8
9, θ

8
15}, and the fixed point {θ8

12}. The first two orbits are identified under
the action of U ′ from Proposition 2.7, so we choose

f = ζk8

(
θ3

12

θ8θ9θ15

)l
,

and note that if 8 divides both k and l, then we have f(τ) ∈ H(1). We minimize
l and find that in fact k = l = 2 already gives a function that is invariant under
U ′ and the image of g, i.e., such that f ∈ H(1).

Finally, for each of the 7 ideal classes of Kr, we compute U and M as in
Theorem 2.4. We make sure that the basis C = BM t is such that Mτ is reduced
for the action of GSp2g(Z) (see e.g., [22, II.5]), so that the theta constants can
be numerically evaluated most efficiently.

Then we compute fU and evaluate it numerically in Mτ to get a root of the
minimal polynomial of f(τ) over Kr. This gives us a numerical approximation
of the minimal polynomial

Hf =
∏

(X − fU (Mτ)) ∈ Kr
0[X],

and we recognize its coefficients as elements of Kr
0 ⊂ C with the LLL-algorithm

as in [8, Section 7].
We find that numerically with high precision, we have

381012Hf = 66928761X7 + (21911488848w − 76603728240)X6

+ (−203318356742784w + 733099844294784)X5

+ (−280722122877358080w + 1012158088965439488)X4

+ (−2349120383562514432w + 8469874588158623744)X3

+ (−78591203121748770816w + 283364613421131104256)X2

+ (250917334141632512w − 904696010264018944)X

− 364471595827200w + 1312782658043904,
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which is significantly smaller than the smallest minimal polynomial obtained
when using Igusa class polynomials, even with the small Igusa invariants from [23]:

1012H1 = 10201X7

+ (155205162116358647755w + 559600170220938887110)X6

+ (152407687697460195175920750535594152550w

+ 549513732768094956258970636118192859400)X5

+ 1
2
(2201909580030523730272623848434538048317834513875w

+ 7939097894735431844153019089320973153011210882125)X4

+ (1047175262927393182849164587480891367594710449395570625w

+ 3775644104882200832865729346429752069380200097845736875)X3

+ 1
2
(907392914800494855136752991106041311116404713247380607234375w

+ 3271651681305911192688931423723753094763461200379169938284375)X2

+ (15014166049656519860045880222971244113390650525905069987454062500w

+ 54134345550367190785605984445586939893083531851405365978411062500)X

+ 1
2
(320854170291151322128777010521751890513120770505490537777676328984375w

+ 1156856162931200670387093211443242850125709667683265459917987279296875)

6.2 More examples

We searched for class invariants with D = g = 2 for a few more fields. For each
field we tried, the results were similar to Section 6.1.

Recently, Andreas Enge and Emmanuel Thomé computed the Igusa class
polynomials of the maximal order OK of the field K = Q[X]/(X4 + 310X2 +
17644) of class number 3948.

It turns out that the functions

t =
θ0θ8

θ4θ12
∈ F8, u =

(
θ2θ8

θ6θ12

)2

∈ F2, v =

(
θ0θ2

θ4θ6

)2

∈ F2

are class invariants for a certain τ with CM by OK . We have yet to find out
how much these class invariants would speed up their computation.

7 Applications

7.1 Class fields

By definition of a class invariant, the minimal polynomial of any class invariant
gives an equation definingH(1), and it is easy to compute numerically. However,
with the j-invariant or Igusa invariants, this polynomial has coefficients that are
too large to be practical. Smaller class invariants would reduce this size.

7.2 Curves of genus two with prescribed Frobenius

In this section, we sketch the CM method for constructing curves of genus two,
and finish by showing how class invariants give a practical improvement.
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7.2.1 The CM method

Suppose we want to construct a g-dimensional abelian variety over a finite field
with a prescribed characteristic polynomial f of the Frobenius endomorphism.
For simplicity, assume f is irreducible. The field K = Q[X]/(f) is a CM-field
of degree 2g and the constant coefficient f(0) = pm is a prime power.

Now take any abelian variety A/k with k ⊃ Kr such that A has CM by
OK . Let Φ be the CM-type of A and P/p a prime of k. Suppose A has good

reduction at P and let Ã be the reduction. Let Frob ∈ End(Ã) be the Frobenius

endomorphism of Ã. It is known that reduction modulo p gives an embedding
OK = End(A) ⊂ End(Ã). We then have the following result.

Theorem 7.1 (Shimura-Taniyama formula [19, Thm.1 in §13]). The endo-

morphism Frob is an element of the ring OK ⊂ End(Ã) and generates the ideal
NΦr(Nk/Kr(P)) of OK .

This, together with the fact FrobFrob = #(Ok/P)g determines Frob up to
roots of unity.

By choosing P appropriately, we can thus construct an abelian variety cor-
responding to f if it exists [24]. By choosing f appropriately, this yields elliptic
curves or curves of genus two that are suitable for cryptography [3].

In practice, one does this only for g ≤ 2 and one does not write down defining
equations for A, but only computes some elements of F1 evaluated at A. In case
g = 1, it suffices to take the j-invariant, while in the case g = 2, one takes a
triple of absolute Igusa invariants, i.e., generators of F1.

In the case g = 1, the elliptic curve Ã can be reconstructed from j(A) mod P
by a simple formula found in any textbook on elliptic curves. In the case g = 2,
for generic values of the Igusa invariants modulo P, one can reconstruct Ã as
the Jacobian of a hyperelliptic curve using Mestre’s algorithm [9]. For g ≥ 3,
no sufficiently general analogue of Mestre’s algorithm exists.

In the CM method for g = 1, the j-invariant is usually represented by its
minimal polynomial, the Hilbert class polynomial. Reduction modulo a prime
P/p is done by taking the reduction modulo p of the class polynomial and taking
a root of that in Fp.

In the case g = 2, one can take a minimal polynomial Hi1 of the first Igusa
invariant, i1(A), over Kr, and let i2 and i3 be represented by polynomials

Ĥi1,in =
∑
γ

in(A)γ
∏
σ

(X − in(A)σ) ∈ Kr
0[X],

where sum and product range over Gal(H(1)/Kr). Reducing H1 modulo p0 =
P∩Kr

0 and taking any root is equivalent to reducing in(A) modulo a prime over
p0. Changing P without changing p0 will change the ideal in Theorem 7.1 at
most by complex conjugation, which will not affect the characteristic polynomial
of Frobenius. We can then find i2(Ã) and i3(Ã) by computing

in(Ã) =
Ĥi1,in(i1(Ã))

H ′i1(i1(Ã))

if p is sufficiently large.
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7.3 Class invariants for genus one

In the case g = 1, the use of class invariants in the CM method is standard. Let
Hf be the minimal polynomial of a class invariant f(τ), and let Φf,j(X,Y ) ∈
Q(X)[Y ] be such that Φf,j(j, Y ) ∈ Q(j)[Y ] is the minimal polynomial of f ∈ FN
over F1 = Q(j). Then Φf,j(j(τ), f(τ)) = 0, so we can find j(τ) by solving for
X in Φf,j(X, f(τ)) = 0.

For the CM-method, we now only compute Hf and Φf,j . Here Φf,j can be
precomputed once for every function f ∈ FN that we would like to use for class
invariants, and Hf is much smaller, hence needs less precision, than the Hilbert
class polynomial Hj . We compute f(τ) modulo a prime over P by taking a

root of Hf modulo p (and call it f̃). Then we compute j(Ã) by solving for X

in Φf,j(X, f̃) = 0. There may be multiple solutions to try here.

7.4 Class invariants for genus two

For genus two, modular polynomials are much harder to compute, and the
analogue of solving Φf,j(X, f̃) = 0 means finding a Groebner basis, which is
hard as well.

Instead, we work with polynomials

Ĥf,in =
∑
γ

in(A)γ
∏
σ

(X − f(A)σ) ∈ Kr[X].

In fact, if the conditions of Proposition 2.7 are satisfied, then these polynomials
are in Kr

0[X]. We find f̃ as in the elliptic case, and compute in(Ã) for n = 1, 2, 3
from it by the formula

in(Ã) =
Ĥf,in(f(Ã))

H ′f (f̃)
.

The downside of this is that we get four polynomials instead of the three
polynomials that we had when not using class invariants. Still, all of these
polynomials can be a lot smaller than the original polynomials, as the size of all
four of them is dominated by the height of f , which is hopefully much smaller
than the height of i1.

For the example from Section 6.1, the four polynomials Hf , Ĥf,in together

take up 15% less space than the three polynomials Hi1 , Ĥi1,in , and the largest
coefficient (which determines the precision at which theta constants need to be
evaluated, the dominant step) is 40% smaller. And this is just one easily found
class invariant, for the first field that was tried.
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(d’après T. Honda). Sémin. Bourbaki 1968/69, No.352, pages 95–110, 1971.

[25] The PARI Group, Bordeaux. PARI/GP, version 2.4.3, 2011. available
from http://pari.math.u-bordeaux.fr/.

[26] Heinrich Weber. Algebraische Zahlen, volume 3 of Lehrbuch der Algebra.
Braunschweig, Friedrich Vieweg, 1908.

21

http://www.uni-due.de/zahlentheorie/theses_de.shtml
http://www.uni-due.de/zahlentheorie/theses_de.shtml
http://www.warwick.ac.uk/~masjap/recip
http://hdl.handle.net/1887/15572
http://arxiv.org/abs/0903.4766
http://pari.math.u-bordeaux.fr/

	Introduction
	Definitions and statement of the main results
	The upper half space
	The algebraic groups
	Modular forms and group actions
	Complex multiplication
	The type norm
	The class fields generated by complex multiplication
	The explicit reciprocity laws
	Complex conjugation

	The adèlic version
	Proof of the main result
	The conductor
	The mundane properties of M
	Decomposing g(x) modulo the stabilizer
	Determining the ideal group
	Complex conjugation

	Theta constants
	Class invariants
	A detailed example
	More examples

	Applications
	Class fields
	Curves of genus two with prescribed Frobenius
	The CM method

	Class invariants for genus one
	Class invariants for genus two


