Estimating CDF, Statistical Functionals and Nonparametric Bootstrap

Botond Szabo

Leiden University

Leiden, 18 March 2019
Outline

1. EDF
2. Statistical functionals
3. Nonparametric Bootstrap
4. Quiz
Empirical distribution function

Definition

Let $X_1, \ldots, X_n \overset{iid}{\sim} F$, where F is a CDF on the real line. The **empirical distribution function** (EDF) is the CDF that puts mass $1/n$ at each data point. Formally,

\[\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x), \]

where

\[I(X_i \leq x) = \begin{cases}
1 & \text{if } X_i \leq x \\
0 & \text{if } X_i > x.
\end{cases} \]
Example

Cox and Lewis (1966) reported 799 waiting times between successive pulses along a nerve fiber. The solid line in the next plot is the corresponding EDF. The data points are represented by small vertical lines at the bottom.
Properties of EDF

Theorem

At any fixed value of x,*

$$
\mathbb{E}_F[\hat{F}_n(x)] = F(x),
$$

$$
\hat{F}_n(x) \xrightarrow{\mathbb{P}_F} F(x).
$$
Properties of EDF

Theorem

At any fixed value of \(x \),

\[
\mathbb{E}_F[\hat{F}_n(x)] = F(x),
\]

\[
\hat{F}_n(x) \xrightarrow{P_F} F(x).
\]

Theorem

(Glivenko-Cantelli theorem) Let \(X_1, \ldots, X_n \sim F \). Then

\[
\sup_x |\hat{F}_n(x) - F(x)| \xrightarrow{P_F} 0.
\]
Statistical functionals

Definition

A *statistical functional* $T(F)$ is any function of F.

Example

The mean $\mu = \int x dF(x)$, the variance $\sigma^2 = \int (x - \mu)^2 dF(x)$ and the median $m = F^{-1/2}(1/2)$ are all examples of statistical functionals.
Plug-in estimators and linear functionals

Definition

The plug-in estimator of $\theta = T(F)$ is $\hat{\theta}_n = T(\hat{F}_n)$.

Definition

If $T(F) = \int r(x)dF(x)$ for some function r, then T is called a linear functional.

Lemma

If T is a linear functional, then for any distribution functions F and G and any numbers a and b

$$T(aF + bG) = aT(F) + bT(G).$$
Theorem

The plug-in estimator for a linear $T(F) = \int r(x)dF(x)$ is

$$T(\hat{F}_n) = \int r(x)d\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^{n} r(X_i).$$
Confidence intervals

- Assume we know how to estimate the standard error of \(T(\hat{F}_n) \).
- In many cases, \(T(\hat{F}_n) \approx N(T(F), \hat{se}^2) \).
- An approximate \(1 - \alpha \) confidence interval for \(T(F) \) is then
 \[
 T(\hat{F}_n) \pm z_{\alpha/2} \hat{se}.
 \]
 We will call it a Normal-based confidence interval.
- For \(\alpha = 0.05 \), \(z_{\alpha/2} = 1.96 \approx 2 \), so
 \[
 T(\hat{F}_n) \pm 2\hat{se}
 \]
 is an approximate 95% confidence interval.
Let $\mu = T(F) = \int x dF(x)$. The plug-in estimator of μ is

$$
\hat{\mu}_n = T(\hat{F}_n) = \int x d\hat{F}_n(x) = \bar{X}_n.
$$

The standard error of this estimator is

$$
se = \sqrt{\text{Var}[\bar{X}_n]} = \frac{\sigma}{\sqrt{n}}.
$$

Suppose we have an estimator of σ, called $\hat{\sigma}$. Then $\hat{se} = \hat{\sigma} / \sqrt{n}$, and a Normal-based confidence interval for μ is

$$
\bar{X}_n \pm z_{\alpha/2} \hat{se}.
$$
Example

Let \(\sigma^2 = T(F) = \int (x - \mu)^2 dF(x) \). We have
\[
\sigma^2 = \int x^2 dF(x) - \left(\int x dF(x) \right)^2 .
\]
The plug-in estimator of \(\sigma^2 \) is
\[
\hat{\sigma}^2 = \int x^2 d\hat{F}_n(x) - \left(\int x d\hat{F}_n(x) \right)^2
= \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)^2
= \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 .
\]
Another good estimator of σ^2 is the sample variance

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2.$$

In practice there is little difference between this and

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2,$$

except that the former is unbiased: $\mathbb{E}[S_n^2] = \sigma^2$.

Returning to estimation of μ, we see that we can use $\hat{\sigma}/\sqrt{n}$ or S_n/\sqrt{n} to estimate se of $\hat{\mu}_n$.
We return to the nerve data example. Suppose we want to estimate the mean of F and construct the 95% confidence interval. Now, with a bit of coding in \mathbf{R}, $\hat{\mu}_n = 0.2185732$, $\hat{\text{se}} = 0.00740056$, and the 95% confidence interval is $[0.2037721, 0.2333743]$.
The bootstrap is a method for estimating standard errors and computing confidence intervals.

Let \(T_n = g(X_1, \ldots, X_n) \) be a statistic based on an IID sample \(X_1, \ldots, X_n \sim F \).

Suppose we want to know the variance of \(T_n \), \(\mathbb{V}_F[T_n] \).

We have written \(\mathbb{V}_F \) to emphasise dependence on the unknown CDF \(F \).

Example: if \(T_n = \bar{X}_n \), then \(\mathbb{V}_F(T_n) = \sigma^2/n \) with

\[
\sigma^2 = \int (x - \mu)^2 dF(x), \quad \mu = \int x dF(x).
\]

Thus \(\mathbb{V}_F(T_n) \) is a function of \(F \).

But \(F \) is unknown.
Informal description

- The bootstrap has to steps.
 1. **Estimate** $\mathbb{V}_F(T_n)$ with $\mathbb{V}_{\hat{F}_n}(T_n)$.
 2. If $\mathbb{V}_{\hat{F}_n}(T_n)$ is not explicitly computable, **approximate it with simulation**.

- For $T_n = \bar{X}_n$, we have that $\mathbb{V}_{\hat{F}_n}(T_n) = \hat{\sigma}^2/n$, where

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2.$$

 In this case Step 1 of the bootstrap is enough.

- In more complicated cases we cannot write down a formula for $\mathbb{V}_{\hat{F}_n}(T_n)$, which is why we need Step 2 (simulation).
Bootstrap variance estimation

- We want to approximate $\nabla \hat{F}_n[T_n(X_1, \ldots, X_n)]$ through simulation.

- We simulate X_1^*, \ldots, X_n^* from \hat{F}_n and compute $T_n^* = g(X_1^*, \ldots, X_n^*)$. This constitutes one draw from the distribution of T_n. Call it $T_{n,1}^*$.

- We repeat this process over and over again and compute $T_{n,2}^*, \ldots, T_{n,B}^*$. Then we set

$$v_{\text{boot}} = \frac{1}{B} \sum_{b=1}^{B} \left(T_{n,b}^* - \frac{1}{B} \sum_{r=1}^{B} T_{n,r}^* \right)^2.$$

This is a bootstrap estimate of the variance of T_n.
Simulation from \hat{F}_n

- Note that \hat{F}_n puts mass $1/n$ at each data point X_1, \ldots, X_n.
- **Drawing** an observation from \hat{F}_n is equivalent to drawing one point at random from $\{X_1, \ldots, X_n\}$.
- Thus to simulate $X_1^*, \ldots, X_n^* \sim \hat{F}_n$, it suffices to draw n observations with replacement from X_1, \ldots, X_n.
Example

Bootstrap for the median

Given data $X = (X(1), \ldots, X(n))$:

$T \leftarrow \text{median}(X)$

$T_{boot} \leftarrow \text{vector of length } B$

for $i = 1$ to B do

 $X_{star} \leftarrow \text{sample of size } n \text{ from } X \text{ (with replacement)}$

 $T_{boot}[i] \leftarrow \text{median}(X_{star})$

end for

$se \leftarrow \text{sqrt(variance}(T_{boot}))$
Example

Consider the nerve data and suppose we want to estimate the skewness

\[\theta = T(F) = \frac{1}{\sigma^3} \int (x - \mu)^3 dF(x). \]

The skewness measures assymetry of the distribution. For the normal distribution the skewness is zero.

The plug-in estimator is

\[\hat{\theta} = T(\hat{F}_n) = \frac{1}{\hat{\sigma}^3} \int (x - \hat{\mu})^3 d\hat{F}_n(x) = \frac{\sum_{i=1}^{n} (X_i - \bar{X}_n)^3}{\hat{\sigma}^3} = 1.76. \]

To estimate the standard error, we use bootstrap with \(B = 1000 \) replications, yielding an estimated standard error of 0.16.
Methods for confidence interval

- **Normal method:**
 - The simplest method for constructing a bootstrap confidence interval is the normal interval

 \[T_n \pm z_{\alpha/2} \hat{s}_{\text{e boot}}, \]

 where \(\hat{s}_{\text{e boot}} = \sqrt{v_{\text{boot}}} \) is the bootstrap estimate of the standard error.

 - The method is not accurate. unless the distribution of \(T_n \) is close to normal.
Methods for confidence interval

- **Normal method:**
 - The simplest method for constructing a bootstrap confidence interval is the normal interval

 \[T_n \pm z_{\alpha/2} \hat{s}_\text{e}_{\text{boot}}, \]

 where \(\hat{s}_\text{e}_{\text{boot}} = \sqrt{v_{\text{boot}}} \) is the bootstrap estimate of the standard error.
 - The method is not accurate. unless the distribution of \(T_n \) is close to normal.

- Percentile interval
 - The bootstrap percentile interval is defined by

 \[C_n = (\theta_{\alpha/2}^*, \theta_{1-\alpha/2}^*). \]
Question 1

Which of the following statements is not correct about the empirical distribution function (EDF)?

Answers:

1. It puts $1/n$ weight to each observation.
2. It is a consistent estimator of the cumulative distribution function (CDF).
3. It converges to the CDF in every point x simultaneously.
4. It is continuous.
Question 1

Which of the following statements is not correct about the empirical distribution function (EDF)?

Answers:

1. It puts $1/n$ weight to each observation.
2. It is a consistent estimator of the cumulative distribution function (CDF).
3. It converges to the CDF in every point x simultaneously.
4. It is continuous.
Question 2

How to construct an estimator for the mean if we do not know the distribution family?

Answers:

1. Use MM estimator.
2. Use the ML estimator.
3. Use nonparametric plug-in estimator.
4. Use the CLT.
Question 2

How to construct an estimator for the mean if we do not know the distribution family?

Answers:

1. Use MM estimator.
2. Use the ML estimator.
3. Use nonparametric plug-in estimator.
4. Use the CLT.
Question 3

How to construct the $1 - \alpha$ confidence interval for the statistical functional $T(F)$, if we can estimate the standard error?

Answers:

1. $T(\hat{F}) \pm z_{\alpha/2} \hat{se}$.
2. $T(\hat{F}) \pm 2 \hat{se}$.
3. $\bar{X}_n \pm z_{\alpha/2} \hat{se}$.
4. $\bar{X}_n \pm sd(X)$.
Question 3

How to construct the $1 - \alpha$ confidence interval for the statistical functional $T(F)$, if we can estimate the standard error?

Answers:

1. $T(\hat{F}) \pm z_{\alpha/2} \hat{se}$.
2. $T(\hat{F}) \pm 2\hat{se}$.
3. $\bar{X}_n \pm z_{\alpha/2} \hat{se}$.
4. $\bar{X}_n \pm sd(X)$.
Question 4

Which of the following is not true for the nonparametric bootstrap?

Answers:

1. It is used to construct confidence intervals and estimating the standard error.
2. We are resampling from the observation X_1, \ldots, X_n.
3. We estimate the parameters of the distribution with the help of it.
4. Useful when estimator of the variance of the functional $\hat{V}_{f_n}(T_n)$ is not computable.
Question 4

Which of the following is not true for the nonparametric bootstrap?

Answers:

1. It is used to construct confidence intervals and estimating the standard error.
2. We are resampling from the observations X_1, \ldots, X_n.
3. We estimate the parameters of the distribution with the help of it.
4. Useful when estimator of the variance of the functional $\hat{V}_{F_n}(T_n)$ is not computable.
Question 5

How do we compute T_n^* for $T_n = g(X_1, ..., X_n)$?

Answers:

1. $T_n^* = g(X_1^*, ..., X_n^*)$.
2. $T_n^* = g(X_1^*, ..., X_m^*)$.
3. $T_n^* = g(X_1, ..., X_n)$.
4. $T_n^* = \bar{X}_n$.
Question 5

How do we compute T^*_n for $T_n = g(X_1, ..., X_n)$?

Answers:

1. $T^*_n = g(X^*_1, ..., X^*_n)$.
2. $T^*_n = g(X^*_1, ..., X^*_m)$.
3. $T^*_n = g(X_1, ..., X_n)$.
4. $T^*_n = \bar{X}_n$.