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Abstract

It has been observed in the Gierer-Meinhardt equations that destabilization mechanisms are rather complex when
spatially periodic pulse patterns approach a homoclinic limit. In this paper we show that this holds in much broader
generality. While decreasing the wave number k, the character of destabilization alternates between two kinds of Hopf
instabilities. In the first kind, a conjugated pair of so-called 1-eigenvalues crosses the imaginary axis exciting perturbations
that are in phase with the periodic solution. In the second kind, a pair of −1-eigenvalues crosses the imaginary axis exciting
anti-phase perturbations. In (parameter, wave number)-space, the curves H±1 corresponding to ±1-Hopf instabilities
intersect infinitely often as they oscillate about each other, while both converging to the Hopf destabilization point of
the homoclinic limit on the line k = 0, i.e. they perform a ‘Hopf dance’. In an appropriate singular limit, the curves H±1

generate the boundary of the region of stable pulse solutions – the so-called Busse balloon. The Busse-balloon boundary is
non-smooth at intersections ofH+1 andH−1 due to a surprisingly correlated higher order phenomenon: the ‘belly dance’.
In this paper, we employ recently developed spectral methods to show that both the Hopf and belly dance are persistent
mechanisms that occur in a general class of singularly perturbed reaction-diffusion systems beyond the ‘slowly linear’
Gierer-Meinhardt equations. Moreover, we establish an explicit sign criterion to determine whether the homoclinic limit is
the last or the first ‘periodic’ solution to destabilize. We illustrate our results by explicit calculations in a slowly nonlinear
model system.

1 Introduction
The process of pattern formation is typically initiated by the appearance of spatially periodic patterns from a homogeneous
state. In the setting of reaction-diffusion systems – which is the setting of the present paper – these patterns are most often
generated by a Turing bifurcation, as a system parameter µ crosses through a critical value µT at which a spatially homo-
geneous state ū0 becomes unstable [41]. While Turing’s original work was restricted to linear reaction-diffusion systems,
later a fully nonlinear treatment of this pattern generating mechanism has been embedded in the near-equilibrium theory of
modulation equations. This theory has its origin in fluid mechanics and is applicable to the initiation of patterns in general
classes of evolutionary partial differential equations on (unbounded) cylindrical domains. The evolution of small pertur-
bations of the basic state ū0 (measured in a well-chosen Banach space) is captured for µ sufficiently close to µT and for
a finite, but asymptotically large, time by a modulation equation – typically a (complex) Ginzburg-Landau equation [24].
Through this Ginzburg-Landau approach it can be established that, if the bifurcation is supercritical, a one-parameter fam-
ily of spatially patterns is generated as µ crosses through µT , typically with a subfamily of stable periodic patterns. In a
graphical representation in the (µ, k)-plane – where k is the wave number (i.e. the reciprocal of the period) of the stable
periodic pattern – the family of stable patterns corresponds to an (asymptotically small) open region, bounded by a curve
that is at leading order given by the so-called Eckhaus parabola which has its extremum at (µT , kT ), where kT is the critical
wave number associated with the Turing instability in the setting of reaction-diffusion systems [12, 24].

The asymptotic theory is only valid for |µ − µT | sufficiently small and it is natural to wonder how this asymptotically
small region extends beyond the domain of validity of the modulation equations approach. A first continuation – in the
context of convective roll patterns – has been explored in [2]. By direct numerical simulations, a balloon-shaped region in
(parameter, wave number)-space was found within which stable roll patterns can be observed. This motivated the definition
of the Busse balloon in the setting of evolutionary systems on unbounded domains: it is the region in (parameter, wave
number)-space in which stable wave trains – i.e. spatially periodic patterns that travel with constant, often zero, speed
– exist. In the context of fluid mechanics, the Busse balloon serves as the important first step towards turbulence. In
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Busse Balloon

Figure 1: A sketch of a Busse balloon in (µ, k)-space. The underlying system undergoes a Turing bifurcation at µ = µT

yielding the onset of pattern formation with associated critical wave number kT . In a neighborhood (in green) of the
‘Eckhaus nose’ (µT , kT ) analytic control over the Busse balloon is provided by the modulation equations approach. The
Busse balloon closes at (µ∗, 0) at which a homoclinic limit pattern undergoes a Hopf destabilization. In this paper, we study
the Busse balloon – and in particular its boundary – both analytically and numerically in a neighborhood (in blue) of the
‘homoclinic tip’ (µ∗, 0).

general, the Busse balloon is expected to play a similar role in related pattern forming systems. In fact, it appears as a
central concept in the study of desertification processes in semi-arid ecosystems. Desertification is in its most simple form
modeled by the Klausmeier [21, 37, 38] or the extended Klausmeier-Gray-Scott system [39, 40, 43], which are singularly
perturbed 2-component reaction-diffusion systems of the type considered in the present work (if the ecosystem dynam-
ics take place on a flat terrain). Stable spatially periodic vegetation patterns – i.e. patterns ‘inside the Busse balloon’ –
bridge the gap between the fertile homogeneously vegetated state that is exhibited by the model if the rainfall parameter
is sufficiently high and the bare soil state that appears as this parameter drops below a certain critical value. The (PDE)
simulations of [37, 39, 40] show that these periodic vegetation patterns trace an intriguing path through the Busse balloon
as the rainfall parameter changes (slowly) in time: as a pattern reaches the boundary of the Busse balloon, it ‘bounces back’
by an ecological ‘mini-catastrophe’ in which typically roughly half of the patterns simultaneously ‘disappear’. Moreover,
recent analysis and simulations of interacting pulse patterns in the same extended Klausmeier model [1] show that irregular
patterns evolve towards spatially periodic patterns and that these are ‘the most stable patterns’, indicating that the Busse
balloon acts as an attractor for pattern dynamics. Interpreting results in the literature on pulse dynamics in classical sin-
gularly perturbed systems as the Gray-Scott [27] and Gierer-Meinhardt [16] equations – see for instance [3, 47] and the
references therein – strongly suggest that this phenomenon may be quite generic: irregular multi-pulse patterns naturally
evolve towards regularity, i.e. the Busse balloon indeed seems to be an attractor in many singularly perturbed reaction-
diffusion equations.

Nevertheless, there is remarkably little general insight in the nature of the Busse balloon – and especially in its boundary
at which periodic patterns lose their stability – beyond the onset of pattern formation at its ‘Eckhaus nose’ – see Figure 1.
In [31], co-dimension one instabilities of wave trains in reaction-diffusion systems on the real line are classified, thus pro-
viding insight in the possible nature of the boundary of a Busse balloon. The numerical analyses in [10, 39, 40, 43] indicate
that such a classification only provides a very first glimpse into the realm of possible pattern destabilization mechanisms.

The Busse balloons presented in [10, 39, 40, 43] are all determined for the aforementioned two-component extended
Klausmeier systems on the real line. For decreasing µ, each Busse balloon ‘opens’ at the ‘Eckhaus nose’ associated with a
Turing bifurcation. Each balloon also ‘closes’ at a ‘homoclinic tip’ (µ, k) = (µ∗, 0), at which a localized homoclinic pattern
– that must be seen as the long-wavelength limit of a family of spatially periodic patterns as the wave number k ↓ 0 – is the
last pattern to become unstable; see the sketches in Figures 1 and 2(a). These observations confirmed earlier findings in the
literature on the nature of the Busse balloon – and especially on the appearance of the ‘homoclinic tip’ – in the Gray-Scott
and Gierer-Meinhardt models – see [10, 42] and Remark 1.2. Moreover, the desertification simulations of [37, 39, 40] also
indicate that the homoclinic tip has a direct ecological relevance: it is found that the final collapse of the ecosystem into
the bare soil state takes place very close to this homoclinic tip – which in ecological terms corresponds to an ‘oasis state’.
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(a) (b)

Figure 2: A zoomed-in sketch of a part of a Busse balloon (in gray) near a homoclinic tip (µ∗, 0) at which a homoclinic limit
pattern undergoes a Hopf destabilization. In (a), the homoclinic pattern is the last ‘periodic’ pattern to become unstable as
the parameter µ is decreased, i.e. Ni’s conjecture is satisfied. The homoclinic pattern already destabilizes before its adjacent
long-wavelength periodic patterns as µ decreases in (b), i.e. Ni’s conjecture does not hold. In both cases, the boundary of
the Busse balloon is (in an appropriate singular limit) determined by two intertwining Hopf destabilization curves, H+1
andH−1. At the intersection points, the boundary of the Busse balloon is non-smooth.

In all cases considered in the aforementioned literature, the tip of the Busse balloon on the line k = 0 corresponds to
a homoclinic pulse (a localized 1-pulse) that is the last of all ‘periodic’ patterns to become unstable. In fact, it is always
destabilized by a Hopf mechanism, i.e. the spectrum associated with the linearization of the system about the homoclinic
pulse pattern contains a pair of (non-zero) complex conjugate eigenvalues crossing the imaginary axis at µ = µ∗. Although
not formulated in the terminology of Busse balloons, a similar observation was already made by Wei-Ming Ni in [25] in
the form of a conjecture about spatially periodic patterns in the (generalized) Gierer-Meinhardt equation – see Remark 1.1.
Here, we formulate the conjecture as follows:

Ni’s conjecture: the homoclinic limit pattern is the most stable pattern within the family of (long-wavelength) spatially
periodic patterns, in the sense that it is the last pattern to become unstable – or the first to become stable – as a parameter
is varied. Moreover, the (de)stabilization is of Hopf type.

A priori, there is no obvious argument to support Ni’s conjecture (except for the observations in numerical simulations
of example systems): near a homoclinic tip (µ∗, 0), the boundary of a Busse balloon could in principle also be oriented in
such a way that (long-wavelength) periodic patterns may be stable while their homoclinic limit is not – see Figure 2(b).

Although there seem to be some similarities between the distinction ‘Ni’ vs. ‘no-Ni’ as depicted in Figure 2 and the distinc-
tion sub- vs. supercritical bifurcation, the situation is much more subtle. For instance, families of long-wavelength periodic
patterns and their homoclinic limits may exist both for µ > µ∗ and for µ < µ∗. More importantly, near the homoclinic tip
(µ∗, 0), the boundaries of the Busse balloons in [10, 43] also exhibit an intricate and non-smooth structure induced by two
intertwining curves of two types of Hopf destabilizations, H+1 and H−1. At a +1-Hopf destabilization a conjugated pair
of so-called 1-eigenvalues crosses the imaginary axis exciting perturbations that are in phase with the periodic solution.
At a −1-Hopf destabilization a pair of −1-eigenvalues crosses the imaginary axis exciting anti-phase perturbations. Al-
though the numerical analyses in [10, 43] only yield a limited number of such intersections ofH+1 andH−1, it is strongly
suggested – and in fact confirmed analytically in [10] in the context of Gierer-Meinhardt systems (see Remark 1.2) – that
there is a countably infinite number of such intersections that converge to the critical value (µ∗, 0) as k ↓ 0, at which the
homoclinic pattern destabilizes – see again Figure 2 for a sketch. We emphasize that, although the curvesH+1 andH−1 are
well-defined beyond the homoclinic tip (µ∗, 0), they might diverge from the boundary of the Busse balloon sufficiently far
away from the tip, which is observed in simulations in [10], where the curvesH±1 are traced globally.

Long-wavelength periodic patterns limiting on a homoclinic pattern provide a ‘far-from-equilibrium’ setting within which
a general analysis of the boundary of the Busse balloon may be developed in the spirit of the near-equilibrium modulation
equations approach – at least, in the setting of reaction-diffusion systems on the real line. Based on [14], it is shown
in [15, 35] that the spectral curves associated with the stability of long-wavelength periodic patterns converge to the spec-
trum of the homoclinic limit as k ↓ 0. If the homoclinic pulse undergoes a Hopf destabilization, i.e. if the system is near
a homoclinic tip of the Busse balloon as in Figure 2, then the spectrum associated with a nearby periodic pulse pattern –
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i.e. a long-wavelength solution with wave number |k| � 1 – crosses the imaginary axis at some µ = µ(k)-value close to
µ∗ (which not necessarily yields the destabilization of the pattern – see below). However, the insights of [15, 35] are not
sufficiently refined to unravel the structure of the boundary of the Busse balloon near the tip (µ∗, 0).

In this paper, we will determine the fine-structure of the Busse balloon near a homoclinic tip of Hopf type as sketched
in Figure 2. We will do so by employing the recently developed spectral methods of [5, 6, 7, 11] for the stability of spa-
tially periodic and homoclinic (pulse) patterns to a general class of singularly perturbed two-component reaction-diffusion
systems {

ut = ux̌x̌ − H1(u, v, ε) − ε−1H2(u, v)
vt = ε2vx̌x̌ −G(u, v, ε) , u ∈ R, v ∈ R, (1.1)

or, in the ‘fast’ spatial scale x = ε−1 x̌,{
ε2ut = uxx − ε

2H1(u, v, ε) − εH2(u, v)
vt = vxx −G(u, v, ε) , u ∈ R, v ∈ R, (1.2)

where 0 < ε � 1, H1,H2 and G are smooth functions of ε at ε = 0, and H2 and G vanish at v = 0. The term ε−1H2
in (1.1) guarantees the possibility of having stable localized pulse patterns in semi-strong interaction [7, 11]. Here, the
concept of ‘semi-strong interactions’ refers to the fact that localized structures in singularly perturbed reaction-diffusion
equations typically interact ‘strongly’ through their slow components – u in (1.1)/(1.2) – while their fast components only
interact ‘exponentially weakly’ (i.e. the fast components are exponentially close to the (fast reduced) stable background
state – v ≡ 0 in (1.1)/(1.2) – in between two fast excursions) [8, 29]. We refer to Section 2 for more assumptions on the
interaction terms (and their motivation). This class (1.1)/(1.2) significantly extends the aforementioned specific Gray-Scott
and Gierer-Meinhardt models, most importantly since it is in general slowly nonlinear. This terminology refers to the
nonlinear nature of the slow-reduced scalar u-equation

ut = ux̌x̌ − H1(u, 0, 0), u ∈ R, (1.3)

that governs the leading-order flow of (1.1) outside the asymptotically small x̌-regions in which the v-component of the
spatially periodic and homoclinic pulse patterns is not exponentially small – see Figure 3. Note that all the aforementioned
Gray-Scott-/Gierer-Meinhardt-type models considered in the literature are slowly linear (i.e. these models correspond
to explicit versions of (1.1) in which H1(u, 0, 0) is a linear function of u). The concept of slowly nonlinear singularly
perturbed reaction-diffusion systems was introduced in [11, 46]. Apart from the fact that the spectral analysis associated
with pulse patterns, which was developed in the context of slowly linear models, had to be rigorously re-developed –
see [5, 6, 7, 11] – slowly nonlinear models are also particularly interesting from the original fluid mechanical point of
view of the Busse balloon as the first step from a homogeneous basic state towards turbulence [2]. So far, numerical
simulations of slowly linear (two-component, singularly perturbed, reaction-diffusion) systems in the literature indicate
that there are no stable spatial patterns of increased complexity beyond the boundary of the Busse balloon. For instance,
Hopf destabilizations at the boundary of the Busse balloon that are encountered (numerically) in the literature known to the
authors seem to be sub-critical: the destabilized pulse oscillates and ‘disappears’. In fact, one could say that the success of
the Klausmeier-Gray-Scott model as conceptual model for the process of desertification [21, 40, 43] is directly related to
this – especially from the mathematical point of view – very intriguing feature: once the homogeneously vegetated state
has become unstable with respect to a Turing bifurcation, the homogeneous bare soil desert state appears to be the only
attractor beyond the boundary of the Busse balloon of stable vegetation patterns [40, 43]. Thus, in these systems, the Busse
balloon seems to describe both the first and the final step in the pattern forming process. The simulations presented in [46]
– which exhibit stable periodically, quasi-periodically and chaotically oscillating pulses – indicate that this is certainly not
the case for slowly nonlinear models: here, the Busse balloon indeed seems to be the first step in the transition from trivial
to complex spatio-temporal dynamics. This is supported analytically by the results in [45], in which it is established – in
the context of a slowly nonlinear system – that the Hopf destabilization of a homoclinic pulse pattern in (1.1) may change
its nature from sub-critical to supercritical. Moreover, it is confirmed in [45] that the Hopf destabilization is sub-critical in
the classical/canonical (slowly linear) Gierer-Meinhardt system.

Although our main goal is to obtain a general, analytical grip on aspects of the far-from-equilibrium boundary of a Busse
balloon, we have chosen – unlike [15, 35] – to study the structure of a Busse balloon near a homoclinic tip (µ∗, 0) in the
setting of a special kind of reaction-diffusion systems: (1.1) is singularly perturbed (since we assume 0 < ε � 1). Such
systems appear naturally in many applications. More importantly, while exhibiting behavior of a richness comparable to
general reaction-diffusion systems, the singularly perturbed nature of (1.1) provides a framework by which this behavior

4



Figure 3: A numerically obtained profile of one period of a typical spatially periodic, nearly homoclinic, long-wavelength
solution to the weakly nonlinear system (1.2), for a specific choice of H1,2 and G. The v-component is strongly localized,
the u-component is a solution to (1.3) in the region in which v is exponentially small. More specifically, the profile is
a marginally stable solution to the basic model (1.4) scaled in the slow spatial variable x̌ as in (1.2) with ε ≈ 0.015,
ν1 ≈ −1.04, ν2 ≈ 0.49, µ1 ≈ 0.44, µ2 = 0, µ3 = 1 and with wavelength L = 20.

can be unraveled by exploiting the small parameter ε.

Based on the methods developed in [5, 6, 7, 11], we will show that we can go beyond the leading-order – but non-singularly
perturbed – results of [15, 35] and indeed establish the fine-structure of Busse balloons near a homoclinic tip as sketched in
Figure 2. To do so, we restrict ourselves to stationary, reversibly symmetric, patterns – see Sections 2 and 7. We suppose
that system (1.1) depends on a parameter µ and that a (non-degenerate) Hopf destabilization of a stable homoclinic pulse
solution occurs at µ = µ∗. Thus, two simple conjugate eigenvalues, λ∞,µ and λ̄∞,µ, corresponding to the homoclinic pulse,
cross the imaginary axis away from the origin at µ = µ∗. We know from [7, 11] that these homoclinic pulses can be seen as
limit states of a family of stationary, reversibly symmetric, spatially periodic patterns (in the limit ` → ∞, where ` is a mea-
sure for the wavelength) – see Theorem 4.1. We also know by combining the reversibility symmetry of the patterns with
Floquet theory, that the homoclinic eigenvalues λ∞,µ and λ̄∞,µ are approximated (in the limit ` → ∞) by two critical pieces
of spectral curves {λ`,µ(γr); γr ∈ [−1, 1]} and {λ̄`,µ(γr); γr ∈ [−1, 1]} associated with the stability of the long-wavelength
pattern – see [7, 10, 15, 35] and Theorem 4.5 for the quantitative details. We will see that the nature of the boundary of the
Busse balloon – as sketched in Figure 2 – is controlled by the behavior of the critical spectral curve λ`,µ(γr) as function of
µ and ` (� 1).

However, there is another spectral curve that may be decisive for the stability of the long-wavelength patterns: the (real)
spectral curve λs

`,ε
(ν), ν ∈ [0, 2π] of ‘small spectrum’ [18, 42] that is attached to the origin λ = 0 and that shrinks to the

origin as ε → 0 – see Figure 4. The position of this curve can be controlled by the methods recently developed in [5, 6]
– see Section 3.3.1 and especially Theorem 3.4 (which is proven in [5, 6]). It also follows from [5, 6] that the position
of λs

`,ε
(ν) with respect to the imaginary axis – i.e. Figure 4(a) vs. 4(b) and (c) – does not change in the homoclinic limit

(i.e. as ` → ∞) and is determined by the sign of certain explicit quantities (that only need the asymptotic profile of the
homoclinic pulse as input – see [5, 6, 36] and Theorem 4.3). This leads to a sign condition that guarantees that the curve
of small spectrum does not enter the right-half plane, provided the wavelength is sufficiently large. Consequently, one can
test whether the stability properties of the limiting homoclinic are inherited by the nearby periodic pulse solutions – or not,
as in Figure 4(a) – see Theorem 4.7.

The core of this paper concerns the analysis – and numerical validation – of the precise location of the critical spectral
curve λ`,µ(γr) for long-wavelength patterns beyond the leading-order result λ`,µ(γr) → λ∞,µ as ` → ∞ of [15, 35]. Based
on [7, 11], we derive explicit expansions of λ`,µ(γr) in ` (in the limit ε → 0) that – again – only need the input from
the homoclinic limit. The outcome of our analysis is presented graphically in Figure 4: λ`,µ(γr) is at leading order (in `)
an exponentially short straight line segment. The distance between this segment and λ∞,µ is given by another – larger –
exponentially small term (in `) multiplied by an `-independent complex number L0 that can be determined explicitly: L0
determines the direction (in C) of the translation of the segment with respect to λ∞,µ – see Figure 4(b), respectively 4(c), in
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(a) (b) (c)

Figure 4: Three sketches of the critical spectrum associated with a long-wavelength periodic pulse pattern near a Hopf
type homoclinic tip of a Busse balloon, i.e. the parameter µ is close to the Hopf destabilization value µ∗ of the homoclinic
limit and the wavelength ` is sufficiently large. The spectral curve λ`,µ(γr) converges to the critical eigenvalue λ∞,µ of the
homoclinic limit as ` → ∞, whereas the curve of small spectrum λs

`,ε
(ν) converges to the origin as ` → ∞. In panel (a),

the homoclinic limit is stable and the spectral curve λ`,µ(γr) also is in the stable half plane. However, the small spectrum
λs
`,ε

(ν) is unstable. In panel (b), the homoclinic limit is stable and Ni’s conjecture holds: the small spectrum λs
`,ε

(ν) is
stable but the segment λ`,µ(γr) is (partly) unstable. In panel (c), both λs

`,ε
(ν) and λ∞,µ(γr) are in the stable half plane. The

long-wavelength pattern is stable, however, its homoclinic limit is unstable: Ni’s conjecture is violated.

which Re(L0) > 0, respectively Re(L0) < 0, and Theorem 4.5 for the details. The orientation of the line segment λ`,µ(γr) is
determined by the argument of an expression L1e−2ω∞`, where both L1, ω∞ ∈ C can again be determined explicitly (Theo-
rem 4.5). The facts that Re(ω∞) > 0 and Im(ω∞) , 0 imply that λ`,µ(γr) not only shrinks as ` → ∞, but that it also rotates
(with (asymptotically) constant speed) as a function of ` (while it approaches λ∞,µ).

Under the assumption that the aforementioned sign condition is satisfied such that the small spectrum λs
`,ε

(ν) does not
enter the unstable half plane, we may conclude from the above results that the boundary of the Busse balloon (in the limit
ε→ 0) near a homoclinic tip associated with a Hopf destabilization must indeed be as sketched in Figures 2(a) or (b). The
sign of Re(L0) determines whether the homoclinic pattern is the last or the first ‘periodic’ pulse to become unstable as µ
decreases. If Re(L0) > 0 as in Figure 4(b), Ni’s conjecture holds – i.e. λ∞,µ only passes through the imaginary axis (for
decreasing µ) after all λ`,µ(γr)-segments (for ` sufficiently large) – and the orientation of the boundary of the Busse balloon
is as in Figure 2(a). If Ni’s conjecture does not hold – Figure 4(c) with Re(L0) < 0 – then the boundary of the Busse balloon
is oriented as in Figure 2(b). A non-degenerate first intersection of a straight segment crossing through the imaginary axis
must occur at its endpoints. Therefore, the boundary of the Busse balloon is (in the limit ε → 0) described by the two
curves H±1 determined by those values of µ and `, or equivalently the wave number k, for which λ`,µ(±1) ∈ iR – see also
Figure 5. Thus, the long-wavelength pattern is (to leading order) either destabilized by a perturbation with approximately
the same wavelength, which corresponds to λ`,µ(1) ∈ iR, or a perturbation with approximately twice its wavelength, that is,
λ`,µ(−1) ∈ iR. The sign of the oscillating expression Re(L1e−2ω∞`) (as a function of `) determines which of these two cases
hold. Hence, it follows that the boundary of the Busse balloon (in the limit ε→ 0) near a homoclinic tip of Hopf type must
indeed have a fine-structure of two intertwining curves with countably many intersections that limit on λ∞,µ as sketched in
Figures 2 (a) and (b). This was called the Hopf dance in [10] (see also Remark 1.2).

However, the segment λ`,µ(γr) cannot be expected to be perfectly straight. A further perturbation analysis confirms that this
segment is (slightly) parabolically deformed – see Theorem 4.5 and Corollary 4.8. The orientation of this parabolic ‘belly’
determines the nature of the boundary of the Busse balloon near the intersections of H+1 and H−1, i.e. near situations
where Re(L1e−2ω∞`) = 0 so that the line segment λ`,µ(γr) is (to leading order) vertical at its passage through the imaginary
axis. If the belly points into the unstable half plane for a solution onH+1∩H−1, then there is a small piece of the boundary
of the Busse balloon near, but away from, H+1 ∩ H−1 that is determined by curves Hγin

r
with −1 < γin

r < 1 (i.e. the first
point that hits the imaginary axis is given by λ`,µ(γin

r ) ∈ iR for some γin
r , ±1). As a consequence, the local boundary

of the Busse balloon is smooth (in the limit ε → 0) without any co-dimension 2 points. This is not the case if the belly
points into the stable half plane. Then,H+1 andH−1 indeed cover the boundary of the Busse balloon (in the limit ε→ 0),
including the co-dimension 2 points inH+1∩H−1 where the endpoints of the segment λ`,µ(γr) pass simultaneously through
the imaginary axis (thus where λ`,µ(±1) ∈ iR for the same – critical – value of µ). Perhaps the most surprising outcome
of our analysis is that, within the full class of slowly nonlinear systems (1.1), the parabolic belly always points into the
left-half plane and thus only the second type of intersections can occur (for ` sufficiently large) – see Corollary 4.8 and
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Figure 5: The belly dance as a series of sketches of the rotating spectral curve λ`,µ(γr) for increasing `. The sketches are
corrected for exponential shrinking and the parabolic deformations are exaggerated. If λ`,µ(γr) is vertical the ‘belly’ always
points to the left: the point on the curve with largest real part must be one of the endpoints λ`,µ(±1).

Remark 1.2. Like in the Gray-Scott and Gierer-Meinhardt models [10], λ`,µ(γr) performs a belly dance as ` increases. This
‘dance’ is sketched in Figure 5: while the line segment λ`,µ(γr) makes half a turn, the parabolic deformation moves from
one side of the straight connection between λ`,µ(+1) and λ`,µ(−1) to the other. Thus, we may conclude that the boundary
of the Busse balloon (in the limit ε → 0) near a homoclinic tip of Hopf type is given exactly by the non-smooth union
of countably many successive pieces of the intertwining curves H+1 and H−1, including the intermediate co-dimension 2
intersection points H+1 ∩ H−1 – as was already sketched in Figure 2. Furthermore, we establish that the non-smoothness
of the boundary of the Busse balloon persists for sufficiently small ε > 0.

As a second (sub)theme of this paper, we present a detailed analysis of an explicit slowly nonlinear model, ε2ut = uxx − ε
2µ1 sin u − εν1

(
v2 − ν2v3

)
vt = vxx − v + v2

µ2+µ3 sin u

, u ∈ R, v ∈ R, (1.4)

given in the form of (1.2) with nonlinearities H1,2 and G and parameters µ1,2 and ν1,2,3 specified as,

H1(u, v, ε) = µ1 sin u, µ1 > 0,
H2(u, v) = ν1

(
v2 − ν2v3

)
, ν1 > 0, ν2 ≥ 0,

G(u, v, ε) = v − v2

µ2+µ3 sin u , µ2 ≥ 0, µ3 >, 0
(1.5)

see Section 2.1 for more details on (1.5) and its relation to (the conditions on) (1.2). In Section 2.1, we explicitly study the
existence problem associated with (1.4) and explain the richness of potential stationary patterns exhibited by the model –
see for instance Figure 7. In Section 3.4, we follow the general approach developed in [7] to obtain explicit control over
the spectrum associated with the stability of spatially periodic pulse patterns to (1.4). The critical spectral curve λ`,µ(γr) is
determined by the outcome of this analysis – see (3.50). Moreover, we numerically determine the spectra associated with
several (numerical) solutions of (1.4) (for various specified choices of parameters). We present examples in which Ni’s
conjecture hold and examples where it does not hold, and confirm (the first stages of) the Hopf and belly dances numeri-
cally. Finally, we compare the numerics with the outcome to the explicit stability analysis of patterns in (1.4) of Section 3.4.

The set-up of the paper is as follows. In Sections 2 and 3 we present overviews of the existence and stability analysis
of patterns in (1.2) (and (1.4)) based on [7, 11]. Our main results – which establish the Hopf and belly dance and thus the
structure of the Busse balloon near a homoclinic tip of Hopf type sketched in Figure 2 – are presented in full quantitative
detail in Section 4. The proofs of these results are postponed until Section 6. In Section 5, we compare our analytical
findings with numerical approximations. We end with a short discussion and outlook in Section 7.
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Remark 1.1. In his 1988 review paper [25], Wei-Ming Ni considered the stability of a ‘boundary-peak’ as a solution to
the generalized (and singularly perturbed) Gierer-Meinhardt equation on a bounded interval. Theorem 2 in [25] establishes
that this 1-pulse pattern – or better: 1/2-pulse pattern, since the singular pulse sits at the boundary of the domain – is stable
in the shadow system limit of the Gierer-Meinhardt system. The shadow system corresponds to the limit d2 → ∞, where d2
is the diffusion coefficient of the slow component (since (1.1) is considered on the unbounded domain R, d2 is scaled to 1 in
the present paper). This stability result is confirmed by numerical simulations of the Gierer-Meinhardt system itself with d2
‘sufficiently big’. Ni conjectures in the discussion of this result and these simulations (2nd column on page 14 of [25]), ‘It
is conjectured that as d2 decreases, more and more multi-peak spike-layer steady states become stable. Heuristically, since
the rapidly diffusing inhibitor suppresses the formation of new spikes close to the existing ones, the larger d2 becomes,
the fewer stable spikes are expected.’ Transferring this statement to spatially unbounded domains R, brings us to ‘Ni’s
conjecture’ as formulated in this paper. Thus, we interpret this stament as the first observation of the ‘homoclinic tip’ of a
Busse balloon associated to a system of reaction-diffusion equations.

Remark 1.2. The analysis [42] of spatially periodic pulse patterns in the (slowly linear, two-component) generalized
Gierer-Meinhardt equation can be seen as a predecessor of the existence and stability analysis of spatially periodic pulse
patterns in the general class of singularly perturbed (m + n)-component slowly nonlinear reaction-diffusion systems –
where m is the number of slow and n of fast components – in [7]. In [42], the rotating behavior of critical spectral curves
λ`,µ(γr) in the long-wavelength limit was observed but was not interpreted in terms of a fine-structure of the boundary of
an associated Busse balloon. This behavior was first observed numerically in the context of the Gray-Scott model and
established analytically in the Gierer-Meinhardt model (both in [10]). The belly dance mechanism was also first observed
in [10] and established for the Gierer-Meinhardt model. It was conjectured in the discussion of [10] that the Hopf dance
is a generic mechanism; our present results confirm this. However, the analysis of the Gierer-Meinhardt models in [10]
suggested that the belly dance is driven by the – in the present terminology – slow linearity of these models. Thus it was –
as we now know incorrectly – conjectured that the belly dance would disappear in slowly nonlinear models.

2 Review of existence results
In this section, we review existence results for periodic pulse patterns and homoclinic pulses in (1.1)/(1.2), in a unified
way. A new result for a one-parameter family of long-wavelength periodic pulses that converge to a homoclinic pulse
will be given in §4.1. We are interested in stationary, reversibly symmetric, periodic pulse solutions of system (1.1)/(1.2)
that approach a homoclinic limit. As mentioned in §1, we impose the following assumptions on the interaction terms
of (1.1)/(1.2).

(S1) Conditions on the interaction terms
There exists open, connected sets U,V, I ⊂ R with 0 ∈ V, I such that H1,G and H2 are C3 on their domains U ×V × I
and U × V , respectively. Moreover, we have H2(u, 0) = 0 and G(u, 0, ε) = 0 for all u ∈ U and ε ∈ I.

Stationary solutions to (1.2) satisfy
ux = εp
px = εH1(u, v, ε) + H2(u, v)
vx = q
qx = G(u, v, ε)

, u ∈ U, p ∈ R, v ∈ V, q ∈ R. (2.1)

The pulse solutions under consideration in this paper arise from a concatenation of solutions to a series of reduced subsys-
tems of (2.1) in the singular limit ε→ 0. If we take ε = 0 in (2.1), the dynamics is given by the fast reduced system,

ux = 0
px = H2(u, v)
vx = q
qx = G(u, v, 0)

, u ∈ U, p ∈ R, v ∈ V, q ∈ R. (2.2)

We observe that the manifoldM = {(u, p, 0, 0) : u ∈ U, p ∈ R} consists entirely of equilibria of (2.2) by (S1). We require
M to be normally hyperbolic.

(S2) Normal hyperbolicity
There exists a lower bound G0 > 0 such that for each u ∈ U it holds ∂vG(u, 0, 0) ≥ G0.
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When ε > 0, the manifoldM consists no longer of equilibria, but remains invariant. The flow restricted toM is to leading
order governed by the so-called slow reduced system,{

ux̌ = p
px̌ = H1(u, 0, 0) , u ∈ U, p ∈ R. (2.3)

System (2.3) is Rs-reversible, where Rs : R2 → R2 is the reflection in the line p = 0.

It is well known that the dynamics around such a normally hyperbolic manifold M is captured by Fenichel’s geometric
singular perturbation theory [13]. Suppose we have obtained a so-called singular orbit by piecing together orbit segments
of the fast and slow reduced systems. Although this singular orbit is not a solution to the full system, one can prove in
some cases, with the aid of Fenichel’s theory, that an actual orbit lies in the vicinity of the singular one, provided ε > 0 is
sufficiently small.

In this paper we are interested in solutions to (2.1) that are close to singular orbits that consist of a pulse satisfying the fast
reduced system (2.2) and a segment on the invariant manifoldM, satisfying the slow reduced system (2.3). The following
assumption ensures the existence of a pulse in the fast reduced system.

(E1) Existence of a pulse solution to the fast reduced system
There exists u� ∈ U such that system, {

vx = q
qx = G(u, v, 0) , v ∈ V, q ∈ R, (2.4)

has for fixed u = u� a solution κh(x, u�) = (vh(x, u�), qh(x, u�)) homoclinic to 0 with qh(0, u�) = 0.

Since system (2.4) is R f -reversible, where R f : R2 → R2 is the reflection in the line q = 0, assumption (E1) implies the
existence of a neighborhood Uh ⊂ U of u� such that for every u ∈ Uh there exists a homoclinic solution κh(x, u) to (2.4)
with qh(0, u) = 0. It holds κh(x, u) = R f κh(−x, u) for x ∈ R. The homoclinics κh(x, u) yield pulse solutions

φh(x, u) :=
(
u,

∫ x

0
H2(u, vh(z, u))dz, vh(x, u), qh(x, u)

)
,

to (2.2), which are homoclinic toM. The limits limx→±∞ φh(x, u) give rise to the so-called take-off and touch-down curves
onM. For that reason, we define the mapping J : Uh → R by

J(u) =

∫ ∞

0
H2(u, vh(z, u))dz. (2.5)

The graphs T± := {(u,±J(u)) : u ∈ Uh} represent the take-off and touch-down curves. Indeed, it holds limx→±∞ φh(x, u) =

(u,±J(u), 0, 0). Having defined these curves, we are able to the state the existence result for periodic and homoclinic pulse
solutions to (2.1).

Theorem 2.1. [7, Theorem 2.11], [11, Theorem 2.1] Assume (S1)-(S2) and (E1) hold true. Suppose there exists a solution
ψ`(x̌) = (u`(x̌), p`(x̌)) to (2.3), that intersects the touch-down curve T+ transversally at x̌ = 0 and satisfies limx̌→` p`(x̌) = 0
for some 0 < ` ≤ ∞. Then, for any δ > 0 there exists εδ > 0 such that for each ε ∈ (0, εδ) there exists a solution φ`,ε(x) to
(2.1) satisfying the following assertions

1. Character of solution
If 0 < ` < ∞, then φ`,ε is 2L`,ε-periodic, where |εL`,ε − `| ≤ Cε for some ε-independent constant C > 0. If ` = ∞,
then φ`,ε is a homoclinic solution.

2. Singular limit
The Hausdorff distance between the orbit of φ`,ε in R4 and the singular orbit

{(u`(x̌),±p`(x̌), 0, 0) : x̌ ∈ [0, `]} ∪ {φh(x, u`(0)) : x ∈ R} ,

is smaller than δ.

3. Reversibility
The solution φ`,ε(x) is reversibly symmetric about the hyperplane {p = q = 0}: it holds φ`,ε(x) = Rφ`,ε(−x) for x ∈ R,
where R : R4 → R4 is the reflection in the hyperplane {p = q = 0}.

9



It should be remarked that the solutions established by Theorem 2.1 are the most simple stationary, reversible, solutions:
the associated homoclinic and periodic orbits in (2.1) only make one single ‘jump’ through the fast field. Following the
approach of [7, 11], orbits that combine various different kinds of jumps can be constructed. Based on the Evans function
approach of [7, 11], the spectral stability of the corresponding patterns can also be established – see also [9, 42].

2.1 Existence of pulse solutions in the model equation
We apply the analysis developed in the current paper – and the preceding papers [7, 11] – to the explicit, slowly nonlinear
system (1.4). Note that the nonlinearities (1.5) clearly satisfy assumptions (S1) (we choose U = (0, 2π)). Moreover, we
have ∂vG(u, 0, 0) = 1, thereby satisfying assumption (S2). A priori, system (1.4) could be singular in u, however, we will
only consider patterns with u-components such that µ2 + µ3 sin u remains bounded away from 0.

The slow reduced (existence) system is given by{
ux̌ = p
px̌ = µ1 sin u , u ∈ U, p ∈ R, (2.6)

widely known as the model for the mathematical (nonlinear) pendulum. The system (2.6) is Hamiltonian, and can be
integrated to obtain the relation

1
2µ1

u2
x̌ + cos u = 2κ2 − 1. (2.7)

The level sets of (2.7), parameterized by κ, characterize the solutions of (2.6). The level set κ = 0 is equal to the set of
equilibria of (2.6), while the level set κ = 1 contains the two heteroclinic orbits connecting the saddles at u = 0 and u = 2π.
All bounded (periodic) orbits, which lie within the bounded region ‘in between’ the two heteroclinics, are concentrically
parameterized by 0 < κ < 1, see also Figure 6. The ‘bottom’ heteroclinic orbit, which converges to u = 0 as x̌ → ∞, is
given by

u∞(x̌; x̌0) = 4 arctan e−
√
µ1(x̌+x̌0), (2.8)

while the periodic orbits, parameterized by 0 < κ < 1, can be expressed in terms of the Jacobi elliptic function cd(z, κ) [32,
§22.2], yielding

u`(x̌; κ,±) = π ± 2 arcsin
(
κ cd(

√
µ1(x̌ − `), κ)

)
, 0 < ` < 2K(κ), (2.9)

where K(κ) is the complete elliptic integral of the first kind [32, §19.1]. For u`(x̌; κ,±) as in (2.9), we have limx̌→` ∂x̌u`(x̌; κ,±) =

0. As u`(x̌; κ,±) is periodic in x̌ with period 4
√
µ1

K(κ), we have u`(x̌ + 2
√
µ1

K(κ); κ,+) = u`(x̌; κ,−). The reason for making

the distinction between u`(x̌; κ,+) and its 2
√
µ1

K(κ)-shifted counterpart u`(x̌; κ,−) is that, due to its periodicity, p` vanishes
twice during one period. The ± sign in u`(x̌; κ,±) indicates the sign of the initial value p`(0; κ,±); this implies that x̌ = ` is
always the first point where ∂x̌u`(x̌; κ,±) vanishes.

The fast reduced system is given by {
vx = q
qx = v − v2

µ2+µ3 sin u
, v ∈ V, q ∈ R. (2.10)

System (2.10) has a R f -reversible solution homoclinic to 0 for any u = u� ∈ U, its first component given by

vh(x, u�) =
3
2

(µ2 + µ3 sin u�) sech2 x
2
, (2.11)

with ∂xvh(0, u�) = 0, thereby satisfying assumption (E1). The function vh(x, u�) (2.11) can be used to obtain an explicit
expression for J(u) (2.5), yielding

J(u) = ν1

∫ ∞

0
vh(z, u)2 − ν2vh(z, u)3 dz = 3ν1(µ2 + µ3 sin u)2

(
1 −

6
5
ν2(µ2 + µ3 sin u)

)
. (2.12)

The phase plane of the slow reduced system (2.6), including the graphs of the take-off and touchdown curves T± =

{(u,±J(u))} are shown in Figure 6.
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Figure 6: The phase plane of (2.6) for 0 < u < 2π. The heteroclinic orbits, where κ = 1 (c.f. (2.7)), are drawn in black.
Several periodic orbits, parameterized by 0 < κ < 1, are drawn in blue. The take-off curve T− = {(u,−J(u))} (2.12)
is drawn in green, solid; the touchdown curve T+ = {(u,J(u))} is drawn in green, dashed. Here, ν1 = 2, µ2 = 1 and
ν2 = 3

5 = µ3.

The intersections of the touchdown curve T+ with the orbits of the slow system (2.6) can be calculated using the conserved
quantity (2.7), yielding,

1
2µ1
J(u)2 + cos u = 2κ2 − 1. (2.13)

Nondegenerate solutions of (2.13) correspond to transversal intersections of the touchdown curve T+ with the orbits of the
slow system (2.6). The assumptions of Theorem 2.1 are satisfied if u∞(0; x̌0) (2.8) solves (2.13) for κ = 1 (the case ` = ∞),
or if u`(0; κ,±) (2.9) solves (2.13) for 0 < κ < 1 (the case 0 < ` < ∞); see also Figure 7.

3 Overview of spectral analysis
In order to study the destabilization mechanisms of periodic pulse solutions to (1.2) as these approach a homoclinic limit,
we need detailed analytical properties of the spectra of the linearizations about these periodic pulse solutions. The (criti-
cal) spectra in both the homoclinic and periodic case are given by the zero sets of analytic functions, the so-called Evans
functions. Thus, the Evans function is a tool to locate the spectrum. The passage to the singular limit ε → 0 of the Evans
function Eε – associated to patterns in singularly perturbed reaction-diffusion systems – is well understood. In fact, there
exists an explicit reduced Evans function E0, whose zeros approximate those of Eε. This reduced Evans function admits a
factorization in a slow and a fast component that correspond to properly scaled, lower-dimensional, slow respectively fast
eigenvalue problems. In this section, we define these Evans functions and provide their explicit reductions in the singular
limit for both the homoclinic and periodic case as obtained in [7, 11].

Assume we satisfy the conditions for Theorem 2.1. Let φ`,ε(x), for ε > 0 sufficiently small, be the pulse solution to (2.1) as
described in Theorem 2.1. Denote by φ̌`,ε(x̌) the corresponding solution to the PDE (1.1). We linearize system (1.1) about
φ̌`,ε and obtain a differential operator L`,ε on the space Cub(R,R2) of bounded and uniformly continuous functions. We are
interested in the spectrum of L`,ε and consider the eigenvalue problem L`,εϕ = λϕ for λ ∈ C. This eigenvalue problem can
be written as a first order system,

ϕx = A`,ε(x, λ)ϕ, ϕ ∈ R4. (3.1)

In the next two subsections, we analyze the cases ` = ∞ and 0 < ` < ∞ separately.
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Figure 7: Two possible singular orbits in the phase plane of (2.6) for 0 < u < 2π. The parameter values are as
in Figure 6. As in Figure 6, the take-off curve T− is drawn in green, solid, and the touchdown curve T+ in green,
dashed. Left, the initial point of the slow orbit, indicated by a red dot, is in the lower half plane; its coordinates are
(u`(0; 4

5 ,−), p`(0; 4
5 ,−)). Right, the initial point of the slow orbit, indicated by a red square, is in the upper half plane; its

coordinates are (u`(0; 3
5 ,+), p`(0; 3

5 ,+)).

3.1 Evans function for homoclinic pulse solutions
First we consider the case ` = ∞ in Theorem 2.1. Since the solution φ∞,ε(x) is homoclinic, the limits limx→±∞A∞,ε(x, λ) =

A∗,ε(λ) exist [11]. Write u∗ = limx̌→∞ u∞(x̌). Because (u∗, 0) must be a hyperbolic saddle in system (2.3), we have
min{G0, ∂uH1(u∗, 0, 0)} > 0, where G0 is as in (S2). In the following we choose any Λ ∈ (−min{G0, ∂uH1(u∗, 0, 0)}, 0).
Then the matrixA∗,ε(λ) is hyperbolic on the half plane

CΛ := {λ ∈ C : Re(λ) > Λ}. (3.2)

Hence, by Lemma A.3, system (3.1) admits for λ ∈ CΛ exponential dichotomies on both half lines [0,∞) and (−∞, 0] such
that the associated projections are analytic in λ. Denote by ϕs

1,ε(x, λ) and ϕs
2,ε(x, λ) two solutions to (3.1) that span the stable

subspaces of the dichotomy on [0,∞) and are analytic in λ ∈ CΛ. Similarly, let ϕu
1,ε(x, λ) and ϕu

2,ε(x, λ) span the unstable
subspaces on (−∞, 0]. The critical spectrum in CΛ is located by the analytic Evans function E∞,ε : CΛ → C, given by

E∞,ε(λ) = det
(
ϕs

1,ε(0, λ) | ϕs
2,ε(0, λ) | ϕu

1,ε(0, λ) | ϕu
2,ε(0, λ)

)
. (3.3)

More precisely, a point λ ∈ CΛ is in the spectrum σ(L∞,ε) if and only if we have E∞,ε(λ) = 0. We emphasize that the
spectrum of L∞,ε in CΛ consists of point spectrum only.

3.2 Evans function for periodic pulse solutions
We shift our attention to the case 0 < ` < ∞. Since A`,ε(·, λ) is 2L`,ε-periodic, bounded solutions to (3.1) must satisfy
ϕ(−L`,ε) = γϕ(L`,ε) for some γ in the unit circle S 1 by Floquet theory. This gives rise to the analytic Evans function
E`,ε : C2 → C, given by

E`,ε(λ, γ) := det(T`,ε(0,−L`,ε, λ) − γT`,ε(0, L`,ε, λ)), (3.4)

where T`,ε(x, y, λ) denotes the evolution operator of (3.1). The spectrum of L`,ε is parameterized by γ ∈ S 1 via the discrete
zero sets {λ ∈ C : Eε(λ, γ) = 0}. Note that the spectrum of L`,ε consists of essential spectrum only. We refer to the isolated
roots of Eε(·, γ) as γ-eigenvalues.
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3.3 The Evans function in the singular limit
We construct the reduced Evans functions E∞,0 : CΛ → C and E`,0 : CΛ × C → C (0 < ` < ∞), whose zeros approximate
the zeros of the Evans functions E∞,ε (3.3) and E`,ε(3.4), provided that ε > 0 is sufficiently small. The slow-fast structure
of the eigenvalue problem (3.1) is reflected by the fact that the analytic maps E∞,0 and E`,0 can be factorized as

E∞,0(λ) = E∞, f (λ)E∞,s(λ),
E`,0(λ, γ) = −γE`, f (λ)E`,s(λ, γ), 0 < ` < ∞.

(3.5)

Here, the analytic map E`, f : CΛ → C for 0 < ` ≤ ∞ is called the fast Evans function. It locates the eigenvalues λ ∈ CΛ of
the homogeneous fast eigenvalue problem,

ϕx = B(x, u, λ)ϕ, ϕ ∈ C2, B(x, u, λ) :=
(

0 1
∂vG(u, vh(x, u), 0) + λ 0

)
, (3.6)

where u ∈ Uh functions as a parameter. More precisely, the zeros of E`, f are the eigenvalues in CΛ of (3.6) for u = u`(0).
Since κh(·, u) is a homoclinic orbit in system (2.4), one deduces with Lemma A.3 and (S2) that (3.6) admits, for each
λ ∈ CΛ, solutions that decay as x → ∞ and ones that decay as x → −∞. Moreover, these solutions can be chosen to
be analytic in λ. Now, the fast Evans function is given by the λ-dependent Wronskian of two such non-trivial analytic
solutions: one that decays in forward time and one in backward time.

The meromorphic slow Evans functions E∞,s : CΛ \ E
−1
∞, f (0) → C and E`,s : [CΛ \ E

−1
`, f (0)] × C → C (0 < ` < ∞) are

determined by two eigenvalue problems. The first is the inhomogeneous fast eigenvalue problem,

ϕx = B(x, u, λ)ϕ + F (x, u), ϕ ∈ C2, F (x, u) :=
(

0
∂uG(u, vh(x, u), 0)

)
, (3.7)

for u ∈ Uh. The second is the slow eigenvalue problem,

ϕx̌ = A`(x̌, λ)ϕ, ϕ ∈ C2, A`(x̌, λ) :=
(

0 1
∂uH1(u`(x̌), 0, 0) + λ 0

)
. (3.8)

Note that the coefficient matrixA` in (3.8) for ` = ∞ converges, as x̌→ ∞, to the asymptotic matrix

A∗(λ) :=
(

0 1
∂uH1(u∗, 0, 0) + λ 0

)
, (3.9)

which is hyperbolic on CΛ with eigenvalues ±
√
∂uH1(u∗, 0, 0) + λ. An application of Proposition A.1 yields a unique

analytic solution ϕ∞(x̌, λ) = (û∞(x̌, λ), p̂∞(x̌, λ)) to (3.8) for ` = ∞ that satisfies

lim
x̌→∞

û∞(x̌, λ)ex̌
√
∂uH1(u∗,0,0)+λ = 1, λ ∈ CΛ. (3.10)

The slow Evans functions are now explicitly given by

E∞,s(λ) = det (ϕ∞(0, λ) | Υ(u∞(0), λ)Rsϕ∞(0, λ)) , (3.11)
E`,s(λ, γ) = det (Υ(u`(0), λ)T`(2`, 0, λ) − γI) , 0 < ` < ∞, (3.12)

where T`(x̌, y̌, λ) is the evolution of (3.8) for 0 < ` < ∞ and the term Υ(u, λ) is given by

Υ(u, λ) :=
(

1 0
G(u, λ) 1

)
,

G(u, λ) :=
∫ ∞

−∞

[∂uH2(u, vh(x, u)) + ∂vH2(u, vh(x, u))Vin(x, u, λ)]dx,
u ∈ Uh. (3.13)

Here Vin(x, u, λ) denotes the v-component of the unique bounded solution to the inhomogeneous fast eigenvalue problem
(3.7). We emphasize that the slow Evans functions E∞,s and E`,s(·, γ) are meromorphic on CΛ such that the products E∞,0
and E`,0(·, γ) given in (3.5) are analytic on CΛ for each γ ∈ S 1.

Having defined the reduced Evans functions E∞,0 and E`,0, we are able to state the precise approximation result.
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Theorem 3.1. [11, Section 4] Let Γ be a simple closed curve, contained in CΛ \ E
−1
∞,0(0). For ε > 0 sufficiently small, the

number of zeros of E∞,ε interior to Γ equals the number (including multiplicity) of zeros of E∞,0 interior to Γ.

Theorem 3.2. [7, Theorem 3.8] Let γ ∈ S 1. Define E`;γ := E`,0(·, γ). Take a simple closed curve Γ in CΛ \ E
−1
`;γ(0). For

ε > 0 sufficiently small, the number (including multiplicity) of zeros of E`,ε(·, γ) interior to Γ equals the number of zeros of
E`;γ interior to Γ.

Due to the translational invariance of system (1.1)/(1.2), we must take special care of the case λ = 0. On the one hand, the
fast eigenvalue problem (3.6) admits at λ = 0 a one-dimensional space of exponentially localized solutions spanned by the
derivative ∂xκh(x, u`(0)), which implies that λ = 0 is a simple root of the fast Evans function E`, f for 0 < ` ≤ ∞. On the
other hand, the derivative ψ′`(x̌) = (u′`(x̌), p′`(x̌)) of the solution ψ`(x̌) to the slow reduced system (2.3) is a solution to the
slow eigenvalue problem (3.8) for λ = 0. This leads to the following expansion of E`,s(λ, γ) at λ = 0.

Proposition 3.3. [11, Lemma 5.9], [7, Proposition 4.4] For any γ ∈ S 1 and 0 < ` < ∞ it holds

E`,s(0, γ) = γ2 + 2 (1 + 2a`b`) γ + 1,

with

a` := J ′(u`(0))J(u`(0)) − H1(u`(0), 0, 0),

b` := J(u`(0))
∫ `

0

(∂uH1(u`(x̌), 0, 0) + 1)[(p`(x̌))2 − (H1(u`(x̌), 0, 0))2]
[(p`(x̌))2 + (H1(u`(x̌), 0, 0))2]2 dx̌ +

H1(u`(0), 0, 0)
(J(u`(0)))2 + (H1(u`(0), 0, 0))2 .

(3.14)

Moreover, we have

E∞,s(0) = −2j∞a∞,

with

j∞ := −J(u∞(0)), a∞ := J ′(u∞(0))J(u∞(0)) − H1(u∞(0), 0, 0). (3.15)

Since 0 is a simple zero of the fast Evans function E`, f , Proposition 3.3 yields that the root 0 of the reduced Evans function
E`,0 is simple unless a`b` ∈ [−1, 0] for 0 < ` < ∞ or a∞j∞ = 0 for ` = ∞. For 0 < ` ≤ ∞, the quantity a` measures the
transversality of the intersection between ψ`(x̌) = (u`(x̌), p`(x̌)) and the touch-down curve T+ = {(u,J(u)) : u ∈ Uh} at
x̌ = 0. So, a` is non-zero by assumption – see Theorem 2.1. Moreover, j∞ = −J(u∞(0)) is the jump between the take-off

and touch-down curves T±. If j∞ equals zero, then there is no leading-order coupling between the u- and v-component of
the periodic pulse solution. This leads to an extra degree of freedom and produces a double eigenvalue λ = 0 – see [11,
Corollary 5.8]. The quantity b` equals the value at x̌ = 0 of the solution to the slow eigenvalue problem (3.8) for λ = 0 and
0 < ` < ∞ that is perpendicular to the solution ψ′`(x̌) at x̌ = ` – we refer to [6, Remark 3.30] for further interpretation of
the quantity b`.

3.3.1 Spectrum induced by the fast Evans function

Let 0 < ` ≤ ∞. The zeros of the fast Evans function E`, f correspond to the eigenvalues λ ∈ CΛ for which (3.6) admits
an exponentially localized solution. By Sturm-Liouville theory [20, Theorem 2.3.3], all eigenvalues of (3.6) are simple
and real. In particular, λ = 0 is an eigenvalue of (3.6) with corresponding eigenfunction ∂xκh(x, u`(0)). Moreover, there is
precisely one positive eigenvalue λ1,` > 0. Let (v1,`(x), q1,`(x)) be the eigenfunction of (3.6) for λ1,`. By [7, Proposition
6.10], the slow Evans function E`,s has a pole at λ1,` if and only if the generic condition i` , 0 is satisfied, where

i` := lim
x̌→2`

u1,`(x̌)
∫ ∞

−∞

v1,`(x)∂vH2(u`(0), vh(x, u`(0)))dx
∫ ∞

−∞

v1,`(x)∂uG(u`(0), vh(x, u`(0)), 0)dx, (3.16)

with ϕ1,`(x̌) = (u1(x̌), p1(x̌)) the solution to (3.8) for λ = λ1 with initial condition ϕ1,`(0) = (0, 1). Thus, due to zero-pole
cancelation, the reduced Evans function E`,0 has a zero at λ1 if and only if i` = 0.

Using Theorem 3.1 and 3.2, we conclude that the fast Evans function E`, f can only produce unstable spectrum close
to its roots 0 and λ1 > 0. If i` , 0, there is no unstable spectrum close to λ1. In addition, due to translational invariance, we
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know that 0 is in the spectrum [45]. Therefore, in the case ` = ∞, we know that all spectrum in {λ ∈ C : Re(λ) ≥ 0} \ {0}
must be produced by the slow Evans function E∞,s, provided i∞ , 0.

In the case 0 < ` < ∞, we have to be more careful: by Theorem 3.2, there is a curve of spectrum attached to 0 that
shrinks to 0 as ε→ 0. Therefore, knowledge of the spectrum in the case ` → ∞ is insufficient to determine the position of
this critical spectral curve with respect to the imaginary axis. Therefore, a separate leading-order analysis of this curve is
necessary to control the spectrum induced by the fast Evans function E`, f . In [5, 6], the following result is proven.

Theorem 3.4. [5], [6, Proposition 3.29] Let 0 < ` < ∞ and suppose E`,s(0, γ) , 0 for each γ ∈ S 1. Then, provided ε > 0
is sufficiently small, the there exists a 2π-periodic, even, analytic map λs

`,ε
: R→ R such that for any ν ∈ R there is a unique

(simple) root λs
`,ε

(ν) of E`,ε(·, eiν) converging to 0 as ε→ 0. The critical spectral curve {λs
`,ε

(ν)} is approximated as∣∣∣λs
`,ε(ν) − ε

2λs
`,0(ν)

∣∣∣ ≤ Cε3| log(ε)|5, (3.17)

where C > 0 is a constant independent of ε, ` and ν, and λs
`,0 : R→ R is given by

λs
`,0(ν) = a`w`

cos(ν) − 1
1 + cos(ν) + 2a`b`

, (3.18)

where a`, b` are defined in (3.14) and w` is given by

w` = −

∫ ∞
−∞

∂G
∂u (u`(0), vh(x, u`(0)), 0)∂xvh(x, u`(0))xdx∫ ∞

−∞
(∂xvh(x, u`(0)))2 dx

. (3.19)

3.4 Stability of pulse solutions in the model equation
In order to construct the reduced Evans function for the periodic (0 < ` < ∞) and homoclinic (` = ∞) solutions to the
model system (1.4), we first study the homogeneous fast limit problem (3.6), where the matrix B(x, u, λ) for vh(u, x) as
in (2.11) takes the form

B(x, u, λ) =

(
0 1

1 + λ − 3 sech2 x
2 0

)
, (3.20)

and is in particular independent of u. The homogeneous fast limit problem of the form (3.6) with B(x, u, λ) as specified
in (3.20) was studied in [46]. There, it was found that the eigenvalues of this problem are 5

4 , 0 and − 3
4 . The solution space

is spanned by w(±x, λ), which are given in terms of associated Legendre functions [32, §14.3] as

w(x, λ) = P−2
√

1+λ
3

(
tanh

x
2

)
. (3.21)

The fast Evans function, which is equal to the Wronskian of w(±x, λ), is therefore given by [32, §14.2(iv)]

E`, f (λ) =
1

Γ(−3 + 2
√

1 + λ)Γ(4 + 2
√

1 + λ)
. (3.22)

The zeroes of the fast Evans function (3.22) are given by the eigenvalues of the homogeneous fast limit problem (3.6),
which means that E−1

`, f (0) =
{
− 3

4 , 0,
5
4

}
for 0 < ` ≤ ∞.

The inhomogeneous term F (x, u) in the inhomogeneous fast limit problem (3.7) takes the form

F (x, u) =

(
0

9
4 µ3 cos u sech4 x

2

)
. (3.23)

We can again use the results in [46] to express the v-component of the solution to the inhomogeneous fast limit prob-
lem (3.6), with matrix B and inhomogeneous term F given by (3.20) respectively (3.23), as

Vin(x, u, λ) = −

9
4 µ3 cos u
E`, f (λ)

[
w(x, λ)

∫ x

−∞

w(−y, λ) sech4 y
2

dy + w(−x, λ)
∫ ∞

x
w(y, λ) sech4 y

2
dy

]
. (3.24)
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This is used as input for the function G(u, λ) (3.13), which in the case of the model system (1.4) takes the form

G(u, λ) = ν1

∫ ∞

−∞

(2 − 3ν2vh(x, u)) vh(x, u)Vin(x, u, λ) dx

= 3ν1(µ2 + µ3 sin u)
∫ ∞

−∞

(
1 −

9
4
ν2(µ2 + µ3 sin u) sech2 x

2

)
sech2 x

2
Vin(x, u, λ) dx

= −

27
2 ν1 µ3 cos u
E`, f (λ)

(µ2 + µ3 sin u)
∫ ∞

−∞

(
1 −

9
4
ν2(µ2 + µ3 sin u) sech2 x

2

)
sech2 x

2
w(x, λ)

∫ x

−∞

w(−y, λ) sech4 y
2

dy dx.

(3.25)

For the slow limit problem (3.8), we treat the homoclinic and periodic cases separately. For clarity of exposition, we focus
our attention on the saddle point at the origin of the slow phase plane, see Figure 6. Therefore, we restrict the analysis of
the periodic orbits to those whose slow segment has a ‘c’-shape, i.e. whose intersection with the u-axis tends to the origin
as ` → ∞; for an example of such an orbit, see Figure 7, left. The analysis of the complementary type of periodic orbits,
as shown in Figure 7, right, is analogous.

In the homoclinic case (` = ∞), with the homoclinic orbit u∞ as given in (2.8) (for which limx̌→∞ u∞(x̌) = u∗ = 0),
the matrixA in (3.8) takes the form

A∞(x̌, λ) =

(
0 1

λ + µ1 cos u∞(x̌; x̌0) 0

)
=

(
0 1

λ + µ1 − 2µ1 sech2 √µ1(x̌ + x̌0) 0

)
. (3.26)

The unique analytic solution to the homoclinic slow limit problem that satisfies (3.10) is found to be

ϕ∞(x̌, λ) =

(
û∞(x̌, λ)
p̂∞(x̌, λ)

)
=

e−
√
λ+µ1 x̌

√
µ1 +

√
λ + µ1

( √
λ + µ1 +

√
µ1 tanh

√
µ1(x̌ + x̌0)

−λ − µ1 + µ1 sech2 √µ1(x̌ + x̌0) −
√
µ1
√
λ + µ1 tanh

√
µ1(x̌ + x̌0)

)
. (3.27)

The slow Evans function for the homoclinic case (3.3) can then be calculated as

E∞,s(λ) = û∞(0, λ)2
[
G(u∞(0; x̌0), λ) − 2

p̂∞(0, λ)
û∞(0, λ)

]
. (3.28)

Moreover, from the fact that we consider the saddle point at the origin of the slow system (2.6), we infer that

CΛ ⊂ {λ ∈ C : Re(λ) > min(−1,−µ1)} , (3.29)

see (3.2).

In the periodic case (0 < ` < ∞), with the bounded slow part of the orbit u` as given in (2.9), the matrix A in (3.8)
takes the form

A`(x̌, λ) =

(
0 1

λ + µ1 cos u`(x̌; κ,±) 0

)
=

(
0 1

λ − µ1 + 2κ2µ1 cd2
(√
µ1(x̌ − `), κ

)
0

)
. (3.30)

Using the coordinate z = cd
(√
µ1(x̌ − `), κ

)
, the periodic slow limit problem (3.8) can be written as a second order ODE in

z of the form yzz + a yz + b y = 0, where a and b are rational functions of z, yielding

yzz +

(
−

z
1 − z2 −

κ2z
1 − κ2z2

)
yz +

1 − λ
µ1
− 2κ2z2

(1 − z2)(1 − κ2z2)
y = 0. (3.31)

The coefficient of yz can be eliminated by introducing η(z) = (1 − z2)
1
4 (1 − κ2z2)

1
4 y(z), yielding

ηzz − r η = 0, (3.32)

with

r(z) = −
3
16

(
1

(1 − z)2 +
1

(1 + z)2 +
κ2

(1 − κz)2 +
κ2

(1 + κz)2

)
−

9 − 21κ2 − 8 λ
µ1

16(1 − κ2)

(
1

1 − z
+

1
1 + z

)
−

13 − κ2 + 8 λ
µ1

16(1 − κ2)

(
κ2

1 + κz
+

κ2

1 − κz

)
. (3.33)
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To find a closed form solution to (3.32), we use the algorithm presented in [22], which is based on differential Galois
theory. The algorithm distinguishes four mutually exclusive cases [22, Section 1.2], and equation (3.32) obeys all necessary
conditions for Cases 1, 2 and 3 to hold [22, Section 2.1]. Execution of the algorithm for Case 1 [22, Section 3] yields no
nontrivial solutions to (3.32). Subsequent application of the algorithm for Case 2 [22, Section 4] reveals that (3.32) admits
a closed form solution of the form η(z) = e

∫ z
ω(ζ) dζ , where ω can be found by solving the equation 1

ω2 − ϕω +
1
2
ϕz +

1
2
ϕ2 − r = 0, (3.34)

where

ϕ(z) = −
z

1 − z2 −
κ2z

1 − κ2z2 −
2κ2z

κ2(1 − z2) + λ
µ1

. (3.35)

This yields for ω

ω(z) =
1
2

z
1 − z2 +

1
2

κ2z
1 − κ2z2 +

κ2z
κ2(1 − z2) + λ

µ1

±

√√√√√ λ
µ1

(
λ
µ1

+ κ2
) (

λ
µ1

+ κ2 − 1
)

(1 − z2)(1 − κ2z2)
(
κ2(1 − z2) + λ

µ1

)2 , (3.36)

and hence

y(z) = (1 − z2)−
1
4 (1 − κ2z2)−

1
4 η(z) =

√
κ2(1 − z2) +

λ

µ1
exp

±
∫ z

√√√√√ λ
µ1

(
λ
µ1

+ κ2
) (

λ
µ1

+ κ2 − 1
)

(1 − ζ2)(1 − κ2ζ2)
(
κ2(1 − ζ2) + λ

µ1

)2 dζ

 . (3.37)

The integral in (3.37) can be expressed in terms of the incomplete (Legendre) elliptic integral of the third kind Π(ϕ, α2, κ) [32,
§19.2], as ∫ z

√√√√√ λ
µ1

(
λ
µ1

+ κ2
) (

λ
µ1

+ κ2 − 1
)

(1 − ζ2)(1 − κ2ζ2)
(
κ2(1 − ζ2) + λ

µ1

)2 dζ =

√√√ λ
µ1

(
λ
µ1

+ κ2 − 1
)

λ
µ1

+ κ2
Π

−arcsin z,
κ2

λ
µ1

+ κ2
, κ

 (3.38)

=

√√√√ λ
µ1

(
λ
µ1

+ κ2 − 1
)

κ2
(
λ
µ1

+ κ2
) Π

−arcsin(κz),
1

λ
µ1

+ κ2
,

1
κ

 . (3.39)

We now can express the evolution of (3.8), T`(x̌, y̌, λ), for A` as in (3.30), in terms of the fundamental matrix solution
Φ(x̌, λ) of (3.8) as T`(x̌, y̌, λ) = Φ(x̌, λ)Φ−1(y̌, λ). We write this fundamental matrix as Φ(x̌, λ) = (ϕ̃1(x̌, λ) | ϕ̃2(x̌.λ)), where
ϕ̃1,2(x̌, λ) are two linearly independent solutions to (3.8), which are gauged such that Φ(0, λ) = I. In order to express these
ϕ̃1,2(x̌, λ) in terms of the functions y(z) (3.37), we have to realize that the coordinate change x̌ → z = cd

(√
µ1(x̌ − `), κ

)
is

one-to-one only for x̌ ∈ (0, `) or x̌ ∈ (`, 2`), as cd is an even function. Therefore, we split

T`(2`, 0, λ) = T`(2`, `, λ) ◦ T`(`, 0, λ). (3.40)

We invoke the above results to express the first coordinates of ϕ̃1,2 = (ũ1,2, p̃1,2)T as

ũ1(x̌, λ) =ρ(x̌, λ)
(
cosh σ(x̌, λ) −

∂x̌ρ(0, λ)
∂x̌σ(0, λ)

sinh σ(x̌, λ)
)
, (3.41)

ũ2(x̌, λ) =
ρ(x̌, λ)
∂x̌σ(0, λ)

sinh σ(x̌, λ), (3.42)

where

ρ(x̌, λ) =

√√√√ λ
µ1

+ κ2 − κ2cd
(√
µ1(x̌ − `), κ

)
λ
µ1

+ κ2 − κ2cd
(√
µ1(−`), κ

) (3.43)

=

√√√ λ
µ1

+ κ2 − cos2 u`(x̌)
2

λ
µ1

+ κ2 − cos2 u`(0)
2

(3.44)

=

√
4λ + ∂x̌u`(x̌)2

4λ + ∂x̌u`(0)2 (3.45)

1Note that [22] contains a typographical error on p. 18, last equation, where “+ϕω” is written. From the proof on p. 19-22 therein, it is clear that this
should be replaced by “−ϕω”.
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and

σ(x̌, λ) =

√√√ λ
µ1

(
λ
µ1

+ κ2 − 1
)

λ
µ1

+ κ2
Π

−arcsin cd
(√
µ1(x̌ − `), κ

)
,

κ2

λ
µ1

+ κ2
, κ

 (3.46)

=

√√√√ λ
µ1

(
λ
µ1

+ κ2 − 1
)

κ2
(
λ
µ1

+ κ2
) Π

u`(x̌) − π
2

,
1

λ
µ1

+ κ2
,

1
κ

 , (3.47)

using (2.9) and (2.7). Now, the slow Evans function E`,s(λ, γ) (3.4) can be written as

E`,s(λ, γ) = det Φ(2`, λ) − γ [ũ1(2`, λ) + ∂x̌ũ2(2`, λ) + ũ2(2`, λ)G(u`(0), λ)] + γ2. (3.48)

Since u`(2`) = u`(0) and ∂x̌u`(2`) = −∂x̌u`(2`) (which follows from the Rs-reversibility of (2.3), combined with the fact
that limx̌→` ∂x̌u`(x̌) = 0), we see that

det Φ(2`, λ) = ũ1(2`, λ) ∂x̌ũ2(2`, λ) − ũ2(2`, λ) ∂x̌ũ1(2`, λ) = ρ(2`, λ)2 ∂x̌σ(2`, λ)
∂x̌σ(0, λ)

= −1, (3.49)

using (3.41) and (3.42). Moreover, from (3.47) we infer that σ(2`, λ) = σ(0, λ), and from (3.45) follows that ρ(2`, λ) = 1.
Therefore, the slow Evans function (3.48) simplifies to

E`,s(λ, γ) = γ2 − γ
sinh σ(0, λ)
∂x̌σ(0, λ)

[
G(u`(0), λ) − 2∂x̌ρ(0, λ)

]
− 1, (3.50)

with

∂x̌ρ(0, λ) =
µ1 u′`(0) sin u`(0)

4λ + u′
`
(0)2 , (3.51)

∂x̌σ(0, λ) =sgn u′`(0)
4
√
λ(λ + κ2µ1)(λ + (κ2 − 1)µ1)

4λ + u′
`
(0)2 , (3.52)

and G(u`(0), λ) as in (3.25).

4 Main results
Suppose system (1.2) depends on a parameter µ ∈ R. In this paper we are interested in destabilization mechanisms of long-
wavelength periodic pulse solutions to (1.1)/(1.2), when the limiting homoclinic pulse undergoes a Hopf destabilization at
µ = µ∗. As outlined in §1, this requires information on the structure of three critical spectral curves associated with the
periodic pulse. First, we are interested in the (real) spectral curve attached to the origin – see §3.3.1. We will show that,
generically, the relative location of this curve with respect to the imaginary axis does not change as the pattern wavelength
tends to infinity. Second, there are two complex conjugate spectral curves that shrink to the critical eigenvalues associated
with the limiting homoclinic as the wavelength tends to infinity – see [15, 35]. Assuming that the spectrum that is attached
to the origin is not unstable, we derive the result that long-wavelength periodic pulse solutions also destabilize at some
µ-value close to µ∗, by the transition of these two conjugate curves through the imaginary axis. The relative positions of
these curves with respect to the critical eigenvalues of the homoclinic pulse determine whether the homoclinic is the last
(or first) ‘periodic’ pattern to destabilize as we vary µ. Moreover, the orientation of the conjugate spectral curves as they
pass through the imaginary axis, characterizes the type of instability that occurs as we vary µ.

This section is structured as follows. First, we extend the existence results by constructing a family of periodic pulse
solutions to (2.1), parametrized by wavelength, that approach a homoclinic pulse as the pattern wavelength approaches
infinity. Second, we study the geometry of the three critical spectral curves associated to the periodic pulse patterns in
the long-wavelength limit. Third, we derive a sign criterion that determines whether the long-wavelength periodic pulse
solutions also destabilize at some µ-value close to µ∗. Fourth, under the assumption that long-wavelength periodic pulses
destabilize in this manner, we prove the occurrence of the Hopf and belly dance destabilization mechanisms, and we estab-
lish an explicit sign criterion to determine whether the homoclinic pulse solution is the last (or the first) ‘periodic’ pattern
to destabilize. Finally, we draw the connection to the boundary of the Busse balloon – see §1.

18



4.1 Existence of a family of periodic pulse solutions approaching a homoclinic limit
With the aid of Theorem 2.1 we construct a family of periodic pulse solutions to (2.1) that approach a homoclinic pulse
solution in the long-wavelength limit. Key to the construction of such a family is the existence of a saddle in the slow
reduced system (2.3).

(E2) Existence of saddle in the slow reduced system
There exists u∗ ∈ U such that ψ∗ := (u∗, 0) is a hyperbolic saddle in (2.3). In addition, the touch-down curve
T+ = {(u,J(u)) : u ∈ Uh} intersects the stable manifold W s(ψ∗) transversally in some point ψ0.

Theorem 4.1. Assume (S1), (S2), (E1) and (E2) hold true. Let ψ∞(x̌) be the solution to (2.3) in W s(ψ∗) with initial
condition ψ∞(0) = ψ0. Then, there exist `0, ε0 > 0 such that the following assertions hold true:

1. Saddle dynamics in slow reduced system
For ` ∈ (`0,∞), there exists a solution ψ`(x̌) = (u`(x̌), p`(x̌)) to (2.3) that intersects T+ transversally at x̌ = 0 and
crosses the line p = 0 at x̌ = `. In addition, ψ`(x̌) converges, as ` → ∞, to ψ∞(x̌) for each x̌ ∈ [0, `].

2. Existence of family of periodic pulse solutions
For (`, ε) ∈ (`0,∞) × (0, ε0) there exists a reversibly symmetric, 2L`,ε-periodic pulse solution φ`,ε to (2.1), whose
orbit converges in the Hausdorff distance to the singular orbit

{(u`(x̌), p`(x̌), 0, 0) : x̌ ∈ (0, 2`)} ∪ {φh(x, u`(0)) : x ∈ R} (4.1)

as ε→ 0, and whose period satisfies εL`,ε → ` as ε→ 0.

3. Long-wavelength limit
For every ε ∈ (0, ε0) the family of solutions φ`,ε converges pointwise on [0, L`,ε] to a reversibly symmetric, homoclinic
pulse solution φ∞,ε to (2.1) as ` → ∞. Moreover, φ∞,ε converges in Hausdorff distance to the singular concatenation

{(u∞(x̌),±p∞(x̌), 0, 0) : x̌ ∈ (0,∞)} ∪ {φh(x, u∞(0)) : x ∈ R} (4.2)

as ε→ 0.

Figure 8: Depicted are the orthogonal projections of the singular periodic orbit (4.1) and the singular homoclinic orbit (4.2)
onto the slow manifoldM and the take-off and touch-down curves T±.

Proof. The first assertion is immediate by Hamiltonian nature of the planar system (2.3). For any fixed ` > `0 the existence
of a periodic pulse solution φ`,ε(x) for 0 < ε � 1 follows from Theorem 2.1. Following the proof of Theorem 2.1, one
observes that the ε-bound is in fact `-uniform. This establishes the second assertion. The existence of the homoclinic pulse
solution φ∞,ε(x) for 0 < ε � 1 follows from Theorem 2.1. Now fix ε ∈ (0, ε0). From the proof of Theorem 2.1 we deduce
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that the pointwise limits lim`→∞ φ`,ε(x) exist for each x ∈ R and must lie on the stable manifold W s(φ∗,ε) in (2.1), where
φ∗,ε ∈ M is a saddle converging to (ψ∗, 0) as ε → 0. Moreover, the limiting orbit {lim`→∞ φ`,ε(x) : x ∈ R} is reversibly
symmetric. On the other hand, the proof of Theorem 2.1 – see [11, Theorem 2.1] – shows that the 2-dimensional manifold
W s(φ∗,ε) intersects the reversibility symmetry plane p = q = 0 transversally in φ∞,ε(0). This intersection point is locally
unique in a small ε- and `-independent neighborhood of φ∞,ε(0). Thus, we conclude that for x ∈ [0, L`,ε], the pointwise
limits lim`→∞ φ`,ε(x) are given by the homoclinic φ∞,ε(x). �

Remark 4.2. Theorem 4.1 states that for fixed ε ∈ (0, ε0), the orbit of the periodic pulse φ`,ε converges to the orbit of
the homoclinic φ∞,ε as ` → ∞. If we subsequently take the limit ε → 0, we obtain the singular concatenation (4.2). On
the other hand, the orbit of φ`,ε converges to (4.1) in the limit ε → 0. Taking subsequently the long-wavelength limit
` → ∞ again yields (4.2). Thus, we may conclude that the limits limε→0 lim`→∞ φ`,ε and lim`→∞ limε→0 φ`,ε with respect
to Hausdorff metric on R4 are equal.

4.2 Spectral geometry of long-wavelength periodic pulse solutions
Assume (S1), (S2), (E1) and (E2) hold true. For fixed ε ∈ (0, ε0), Theorem 4.1 provides a family of periodic pulse solutions
φ`,ε(x) to (1.2) converging pointwise to a homoclinic pulse solution φ∞,ε(x) as ` → ∞.

We are interested in Hopf destabilization of long-wavelength periodic pulses φ`,ε, for ` � 1. Such a destabilization is
caused by two complex conjugate curves of spectrum moving through the imaginary axis, away from the origin. Since
these spectral curves converge to the eigenvalues associated with the homoclinic limit as ` → ∞ [15, 35], Hopf destabi-
lizations of φ`,ε occur in the vicinity of a Hopf instability of φ∞,ε as long as the critical spectral curve is confined to the left
half-plane – see §1. Recall that Hopf instabilities of the homoclinic pulse occur when a conjugate pair of roots λ∞,± of E∞,s
moves through the imaginary axis.

Thus, to understand the character of the Hopf destabilization of long-wavelength periodic pulses, we need to have in-
formation about three spectral curves. First, we are interested in the position of the critical spectral curve attached to the
origin, for ` � 1. Second, we need to understand the geometry of the spectral curves that shrink to the eigenvalues λ∞,±
of the limiting homoclinic as ` → ∞. The first curve is by Theorem 3.4 to leading order approximated by the quantity
λs
`,0(ν), defined in (3.18). The other two curves will be embedded in the set {λ ∈ C : E`,s(λ, γ) = 0, γ ∈ S 1} as ε → 0 by

Theorem 3.2; see also the discussion in Section 3.3.1.

For the following we define and choose

ω∗ :=
√
∂uH1(u∗, 0, 0), (4.3)

ω∞ :=
√
∂uH1(u∗, 0, 0) + λ∞, (4.4)

ς∗ ∈ (0, ω∗). (4.5)

Regarding the spectral curve that is attached to the origin, we have the following results.

Theorem 4.3. Suppose that the quantities a∞ and j∞, defined in (3.15), are non-zero. Then, for 1 � ` < ∞, the analytic
curve λs

`,0(ν), given by (3.18), can be expanded in terms of e−2ω∗` as∣∣∣∣∣∣λs
`,0(ν) −

2w∞ω∗e−2ω∗` (cos(ν) − 1)
j∞

∣∣∣∣∣∣ ≤ Ce−(2ω∗+ς∗)`, (4.6)

where C > 0 is independent of ` and ν and

w∞ := −

∫ ∞
−∞

∂G
∂u (u∞(0), vh(x, u∞(0)), 0)∂xvh(x, u∞(0))xdx∫ ∞

−∞
(∂xvh(x, u∞(0)))2 dx

. (4.7)

Remark 4.4. In [36], one studies the critical spectral curve associated with long-wavelength periodic solutions to reaction-
diffusion systems without assuming the presence of a small parameter ε. Thus, the above result could also have been
obtained by taking the singular limit ε → 0 of the expansion in [36, Theorem 5.5]. However, we stress that, in that case,
one should check whether the error estimates in [36] are in fact ε-uniform.
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The second key result reveals the leading and next order geometry of the other two spectral curves converging to the critical
eigenvalues λ∞,± of the limiting homoclinic as ` → ∞.

Theorem 4.5. Let λ∞ ∈ CΛ \ E
−1
∞, f (0) be a simple zero of E∞,s satisfying

−4Re(λ∞)ω2
∗ < Im(λ∞)2, (4.8)

Take ς∞ such that ω∗ < ς∞ < Re(ω∞).
Then, for all 1 � ` < ∞ there exists an analytic curve λ` : [−1, 1]→ C satisfying the following assertions:

1. For each γ ∈ S 1 the point λ`(Re(γ)) is the unique zero of E`,s(·, γ) converging to λ∞ as ` → ∞.

2. The curve λ` can be expanded in terms of e−2ω∗` as

λ`(γr) = λ∞ + L0e−2ω∗` + R2,`(γr),

L0 :=
2
(
ω∗ lim

x̌→∞
(u∞(x̌) − u∗) eω∗ x̌

)2

a∞E
′
∞,s(λ∞)

(
[û∞(0, λ∞)]2 ∂uG(u∞(0), λ∞)

+ 2
∫ ∞

0
∂uuH1(u∞(x̌), 0, 0)ũ∞(x̌) [û∞(x̌, λ∞)]2 dx̌

)
,

(4.9)

where a∞ is defined in (3.15) and the remainder R2,`(γr) is bounded as |R2,`(γr)| ≤ C max
{
e−3ς∗`, e−2ς∞`

}
with C >

0 independent of ` and γr. Here, û∞(x̌, λ) denotes the u-coordinate of the unique solution ϕ∞(x̌, λ) to the slow
eigenvalue problem

ϕx̌ = A∞(x̌, λ)ϕ, ϕ ∈ C2, A∞(x̌, λ) :=
(

0 1
∂uH1(u∞(x̌), 0, 0) + λ 0

)
(4.10)

satisfying (3.10), and ũ∞(x̌) is the solution to the initial value problem

ũx̌x̌ = ∂uH1(u∞(x̌), 0, 0)ũ, ũ(0) = 1, ũ′(0) = J ′(u∞(0)).

3. The derivatives of λ` at γr ∈ [−1, 1] are approximated by∣∣∣λ′`(γr) − L1e−2ω∞`
∣∣∣ ≤ Ce−(2ς∞+ς∗)`,

∣∣∣λ′′` (γr) − L2,`e−4ω∞`
∣∣∣ ≤ Ce−(4ς∞+ς∗)`, (4.11)

with C > 0 independent of ` and γr, and

L1 :=
4ω∞
E′∞,s(λ∞)

, L2,` := L2
1

(
−2`
ω∞

+
1
ω2
∞

−
E′′∞,s(λ∞)
E′∞,s(λ∞)

)
. (4.12)

Remark 4.6. The quantities ±ω∗ in Theorems 4.3 and 4.5 correspond to the spatial eigenvalues of the linearization about
the fixed point (u∗, 0) in the slow reduced system (2.3). Moreover, ±ω∞ are the spatial eigenvalues of the asymptotic sys-
tem obtained by taking the limit x̌ → ±∞ in the slow eigenvalue problem (4.10) for λ = λ∞. Note that condition (4.8) is
equivalent to ω∗ < Re(ω∞). In particular, any λ∞ ∈ iR \ {0} satisfies (4.8).

Theorem 4.5 provides an expansion of the coefficients of γ0
r , γ1

r and γ2
r in the power series expansion of λ`(γr), yielding

λ`(γr) =
(
λ∞ + L0e−2ω∗` + O

(
e−3ς∗`, e−2ς∞`

))
γ0

r +
(
L1e−2ω∞` + O

(
e−(2ς∞+ς∗)`

))
γ1

r

+
(
L2,`e−4ω∞` + O

(
e−(4ς∞+ς∗)`

))
γ2

r + O
(
γ3

r

)
.

(4.13)

We emphasize that the coefficients in the power series (4.13) have very different magnitudes in `. The distance λ`(γr)− λ∞
is for example much larger than the distance between the end points λ`(±1), since λ∞ satisfies (4.8) – see also Figure 9.
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Figure 9: Depicted is the setting of Theorem 4.5. Notice that the translation λ`(γr) − λ∞ is much larger than the distance
between the end points λ`(±1). Moreover, to leading order, the curve λ` is a straight line, because the quadratic deformation
of the curve is of higher order than the distance between the end points λ`(±1).

4.3 Spectral stability of long-wavelength periodic pulse solutions
Consider the family of periodic pulse solutions φ`,ε(x), established in Theorem 4.1, converging pointwise to the homoclinic
limit φ∞,ε(x) as ` → ∞. The fact that the spectral curves corresponding to φ`,ε shrink to the eigenvalues associated with the
homoclinic pulse φ∞,ε as ` → ∞, does not imply that spectral stability properties of the homoclinic pulse are inherited by
the periodic pulses – see §1. This depends on the location of critical spectral curve attached to the origin.

By Theorem 4.3 the relative location of the critical curve with respect to the imaginary axis does not change as ` → ∞,
under the generic assumption that the quantities a∞, j∞ and w∞, defined in (3.15) and (4.7), are non-zero. Depending on the
sign of these quantities, long-wavelength periodic pulses inherit the (spectral) stability properties of the limiting homoclinic
pulse.

Corollary 4.7. Suppose that the slow Evans function E∞,s (3.11) has no roots λ ∈ C with Re(λ) ≥ 0 and that the quantities
a∞, i∞, j∞ and w∞, defined in (3.15), (3.16) and (4.7), are non-zero. Then, there exists `0 > 0 such that for each ` ∈ (`0,∞)
the following holds true.

1. If j∞ and w∞ have the same sign, then the periodic pulse solution φ`,ε to (1.2) is spectrally stable, provided ε > 0 is
sufficiently small.

2. If j∞ and w∞ have different signs, then φ`,ε is spectrally unstable, provided ε > 0 is sufficiently small.

Proof. Observe that the quantity i`, defined in (3.16), converges to i∞ as ` → ∞ by Theorem 4.1. Thus, by §3.3.1, E`,s(·, γ)
has precisely one pole in the right half-plane for any γ ∈ S 1 and ` > 0 sufficiently large. In addition, all roots of E`,s(·, γ)
in the right half-plane converge to roots of E∞,s as ` → ∞ by Theorem 4.5. Therefore, we conclude that E`,0(·, γ) has no
roots λ ∈ C \ {0} with Re(λ) ≥ 0 for any γ ∈ S 1 and ` > 0 sufficiently large. In addition, 0 is a simple root of E`, f and
E`,s(0, γ) , 0 for each γ ∈ S 1 and ` > 0 sufficiently large.

Hence, spectral stability is determined by the position of the critical spectral curve λs
`,ε

(ν), which is approximated by
the curve λs

`,0(ν), defined in (3.18), by Theorem 3.4. By Theorem 4.3, the sign of λs
`,0(ν) and its derivatives is determined

by the signs of j∞ and w∞, provided ` > 0 is sufficiently large. This proves the result. �

We stress that the conditions in Corollary 4.7 comprise some form of nonlinear stability for the homoclinic φ∞,ε to (1.2).
Indeed, these conditions imply that E∞,0 has no zeros λ ∈ C \ {0} with Re(λ) ≥ 0, and that 0 is a simple root of E∞,0 –
see §3. Hence, the same holds for E∞,ε, provided ε > 0 is sufficiently small, by Theorem 3.1. So, there exists β > 0 such
that all λ ∈ σ(L∞,ε) \ {0} satisfy Re(λ) < −β and λ = 0 is a simple eigenvalue of L∞,ε. The latter implies by [17, Section
5.1] nonlinear stability with asymptotic phase. On the other hand, spectral stability implies nonlinear (diffusive) stability
for the periodic pulse solution φ`,ε by the analysis in [6, Section 3.3]. Thus, Corollary 4.7 can be employed to test whether
or not nonlinear stability of the homoclinic φ∞,ε implies nonlinear stability of the nearby periodics φ`,ε, for ` � 1.

4.4 Hopf destabilization in the homoclinic limit
Consider the family of periodic pulse solutions φ`,ε(x), established in Theorem 4.1, converging pointwise to the homoclinic
limit φ∞,ε(x) as ` → ∞. In this section we study the character of destabilization of the periodic pulse pattern φ`,ε, when
the homoclinic φ∞,ε undergoes a Hopf destabilization. In §1, we reasoned that the character of destabilization of φ`,ε is
determined by the geometry of three spectral curves: the critical spectral curve attached to the origin and the two conjugate
spectral curves converging to the critical eigenvalues associated with the homoclinic. We employ Theorems 4.3 and 4.5 to
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obtain information about these spectral curves.

Thus, let λ∞ ∈ CΛ be a simple zero of E∞,s in the vicinity of the imaginary axis iR \ {0} such that λ∞ < E−1
∞, f (0) and

the condition (4.8) is satisfied. We infer from Theorem 4.5 – see also (4.13) – that there is a unique curve λ` : [−1, 1]→ C
of zeros of E`,s shrinking to λ∞ as ` → ∞ exponentially with rate −2ω∗`. By (4.11), the curve λ` is to leading order a
straight line that rotates with frequency Im(ω∞)/π and whose length decays exponentially with rate −2Re(ω∞)` as ` → ∞.
Therefore, the point on λ` with largest real part will generically be one of the endpoints λ`(±1). The following result shows
that this is actually always the case – see Figure 5 in the Introduction.

Corollary 4.8 (Belly-dance). Let λ∞ ∈ CΛ \ E
−1
∞, f (0) be a simple zero of E∞,s satisfying (4.8). For 0 � ` < ∞ the point

of largest real part on λ`([−1, 1]), where λ` : [−1, 1] → C is established in Theorem 4.5, is always one of the endpoints
λ`(±1). Specifically, recall L1 defined in (4.12), and consider the quantity

χ` := L1e−2ω∞`. (4.14)

If Re(χ`) , 0, then λ`(sgn(Re(χ`))) is the point of largest real part on λ`([−1, 1]).

Proof. By (4.11), the curve λ`(γr) is to leading order a straight line. Its orientation is determined by the argument of the
quantity χ`. Thus, in the case χ` < iR, it is clear that λ`(sgn(Re(χ`))) must be the endpoint of largest real part. Now suppose
χ` ∈ iR. Since λ∞ is a simple zero of E∞,s, χ` is non-zero. Thus, we have χ2

` < 0. By (4.11), the quadratic deformation
of the curve λ` is to leading order determined by the quantity −2χ2

``ω
−1
∞ , which has strictly positive real part. Hence, we

derive Re(λ`(±1)) ≥ Re(λ`v (γr)) for all γr ∈ [−1, 1]. This concludes the proof. �

Now suppose equation (1.2) depends on a real parameter µ. We make the following assumption:

(HO) There is µ∗ ∈ R and a unique pair ±λ∞,∗ with λ∞,∗ ∈ iR \ {0} satisfying E∞,s,µ∗ (±λ∞,∗) = 0 and

Re
[
∂µE∞,s,µ∗ (λ∞,∗)
∂λE∞,s,µ∗ (λ∞,∗)

]
< 0.

In addition, we have i∞(µ∗) , 0, j∞(µ∗)w∞(µ∗) > 0 and E∞,s,µ∗ (λ) , 0 for all λ ∈ C \ {±λ∞,∗} with Re(λ) ≥ 0.

The condition (HO) implies that the homoclinic φ∞,ε undergoes a Hopf destabilization at a µ-value close to µ∗. The
assumption j∞(µ∗)w∞(µ∗) > 0 in (HO) yields that the critical spectral curve associated with φ`,ε is confined to the left half-
plane by Corollary 4.7, for ` > 0 sufficiently large. Hence, the long-wavelength periodic pulse pattern φ`,ε also undergoes a
Hopf destabilization at a µ-value close to µ∗, since two spectral curves associated to φ`,ε converge to the critical eigenvalues
of the homoclinic φ∞,ε by Theorems 3.1, 3.2 and 4.5 as ` → ∞. The (leading-order) geometry of these spectral curves
given in Theorem 4.5 and Corollary 4.8 determines the type of Hopf instability and whether the homoclinic pulse solution
is the last (or first) periodic pulse to destabilize – see Figure 4 in the Introduction. Thus, Theorems 3.1, 3.2, 4.3 and 4.5
and Corollary 4.8 yield the following result.

Corollary 4.9. Assume (HO) and fix δ > 0. Then, there exists `0 > 0 such that for each ` ∈ (`0,∞) the following holds
true for ε > 0 sufficiently small:

1. The homoclinic pulse solution φ∞,ε to (1.2) undergoes a Hopf destabilization at µ = µ∞,ε with |µ∞,ε − µ∗| < δ.

2. The periodic pulse solution φ`,ε to (1.2) undergoes a γ`-Hopf destabilization at µ = µ`,ε with |µ`,ε − µ∗| < δ. It holds
either |γ` − 1| < δ or |γ` + 1| < δ.

3. If the real part of χ` = χ`(µ∗), defined in (4.14), is non-zero, then we have |γ` − sgn(Re(χ`))| < δ.

4. If the quantity L0 = L0(µ∗), defined in (4.9), is non-zero, then it holds sgn(Re(µ∞,ε − µ`,ε)) = sgn(Re(L0)), i.e. the
homoclinic pulse solution is the last to destabilize if Re(L0) > 0.

Remark 4.10. Corollary 4.9 implies that, as the wave number k ∼ `−1 of the periodic pulse pattern φ`,ε decreases, the
character of destabilization of φ`,ε alternates between ±1-Hopf instabilities in the limit ε → 0. This has the following
implications for the region of stable pulse solutions in (µ, k)-space, which is known as the Busse balloon – see §1. By
Corollary 4.9, the boundary {(`−1, µ`,ε) : ` ∈ (`0,∞)} of the Busse balloon is in the limit ε → 0 given by two curves H±1
corresponding to ±1-Hopf instabilities of φ`,ε. The curves H±1 intersect infinitely often as they oscillate about each other
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while both are converging to the point limε→0(µ∞,ε, 0) = (µ∗, 0) on the line k = 0, see Figure 2. Moreover, Corollary 4.8
implies that in the limit ε → 0, the boundary of the Busse balloon is non-smooth at the intersection points of H+1 and
H−1. Note that the non-smooth points in the boundary of the Busse balloon persist for ε > 0 sufficiently small. Indeed, by
Corollary 4.9, close to an intersection point ofH+ andH− there are, on the one hand, points on the boundary of the Busse
balloon that correspond to a γε-Hopf destabilization where γε → 1 as ε→ 0, and on the other hand, there are points on the
boundary of the Busse balloon that correspond to a γε-Hopf destabilization where γε → −1 as ε→ 0.

We have thus established the occurrence of the Hopf and belly dance destabilization mechanisms for the general class (1.2)
of slowly nonlinear systems – see Figure 2 in the Introduction. We refer to Sections 5.1 and 5.2 for numerical simulations
of the Hopf and belly dances in the slowly nonlinear model equation (1.4).

As mentioned in the Introduction, it was conjectured by Wei-Ming Ni in the context of the Gierer-Meinhardt equations [25]
that the homoclinic pulse solution is the last ‘periodic’ pulse to become unstable as we vary µ – see also [10, Remark 5.4]
and Figure 2. Numerical simulations in the slowly nonlinear model equation (1.4) indicate that there exist parameter
regimes where the real part of the quantity L0, defined in (4.9), has negative sign upon destabilization – see Section 5.2.
Hence, Ni’s conjecture does not hold beyond the slowly linear Gierer-Meinhardt equations. We stress that a structural
difference can be readily observed between both cases: the derivative ∂uuH1(u∞(x̌), 0, 0) in (4.9) vanishes in the slowly
linear case.

5 Numerical analysis in model system (1.4)

In this section we present numerical simulations – using the numerical continuation software Auto – for the slowly non-
linear model system (1.4) that corroborate and illustrate our analysis. In order to separate the parameters of the existence
from the stability problem in the numerics, we consider (1.4) in the slightly different form 1

µ
ut = ux̌x̌ − sin u − 1

ε̃
v2(ν̃2 − ν̃3v)

vt = ε̃2vx̌x̌ − v + v2

µ2+µ3 sin u
, u ∈ R, v ∈ R, (5.1)

which relates to (1.4) – in the scaling of (1.1) – by setting,

ε =
ε̃
√
µ
, µ1 = µ, ν1 = ν̃2

√
µ, ν2 =

ν̃3

ν̃2
, x = ε̃x̌, (5.2)

(the remaining parameters are as in (1.4)). We consider several specific parameters choices in (5.1). In each case, µ is our
main parameter (as in the preceding analysis). In Sections 5.1 and 5.2, we present simulations of the analytically predicted
Hopf and belly dances and compare the outcome of the numerics to the analysis of model (1.4) in Sections 2.1 and 3.4.
The examples are chosen such that the occurrence of each of the critical spectral configurations as depicted in Figure 4 is
corroborated. In Section 5.1, Ni’s conjecture holds, i.e. the critical spectrum is as in Figure 4(b) and the Busse balloon is
thus as sketched in Figure 2(a). The case of Figures 4(c) and 2(b), where Ni’s conjecture does not hold, is presented in
Section 5.2 and the case with unstable small spectrum of Figure 4(a) is (briefly) considered in Section 5.3.

In this section, we denote by µH(γ, L) the critical value of µ such that the solution with parameter µ and period L lies
on the Hopf stability boundary (of the Busse balloon) for γ ∈ S 1. We write λH(γ, L) = λ`,µH , where λ`,µ is as in the
previous sections, so that Re(λH(γ, L)) = 0 and Im(λH(γ, L)) , 0. The formulation for the implementation of the numerical
procedure is the same as in [10], which relies on the results in [30]. Briefly, we write the existence problem (2.1), rescaled
to x̌, jointly with the eigenvalue problem of its linearization in this solution as a boundary value problem. In a shorthand
notation and with the linear part rescaled as Φ(x̌) = eνx̌ϕ(x̌) – with ν = log(γ)/(2L) to achieve periodic boundary conditions
– this reads

U x̌ = F(U), Φx̌ = (F′(U) + λB + ν)Φ, (U,Φ)(L) = (U,Φ)(−L),

where F is the right hand side of (2.1) rescaled to x̌, and the matrix B encodes the second order structure. Since ε is fixed it
is natural to replace the parameter ` used in the analysis by the half-period of the solutions L = Lε,` in this section . Recall
from Theorem 2.1 that εLε,` → ` as ε→ 0. For continuation in a parameter p we impose the phase condition 〈∂pU,U x̌〉 = 0
and the normalization constraint ‖Φ‖ = 1. Except at bifurcation points, this leads, for instance, to a curve λ(p), when taking
λ as a free (complex valued) parameter while keeping all other parameters fixed. With p = γ this will compute a curve of
essential spectrum. Having found a point of marginal stability, Re(λ(p0)) = 0 at some value p = p0, we can keep Re(λ)
fixed and compute µ(p), Im(λ)(p) in this way. This leads to a stability boundary for the continuation of this point in the
spectrum.
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Figure 10: The spectral stability of long-wavelength patterns in model (5.1) with parameters ε̃ = 0.01, ν̃2 = −1.57, ν̃3 =

−0.77, µ2 = 0, µ3 = 1. Numerical plots in the (µ, k)-plane of the stability boundary curvesH+1, i.e. µ = µH(γ, L) for γ = 1
(blue), H−1, i.e. µ = µH(γ, L) with γ = −1 – (red), and of µ = µH(γ, L) with γ = i (magenta). Ni’s conjecture holds: there
are no stable long-wavelength patterns for µ < µ∗ ≈ 0.4402.

5.1 Example 1: Ni’s conjecture holds
In our first example, we consider (5.1) with parameters ε̃ = 0.01, ν̃2 = −1.57, ν̃3 = −0.77, µ2 = 0, µ3 = 1 and varying µ
around 0.44. The profile plotted in Figure 3 corresponds to one period of a marginally stable solution to (5.1) with L = 20;
µ is chosen such that µ = µH(1, 20) ≈ 0.4402, i.e. the critical spectral curve λ`,µ(γr) has its first intersection with the
imaginary axis at γr = γ = 1. Thus, the parameters and wavelength are such that the pattern depicted in Figure 3 is on the
H+1 part of the boundary of the Busse balloon.

In Figure 10, we plot in the (µ, k)-plane – where k = 1/L denotes the wave number – the stability boundary curves H±1,
which correspond to the curves µH(γ, L) for γ = ±1. The homoclinic limit destabilizes as µ decreases through µ∗ ≈ 0.4402
(and clearly µ∗ = limL→∞ µH(±1, L)). Moreover, the homoclinic pattern is the last pattern to destabilize (as µ decreases):
Ni’s conjecture indeed holds (see also Figure 12(a)). Figure 10 also shows the first intersections associated with a Hopf
dance. In order to illustrate both the Hopf and the belly dance, we also plot the curve µH(i, L) in Figure 10 and consider

rγ(L) = eρL(µH(γ, L) − µH(i, L)),
s(L) = eρL (µH(i, L) −max(µH(1, L), µH(−1, L))) . (5.3)

Thus, the curves r±1(L) resolve the oscillations of the Hopf dance while the belly dance corresponds to s(L) having a
constant sign. In Figure 11(a) – where ρ = 1.245 is chosen such that the amplitude of the oscillations of rγ(L) remain
(approximately) constant – the first 4 elements of H+1 ∩ H−1 are shown; since s(L) < 0, Figure 11(b) corroborates the
belly dance (within numerical accuracy). To be certain that the destabilization mechanism is indeed caused by two dancing
curves of Hopf destabilizations – as in Figure 2(a) – we also need to determine the small spectral curve λs

`,ε
(ν) – see

Figure 4(b). We refer to Figure 12 for a numerical confirmation that shows there is no unstable small spectrum.

To connect these numerical evaluations to the analysis in Sections 2.1 and 3.4, we first use (5.2) to conclude that the choice
of parameters in (5.1) in this section correspond to ν1 = −1.57

√
µ, ν2 ≈ 0.49, µ1 = µ, µ2 = 0, µ3 = 1 and ε = 0.01/

√
µ in

basic model (1.4). We consider the wave profile presented in Figure 3 for which µ ≈ 0.44. This pattern can be approximated
by a single homoclinic pulse whose existence is established by solving (2.13) for κ = 1. Using the explicit formulation for
J(u) in (2.12), we infer that the existence condition (2.13) is satisfied for u� = 0.253881. Note that, because ν1 is scaled
with

√
µ, the value of u� does not depend on µ. This theoretical leading-order value of the pulse amplitude corresponds

very well with the numerical value of u(0) ≈ 0.25 exhibited by the pattern in Figure 3.

Using Section 3.4, we can determine the spectral curves associated with the patterns in the equivalent models (1.4)/(5.1)
with the above parameter values. The main quantity of interest is the leading-order expression of the slow Evans func-
tion (3.28). By numerical evaluation of E∞,s(λ) in Mathematica for the above parameter values and varying µ, we find that
the homoclinic pulse undergoes a Hopf destabilization at µ = µ∗ ≈ 0.4308, with Hopf eigenvalues λH ≈ ±0.808 i. For this
value of µ, we have ε = 0.01/

√
0.4308 ≈ 0.01524. The difference between the numerically observed Hopf destabilization

value µ∗,num ≈ 0.4402 and the theoretical leading-order value is
∣∣∣µ∗,num − µ∗

∣∣∣ ≈ 0.62 ε, which is well within an O(ε) validity
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Figure 11: The first oscillations of the Hopf and belly dances in model (5.1) with parameters ε̃ = 0.01, ν̃2 = −1.57, ν̃3 =

0.77, µ2 = 0, µ3 = 1. (a) The anti-cyclic oscillation of r1(L) (blue) versus r−1(L) (magenta) signifies the Hopf dance (where
the numerical accuracy is insufficient to resolve the details for L > 20). (b) s(L) < 0 implies the belly dance.
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Figure 12: The spectrum for a finite difference approximation on the (periodic) domain [−L, L] of a long-wavelength
pattern solution to (5.1) with L ≈ 11.22, µ = µ∗ ≈ 0.4402, ε̃ = 0.01, ν̃2 = −1.57, ν̃3 = −0.77, µ2 = 0, µ3 = 1. (a) The
unstable loop of critical spectrum λ`,µ(γr) plotted as function of Im(log γ). (b) The critical finite difference spectrum on the
grid from Auto with 6400 points. (c) The small spectrum near the origin is stable.

region. Having found the leading-order values for u�, µ∗ and λH , we can determine whether for this destabilization of the
homoclinic limit pulse Ni’s conjecture holds – using Corollaries 4.7 and 4.9. For the parameter values used, we calculate
j∞w∞ ≈ 1.281 > 0 and L0 ≈ 0.5138 − 1.6263 i. From Corollary 4.9(4), we conclude that the homoclinic pulse solution is
the last ‘periodic’ to destabilize, as Re(L0) > 0. This corroborates the above numerical observations that this is indeed a
case in which Ni’s conjecture holds.

5.2 Example 2: a violation of Ni’s conjecture
We consider (5.1) with parameters ε̃ = 0.01, ν̃2 = 2.93, ν̃3 = 2.85, µ2 = 0, µ3 = 1 and µ ∈ [0.27, 0.36]. A profile of a
marginally stable long-wavelength periodic pulse pattern with L = 20 and µ ≈ 0.3565 such that (µ, k) ∈ H+1, is plotted in
Figure 13(a). In Figure 13(b), the stability boundary curves µ = µH(γ, L) for γ = ±1 – i.e.H±1 – and for γ = i are plotted in
the (µ, k)-plane. As in Section 5.1, we consider r±(L) and s(L) as defined in (5.3), now with ρ = 1.4 in order to demonstrate
the Hopf and belly dances, see Figure 14. The numerical computation in Figure 15 shows that the small spectrum is stable,
which implies that the configuration of the critical spectrum is as in Figure 4(c). We may conclude that this is an example
of a case in which Ni’s conjecture does not hold: the Busse balloon has the structure of Figure 2(b).

By (5.2), we find that the choice of parameters in (5.1) in this section corresponds to ν1 = 2.93
√
µ, ν2 ≈ 0.97, µ1 = µ,

µ2 = 0, µ3 = 1 in (1.4). Using condition (2.13), we calculate that u� ≈ 1.4044, which is close to the numerical value
u(0) ≈ 1.42 – see Figure 13. The Hopf destabilization of the homoclinic pulse solution is found for µ∗ ≈ 0.30532 with
Hopf eigenvalues λH ≈ ±0.978 i. For this value of µ, we have ε = 0.01/

√
0.30532 ≈ 0.0181, so that the difference

between the numerically observed Hopf destabilization value µ∗,num ≈ 0.3565 and the leading-order theoretical prediction
µ∗, is

∣∣∣µ∗,num − µ∗
∣∣∣ ≈ 2.83 ε = O(ε). We can again use Corollaries 4.7 and 4.9 and calculate j∞w∞ ≈ 0.240 > 0 and

L0 ≈ −6.165 + 12.797 i. Thus, we conclude from Corollary 4.9(4) that the homoclinic pulse solution is not the last to
destabilize as Re(L0) < 0, and that Ni’s conjecture indeed does not hold.
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Figure 13: Long-wavelength periodic pulse solutions of (5.1) for ε̃ = 0.01, ν̃2 = 2.93, ν̃3 = 2.85, µ2 = 0, µ3 = 1. (a) Profile
of a marginally stable pattern with L = 20, µ ≈ 0.3565 and u(0) ≈ 1.42 such that (µ, k) ∈ H+1. (b) Stability boundary
curves µ = µH(γ, L) for γ = 1 (H+1; blue), −1 (H−1; red) and i (magenta) in the (µ, k)-plane.
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Figure 14: The first oscillations of the Hopf and belly dances in model (5.1) with parameters ε̃ = 0.01, ν̃2 = 2.93, ν̃3 = 2.85,
µ2 = 0, µ3 = 1. (a) The anticyclic oscillations of r1 (blue) versus r−1 (magenta) signify the Hopf dance (up to L ≈ 18) (b)
The belly-dance.

5.3 Example 3: unstable small spectrum
In this section, we briefly consider spatially periodic long-wavelength pulse patterns in (5.1) with parameters ε̃ = 0.01, ν̃2 =

2.93, ν̃3 = 2.85, µ2 = µ3 = 1 fixed and µ ∈ [0.032, 0.039]. As in the preceding sections, we plot the stability boundary
curves H±1 – equivalent to µH(±1, L) for γ = ±1 – and µH(i, L) in the (µ, k)-plane in Figure 16(a). This is a situation
that strongly suggests a Busse balloon of periodic patterns near a homoclinic limit – including the familiar Hopf dance
fine-structure – that violates Ni’s conjecture. However, the (numerical) plot in Figure 16(b) shows that there is unstable
small spectrum: the spectral configuration is as in Figure 4(a).

In the case that the critical curve of small spectrum attached to the origin is unstable, the curves H±1 and the boundary of
the Busse balloon may approach (µ∗, 0) from different directions in the (µ, k)-plane. In fact, the homoclinic tip (µ∗, 0) is in
such a situation generically connected to the Busse-balloon boundary by a segment on the horizontal axis k = 0. Indeed,
by Theorem 4.3, unstable small spectrum yields j∞w∞ ≤ 0 at µ = µ∗. In the generic situation that j∞w∞ < 0 at µ = µ∗, we
must have j∞w∞ < 0 in a neighbourhood M ⊂ R of µ∗ by continuity. Therefore, there exists by Theorem 4.3 a constant
k0 > 0 such that the small spectrum is unstable for any periodic pulse solution corresponding to a point (µ, k) ∈ M × (0, k0).
Thus, (µ∗, 0) is connected to the boundary of the Busse balloon by a segment that lies on the axis k = 0. We expect that
the boundary detaches from the axis k = 0 at a point µ� where j∞w∞ changes sign. The Busse-balloon boundary around
the detachment point (µ�, 0) is then generically given by a curve of sideband destabilizations. Finally, in the non-generic
situation that j∞w∞ = 0 at µ = µ∗, we expect that the boundary detaches from the axis k = 0 at (µ∗, 0), although the
curvesH±1 and the Busse-balloon boundary could still approach the homoclinic tip (µ∗, 0) from different directions in the
(µ, k)-plane.
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Figure 15: (a) The critical finite difference spectrum (by an adaptive grid from Auto with 6400 points) associated with the
solution to (5.1) in Figure 13(a). (b) The small spectrum is stable.
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Figure 16: The stability of spatially periodic long-wavelength pulse patterns in (5.1) with parameters ε̃ = 0.01, ν̃2 =

2.93, ν̃3 = 2.85, µ2 = µ3 = 1 fixed and vary µ ∈ [0.032, 0.039]. (a) The stability boundary curves Hγ – or equivalently
µ = µH(γ, L) – for γ = 1 (blue), −1 (magenta), i (yellow). (b) The (unstable) small spectrum near the origin in the complex
plane.

6 Proofs of key results
In this section we prove Theorems 4.3 and 4.5. Our approach is as follows. Let λ∞ be a simple root of E∞,s satisfying (4.8).
We want to understand the geometry of the critical curve λs

`,0(ν), defined in (3.18), and of the unique solution curve λ`(γ),
satisfying E`,s(λ`(γ), γ) = 0 for each γ ∈ S 1, which converges to λ∞ as ` → ∞. By Proposition 3.3 and Theorem 3.4 we
have

λs
`,0(ν) = a`w`

cos(ν) − 1
2e−iνE`,s(0, eiν)

, (6.1)

where

a` := J ′(u`(0))J(u`(0)) − H1(u`(0), 0, 0),

w` := −

∫ ∞
−∞

∂G
∂u (u`(0), vh(x, u`(0)), 0)∂xvh(x, u`(0))xdx∫ ∞

−∞
[∂xvh(x, u`(0))]2 dx

.

One readily observes a` → a∞ and w` → w∞ as ` → ∞ by Theorem 4.1. Thus, to prove Theorems 4.3 and 4.5, we need
to relate the periodic slow Evans function E`,s to the homoclinic slow Evans function E∞,s. The homoclinic slow Evans
function E∞,s is defined in terms of the unique solution ϕ∞(x̌, λ) to the homoclinic slow eigenvalue problem (4.10) that
satisfies (3.10). Our approach is to find an analytic solution ϕ`(x̌, λ) to the periodic slow eigenvalue problem,

ϕx̌ = A`(x̌, λ)ϕ, ϕ ∈ C2, A`(x̌, λ) :=
(

0 1
∂uH1(u`(x̌), 0, 0) + λ 0

)
, (6.2)

that is (pointwise) close to ϕ∞(x̌, λ) and decays exponentially on [0, 2`]. Recall that system (6.2) is Rs-reversible at x̌ = `,
i.e. the evolution T`(x̌, y̌, λ) of (6.2) satisfies RsT`(x̌, y̌, λ)Rs = T`(2` − x̌, 2` − y̌, λ) for x̌, y̌ ∈ [0, 2`]. In particular,
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ϕr
`(x̌, λ) := Rsϕ`(2` − x̌, λ) is also a solution to (6.2). Now, to relate the periodic slow Evans function E`,s to E∞,s, we

multiply E`,s(λ, γ) with the (x̌-independent) Wronskian W`(λ) := det(ϕ`(x̌, λ) | ϕr
`(x̌, λ)). Using the bilinearity of the

determinant and the fact that det(Υ(u, λ)), det(T`(x̌, y̌, λ)) = 1 for all x̌, y̌ ∈ [0, 2`], λ ∈ CΛ and u ∈ Uh, we derive the key
identity

γ−1E`,s(λ, γ)W`(λ) := 2Re(γ)W`(λ) − K`(λ), (6.3)

where K` : CΛ → C is defined by

K`(λ) = det (ϕ`(0, λ) | Υ(u`(0), λ)Rsϕ`(0, λ))

+ det (Υ(u`(0), λ)ϕ`(2`, λ) | Rsϕ`(2`, λ)) .
(6.4)

Since ϕ`(2`, λ) decays exponentially as ` → ∞, one observes that the right hand side of (6.3) converges to the homoclinic
slow Evans function E∞,s(λ) as ` → ∞. This leads to the desired approximation (4.6) of λ0,`(ν) in Theorem 4.3.

To prove Theorem 4.5, we apply the implicit function theorem to (6.3). This yields the existence of a curve λ` : [−1, 1]→ C
such that for each γ ∈ S 1, the point λ`(Re(γ)) is the unique zero of E`,s(·, γ) converging to λ∞ as ` → ∞. To calculate the
leading-order difference λ`(Re(γ)) − λ∞ in order to prove (4.9), we need the leading-order expressions of the differences
ϕ`(x̌, λ) − ϕ∞(x̌, λ) and ψ`(x̌) − ψ∞(x̌) of the solutions to the slow eigenvalue problems and the slow reduced system, re-
spectively. Finally, identity (4.11) is proved by implicit differentiation of identity (6.3).

Thus, the set-up of this section is as follows. First, we will establish a leading-order expression for the difference
ψ`(x̌) − ψ∞(x̌) of the solutions to the slow reduced system (2.3). This allows us to approximate u`(0) by u∞(0) in (6.4).
Second, we construct the desired solution ϕ∞(x̌, λ) to (6.2) that is close to the solution ϕ∞(x̌, λ) to (4.10) and decays expo-
nentially on [0, 2`]. At the same time, we establish a leading-order expression for the difference ϕ`(x̌, λ)−ϕ∞(x̌, λ). Finally,
we provide the proofs of Theorems 4.3 and 4.5 using the approach described above.

6.1 Approximations in the slow reduced subsystem
We start by collecting some basic facts for the situation described in §4.1. Recall the definition of ς∗ and ω∗ provided in
Theorems 4.3 and 4.5. Since ψ∗ = (u∗, 0) is a hyperbolic saddle in (2.3) by (E2), we have

‖ψ∞(x̌) − ψ∗‖ ≤ Ce−ς∗ x̌, x̌ ≥ 0, (6.5)

where C > 0 is a constant. The eigenvectors of the linearization of (2.3) about ψ∗ are given by w± := (1,±ω∗). We obtain
by the stable manifold theorem:∥∥∥eω∗ x̌(ψ∞(x̌) − ψ∗) − α∗w−

∥∥∥ , ∥∥∥eω∗ x̌ψ′∞(x̌) + α∗ω∗w−
∥∥∥ ≤ Ce−ς∗ x̌, x̌ ≥ 0, (6.6)

where α∗ ∈ R \ {0} is given by

α∗ := lim
x̌→∞

eω∗ x̌(u∞(x̌) − u∗).

It is well known that in a neighborhood of the point ψ∗, one can give growth and decay rates of solutions to the (un)stable
manifolds, see for example [19, Proposition 3.1]. Using these bounds, one can estimate the distance between ψ` and ψ∞ in
terms of the ‘time of flight’ `. Indeed, it holds for 0 � ` < ∞ that

‖ψ`(x̌) − ψ∞(x̌)‖ ≤ Ce−ς∗(2`−x̌), x̌ ∈ [0, 2`], (6.7)

with C > 0 a constant independent of `.

We need a leading-order expression for the difference ψ`(x̌) − ψ∞(x̌). Identity (6.7) gives an a priori estimate for this
quantity, which is used in the proof of the next proposition.

Proposition 6.1. For 0 � ` < ∞ we have the following expansion:

ψ`(x̌) = ψ∞(x̌) −
2ω2
∗α

2
∗e
−2ω∗`

a∞
Φ∞(x̌, 0)

(
1

J ′(u∞(0))

)
+ R1,`(x̌), x̌ ∈ [0, `], (6.8)

where a∞ is defined in (3.15), the remainder R` : [0, `] → C2 is bounded by ‖R`(x̌)‖ ≤ Ce−ς∗(3`−x̌) with C > 0 independent
of `, and where Φ∞(x̌, y̌) denotes the evolution operator of the variational equation of (2.3) about ψ∞,

θx̌ = A∞(x̌)θ, θ ∈ R2, A∞(x̌) :=
(

0 1
∂uH1(u∞(x̌), 0, 0) 0

)
. (6.9)
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Proof. In the following, we denote by C > 0 a constant independent of `.

Define θ`(x̌) = ψ`(x̌) − ψ∞(x̌) for x̌ ∈ [0, `]. Our approach is to obtain a leading-order expression for θ`(x̌) using Lin’s
method [23, 44]. Note that θ` solves the boundary value problem

θx̌ = A∞(x̌)θ + g0(θ, x̌),
θ(0) + ψ∞(0) ∈ T+, (6.10)
θ(`) + ψ∞(`) ∈ ker(I − Rs), (6.11)

where g0 : R3 → R2 is defined by

g0(θ, x̌) := f (ψ∞(x̌) + θ) − f (ψ∞(x̌)) −A∞(x̌)θ.

Our plan is to study the inhomogeneous equation,

θx̌ = A∞(x̌)θ + g(x̌), θ ∈ R2. (6.12)

with g ∈ C([0, `],R2) first. Using the exponential dichotomy of the variational equation, we construct a solution operator
to (6.12). Subsequently, we substitute g0(θ, x̌) for g(x̌) and formulate an integral formulation for θ`(x̌) that is of fixed point
type. This enables us to obtain a leading-order expression for θ`(x̌).

We establish an exponential dichotomy for the variational equation (6.9). First, the matrix function A∞(x̌) converges
as x̌→ ∞ to the asymptotic matrixA∗. More precisely, by (6.5) it holds for x̌ ≥ 0 that

‖A∞(x̌) −A∗‖ ≤ Ce−ς∗ x̌.

Second, the derivative ψ′∞(x̌) is a solution to (6.9), which is bounded as x̌ → ∞. Combining these items with Proposi-
tion A.3 yields an exponential dichotomy of (6.9) on [0,∞) with constants C, ς∗ > 0 and projections P∞(x̌). By Lemma A.5
we may, without loss of generality, assume that P∞(0) is the projection on Sp(ψ′∞(0)) along Sp(1,J ′(u∞(0))), since the
stable manifold W s(ψ∗) intersects the touch-down curve T+ transversally in ψ∞(0) by (E2). In addition, Lemma A.4 yields
the estimate

‖P∞(x̌) − P∗‖ ≤ Ce−ς∗ x̌, x̌ ≥ 0, (6.13)

where P∗ denotes the spectral projection ofA∗ on Sp(w−) along Sp(w+).

We proceed by constructing a solution operator to the boundary value problem (6.10)-(6.11). Denote by Φ
u,s
∞ (x̌, y̌) the

(un)stable evolution operator of (6.9) under the exponential dichotomy. The bounded, linear solution operator W` : ker(P∗)×
P∞(0)[R2] ×C([0, `],R2)→ C([0, `],R2) given by

W`(a, b, g)[x̌] = Φu
∞(x̌, `)a + Φs

∞(x̌, 0)b +

∫ x̌

0
Φs
∞(x̌, z)g(z)dz −

∫ `

x̌
Φu
∞(x̌, z)g(z)dz,

solves (6.12). Since G is C3 on its domain by (S1), the homoclinic solution κh(x, u) = (vh(x, u), qh(x, u)) to (2.4) is C3 on
its domain R×Uh. Therefore, J is C3 on Uh. We expand J(u) in the neighborhood Uh of u∞(0) with Taylor’s Theorem as

J(u) = J(u∞(0)) +J ′(u∞(0))(u − u∞(0)) + h(u − u∞(0)), u ∈ Uh,

where h(u−u∞(0)) ≤ C|u−u∞(0)|2. Since ψ∞(0) equals (u∞(0),J(u∞(0))) ∈ T+, we have that θ(x̌) = W`(a, b, g)[x̌] satisfies
condition (6.10) if and only if there exists ρ ∈ Uh − u∞(0) such that

Φu
∞(0, `)a + b −

∫ `

0
Φu
∞(0, z)g(z)dz = ρ

(
1

J ′(u∞(0))

)
+

(
0

h(ρ)

)
. (6.14)

For a vector w := (w1,w2) ∈ R2 we denote by w⊥ the vector (−w2,w1), which is perpendicular to w. Taking the inner
product on both sides of (6.14) with ψ′∞(0)⊥ yields〈

Φu
∞(0, `)a −

∫ `

0
Φu
∞(0, z)g(z)dz, ψ′∞(0)⊥

〉
= ρa∞ + h(ρ)u′∞(0). (6.15)
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Since T+ intersects the stable manifold W s(ψ∗) transversally by (E2), the quantity a∞ is non-zero. Therefore, the right
hand side of (6.15) defines an invertible function in ρ on a neighborhood of 0. Hence, there exists an `-independent
neighborhood A0 of 0 ∈ ker(P0)×C([0, `],R2) and a Lipschitz continuous map ρ : A0 → R such that ρ(a, g) satisfies (6.15)
and is bounded by

|ρ(a, g)| ≤ C(e−ς∗`‖a‖ + ‖g‖). (6.16)

Now substitute ρ(a, g) in (6.14) and apply P∞(0) on both sides. This gives rise to Lipschitz continuous map b : A0 →

P∞(0)[R2] satisfying

b(a, g) =
−h(ρ(a, g))
a∞

ψ′∞(0), ‖b(a, g)‖ ≤ C(e−ς∗`‖a‖ + ‖g‖)2, (6.17)

using that P∞(0) projects on Sp(ψ′∞(0)) along Sp(1,J ′(u∞(0))). By construction, θ[x̌] = W`(a, b(a, g), g)[x̌] satisfies (6.14)
and thus (6.10). Similarly, θ[x̌] = W`(a, b(a, g), g)[x̌] satisfies condition (6.11) if there exists β ∈ R such that

(I − P∞(`))a + Φs
∞(`, 0)b(a, g) +

∫ `

0
Φs
∞(`, z)g(z)dz + ψ∞(`) − ψ∗ = β

(
1
0

)
. (6.18)

By estimate (6.13) it holds

‖(I − P∞(`))w+ − w+‖ ≤ Ce−ς∗`. (6.19)

Estimate (6.19) shows that the inner product 〈
(

1
0

)
, [(I − P∞(`))w+]⊥〉 is to leading order given by the non-zero quantity

−ω∗. Thus, taking the inner product on both sides of (6.18) with [(I − P∞(`))w+]⊥ yields a Lipschitz continuous map
β : A0 → R given by

β(a, g) =

〈
Φs
∞(`, 0)b(a, g) +

∫ `

0 Φs
∞(`, z)g(z)dz + ψ∞(`) − ψ∗, [(I − P∞(`))w+]⊥

〉
〈(

1
0

)
, [(I − P∞(`))w+]⊥

〉 ,

satisfying for (a, g), (a1, g) ∈ A0

|β(a, g)| ≤ C(e−ς∗` + ‖g‖ + e−2ς∗`‖a‖), |β(a, g) − β(a1, g)| ≤ Ce−ς∗`‖a − a1‖, (6.20)

by estimate (6.5). Now substitute β(a, g) in (6.18) and apply I − P∞(`) on both sides. This yields

a = (P∞(`) − P∗)a − (I − P∞(`))
[
ψ∞(`) − ψ∗ − β(a, g)

(
1
0

)]
(6.21)

One readily verifies that the right hand side of (6.21) defines a contraction mapping in a for ` > 0 sufficiently large, using
estimates (6.13) and (6.20). Therefore, there exists, by the Banach fixed point theorem, an `-independent neighborhood
Ab of 0 ∈ C([0, `],R2) and a Lipschitz continuous map a : Ab → ker(P∗), such that a(g) satisfies equation (6.21) for each
g ∈ Ab. The map a enjoys the bound

‖a(g)‖ ≤ C(e−ς∗` + ‖g‖). (6.22)

We conclude that the Lipschitz continuous map W1,` : Ab → C([0, `],R2) given by W1,`(g) = W`(a(g), b(a(g), g), g) satis-
fies (6.10)-(6.12). Therefore, θ` is the unique solution to the fixed point problem

θ = W1,`(g0(θ, ·)). (6.23)

By shrinking Ab if necessary, it is not difficult to verify that the right hand side of (6.23) defines indeed a contraction
mapping in θ ∈ C([0, `],R2).

Finally, the above fixed point arguments provide a mechanism to expand θ` in terms of ` � 1. The first observation
is that, a priori, the norm of θ`(x̌) is bounded by Ce−ς∗(2`−x̌) by estimate (6.7). Thus, the map ĝ : [0, `] → R2 defined by
ĝ(x̌) = g0(θ`(x̌), x̌) is bounded by Ce−2ς∗(2`−x̌). We invoke the bounds (6.16), (6.17), (6.20) and (6.22) on the maps ρ, b, β
and a to obtain the estimates

‖a(ĝ)‖ ≤ Ce−ς∗`, |ρ(a(ĝ), ĝ)| ≤ Ce−2ς∗`,

‖b(a(ĝ), ĝ)‖ ≤ Ce−4ς∗`, |β(a(ĝ), ĝ)| ≤ Ce−ς∗`.
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Combining the latter estimates with (6.6), (6.13) and (6.19) yields the expansions

β(a(ĝ), ĝ) =
α∗

〈
w−,w⊥+

〉
e−ω∗`〈(

1
0

)
,w⊥+

〉 + O
(
e−2ς∗`

)
= 2α∗e−ω∗` + O

(
e−2ς∗`

)
,

a(ĝ) = (I − P∗)
[
β(a(ĝ), ĝ)

(
1
0

)]
+ O

(
e−2ς∗`

)
= α∗w+e−ω∗` + O

(
e−2ς∗`

)
.

Substituting these expansions in θ` = W`(a(ĝ), b(a(ĝ), ĝ), ĝ) yields

ψ`(x̌) = ψ∞(x̌) + α∗Φ
u
∞(x̌, `)w+e−ω∗` + O

(
e−ς∗(3`−x̌)

)
, x̌ ∈ [0, `]. (6.24)

Note that P∞(x̌) is the projection on Sp(ψ′∞(x̌)) along Sp
(
Φ∞(x̌, 0)

(
1

J ′(u∞(0))

))
. Thus, we estimate with the aid of (6.6)

Φu
∞(x̌, `)w+ =

〈
w+, ψ

′
∞(`)⊥

〉
a∞

Φ∞(x̌, 0)
(

1
J ′(u∞(0))

)
=
−2ω2

∗α∗e
−ω∗`

a∞
Φ∞(x̌, 0)

(
1

J ′(u∞(0))

)
+ O

(
e−ς∗(2`−x̌)

)
,

(6.25)

for x̌ ∈ [0, `]. Combining (6.24) and (6.25) yields (6.8). �

Remark 6.2. The proof of Proposition 6.1 is based on [44, Theorem 6]. The fundamental difference with [44] is that it
is not the existence of θ` that is of our interest, but the leading-order behavior. Moreover, in contrast to [44], we have to
consider nonlinear boundary conditions.

6.2 Approximation in slow eigenvalue problems
We proceed by constructing an analytic solution ϕ`(x̌, λ) to (6.2) that is close to the solution ϕ∞(x̌, λ) to (4.10) and decays
exponentially on [0, 2`]. At the same time, we establish a leading-order expression for the difference ϕ`(x̌, λ) − ϕ∞(x̌, λ).
We start by collecting some facts about the solution ϕ∞(x̌, λ) to (4.10). Recall that the coefficient matrix of (4.10) converges
as x̌→ ∞ to the asymptotic matrixA∗(λ), defined in (3.9), which is hyperbolic on CΛ. The eigenvalues ofA∗(λ) are given
by ±ω(λ) and corresponding eigenvectors are v±(λ) := (1,±ω(λ)), where

ω(λ) :=
√
∂uH1(u∗, 0, 0) + λ

denotes the principal square root. Note that both ω(λ) and v±(λ) are analytic on CΛ. Choose an open and bounded subset
Cb,Λ ⊂ CΛ. An application of Proposition A.1 yields the estimate

‖eω(λ)x̌ϕ∞(x̌, λ) − v−(λ)‖ ≤ Ce−ς∗ x̌, x̌ ≥ 0, λ ∈ Cb,Λ, (6.26)

where C > 0 is a constant independent of λ.

We are now ready to prove the existence of the desired solution ϕ`(x̌, λ) to (6.2). To state the result, we take δ > 0
such that we have

µ(λ) := Re(ω(λ)) − δ > 0,

for all λ in the bounded set Cb,Λ.

Proposition 6.3. For 0 � ` < ∞, there exists a solution ϕ` : [0, 2`] × Cb,Λ → C
2 to the periodic slow eigenvalue prob-

lem (6.2), satisfying the bounds

‖ϕ`(x̌, λ)‖ ≤ Ce−µ(λ)x̌,

‖ϕ`(0, λ) − ϕ∞(0, λ)‖ ≤ Ce−2 min{ς∗,µ(λ)}`,

‖ϕ`(`, λ) − ϕ∞(`, λ)‖ ≤ Ce−(ς∗+µ(λ))`,

x̌ ∈ [0, 2`],
λ ∈ Cb,Λ,

(6.27)

where C > 0 is a constant independent of ` and λ. Moreover, ϕ`(x̌, ·) is analytic on Cb,Λ for each x̌ ∈ [0, 2`]. Finally, we
have for λ ∈ Cb,Λ the expansion

ϕ`(0, λ) − ϕ∞(0, λ) =∫ `

0
Q∞(λ)T∞(0, y̌, λ) [A`(x̌, λ) −A∞(x̌, λ)]ϕ∞(y̌, λ)dy̌ + R1,`(λ),

(6.28)
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where T∞(x̌, y̌, λ) denotes the evolution operator of system (4.10), Q∞(λ) is an analytic projection along Sp(ϕ∞(0, λ)) and
the remainder R1,` : Cb,Λ → C

2 is bounded as ‖R1,`(λ)‖ ≤ C max
{
e−3ς∗`, e−2µ(λ)`

}
.

Proof. In the following, we denote by C > 0 a constant independent of ` and λ.

Our approach is to regard the periodic slow eigenvalue problem (6.2) as the perturbation

ϕx̌ = (A∞(x̌, λ) +H`(x̌))ϕ, ϕ ∈ C2

of system (4.10) on [0, `] and as the perturbation

ϕx̌ = (A∞(−x̌, λ) +H`(x̌))ϕ, ϕ ∈ C2

of system

ϕx̌ = A∞(−x̌, λ)ϕ, ϕ ∈ C2 (6.29)

on [−`, 0), whereH` : [−`, `]→ Mat2(C) is given by

H`(x̌) :=

A`(x̌, λ) −A∞(x̌, λ), x̌ ∈ [0, `]
A`(2` + x̌, λ) −A∞(−x̌, λ), x̌ ∈ [−`, 0)

.

By estimate (6.7), the norm ofH` satisfies

‖H`‖ ≤ Ce−ς∗`. (6.30)

Let Xb be the space of bounded functions [−`, `] → C2 that are continuous, except for a possible discontinuity at 0. Our
plan is to obtain exponential dichotomies for equations (4.10) and (6.29) first. The exponential dichotomies yield a solution
operator to the inhomogeneous problem

ϕx̌ = A∞(|x̌|, λ)ϕ + G(x̌), ϕ ∈ C2, (6.31)

with G ∈ Xb, using the variation of constants formula. Then, using Lin’s method [23, 36], we construct a solution operator
to (6.31) that satisfies a matching condition at the endpoints x̌ = ` and x̌ = −`. Finally, we substitute H`(x̌)ϕ for G(x̌)
in (6.31) and obtain a solution operator to (6.2). We apply the latter solution operator to the initial condition ϕ∞(0, λ) to
establish the existence of the desired solution ϕ`(x̌, λ).

We establish exponential dichotomies for the homoclinic slow eigenvalue problems (4.10) and (6.29). By Proposition A.3
and estimate (6.7), system (4.10) has for λ ∈ Cb,Λ an exponential dichotomy on [0,∞) with constants C, µ(λ) > 0. The
corresponding projections P∞(x̌, λ) can be chosen to be analytic on Cb,Λ. Moreover, sinceA∗(λ) is hyperbolic with spectral
gap larger than µ(λ) ≥ ς∗ andA∗ is bounded on Cb,Λ, Lemma A.4 and (6.7) yield

‖P∞(x̌, λ) − P∗(λ)‖ ≤ Ce−ς∗ x̌, x̌ ≥ 0, λ ∈ Cb,Λ, (6.32)

where P∗(λ) denotes the analytic spectral projection of A∗(λ) on Sp(v−(λ)) along Sp(v+(λ)). Moreover, since we have
Rsv−(λ) = v+(λ), the identity

RsP∗(λ)Rs = I − P∗(λ) (6.33)

holds for each λ ∈ CΛ. Denote by T∞(x̌, y̌, λ) the evolution operator of system (4.10). By [20, Lemma 2.1.4], T∞(x̌, y̌, ·) is
analytic on CΛ, sinceA∞(x̌, ·) is analytic on CΛ.

Using the reversibility symmetry Rs, system (6.29) can be fully described in terms of system (4.10). Indeed, for the
evolution T∞,r(x̌, y̌, λ) of system (6.29), we have T∞(x̌, y̌, λ) = RsT∞,r(−x̌,−y̌, λ)Rs. Consequently, system (6.29) has for
any λ ∈ Cb,Λ an exponential dichotomy on (−∞, 0] with constants C, µ(λ) > 0. The corresponding projections P∞,r(x̌, λ)
satisfy P∞,r(x̌, λ) = I − RsP∞(−x̌, λ)Rs for x̌ ≤ 0. Moreover, by (6.33), it holds that

‖P∞,r(x̌, λ) − P∗(λ)‖ ≤ Ceς∗ x̌, x̌ ≤ 0, λ ∈ Cb,Λ. (6.34)
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We proceed by constructing a solution operator to the periodic slow eigenvalue problem (6.2). Consider W`(λ) : C2 × C2 ×

Xb → Xb to (6.31), given by

W`(λ)(a, b,G)[x̌] = T u
∞(x̌, `, λ)a + T s

∞(x̌, 0, λ)b +

∫ x̌

0
T s
∞(x̌, y̌, λ)G(y̌)dy̌

−

∫ `

x̌
T u
∞(x̌, y̌, λ)G(y̌)dy̌,

x̌ ∈ [0, `],

W`(λ)(a, b,G)[x̌] = −T s
∞,r(x̌,−`, λ)a −

∫ 0

x̌
T u
∞,r(x̌, y̌, λ)G(y̌)dy̌

+

∫ x̌

−`

T s
∞,r(x̌, y̌, λ)G(y̌)dy̌,

x̌ ∈ [−`, 0),

where T u,s
∞ (x̌, y̌, λ) and T u,s

∞,r(x̌, y̌, λ) denote the (un)stable evolution operators of systems (4.10) and (6.29) under the expo-
nential dichotomies established above. Note that W` is an analytic operator on Cb,Λ, since the evolutions T∞(x̌, y̌, ·) and the
projections P∞(x̌, ·) are analytic. By (6.32) and (6.34), it holds that

‖P∞(`, λ) − P∞,r(−`, λ)‖ ≤ Ce−ς∗`, λ ∈ Cb,Λ. (6.35)

We can conclude that the analytic linear operator A1,`(λ) := I − P∞(`, λ) + P∞,r(−`, λ) is invertible for ` > 0 sufficiently
large. Now define the analytic linear operator A2,`(λ) : C2 × Xb → C

2 by

A2,`(λ)(b,G) = A1,`(λ)−1 (W`(λ)(0, b,G)[−`] −W`(λ)(0, b,G)[`]) .

One readily verifies that the analytic linear operator W2,`(λ) : C2×Xb → Xb defined by W2,`(λ)(b,G) = W`(λ)(A2,`(λ)(b,G), b,G)
is linear and satisfies

W2,`(λ)(b,G)[−`] = W2,`(λ)(b,G)[`], b ∈ C2,G ∈ Xb, λ ∈ Cb,Λ. (6.36)

Moreover, we have the estimates

‖A2,`(λ)(b,G)‖ ≤ C(e−µ(λ)`‖b‖ + ‖G‖),

‖W2,`(λ)(b,G)[x̌]‖ ≤

C(e−µ(λ)x̌‖b‖ + ‖G‖), x̌ ∈ [0, `],
C(e−µ(λ)(2`+x̌)‖b‖ + ‖G‖), x ∈ [−`, 0),

, (6.37)

for b ∈ C2,G ∈ Xb, λ ∈ Cb,Λ. Denote by W3,`(λ) : Xb → Xb the analytic linear map W3,`(λ)(w) = W2,`(λ)(0,H` · w), where ·
denotes pointwise multiplication, i.e. (H` · w)[x̌] = H`(x̌)w(x̌). By (6.30), we have the estimate,

‖W3,`(λ)‖ ≤ Ce−ς∗`, λ ∈ Cb,Λ.

Hence for ` > 0 sufficiently large, the map I−W3,`(λ) is invertible. Finally, consider the analytic linear map W4,`(λ) : C2 →

Xb given by W4,`(λ)(b) = (I −W3,`(λ))−1(W2,`(λ)(b, 0)). One readily checks that

W4,`(λ)(b) = W2,`(λ)(b,H` ·W4,`(λ)(b)), b ∈ C2, λ ∈ Cb,Λ (6.38)

is satisfied. Define the map ζ : [0, 2`)→ [−`, `] by

ζ(x̌) =

x̌, x̌ ∈ [0, `]
x̌ − 2`, x̌ ∈ (`, 2`)

.

By identities (6.36) and (6.38), we have W4,`(λ)(b)[`] = W4,`(λ)(b)[−`]. We conclude that, for every λ ∈ Cb,Λ, b ∈ C2 and
` > 0 sufficiently large, W4,`(λ)(b)[ζ(x̌)] is a solution to (6.2) on [0, 2`) that can be extended to [0, 2`].

Next, we apply the solution operator W4,` to initial condition bλ := ϕ∞(0, λ) ∈ C2 and consider the solution

ϕ`(x̌, λ) := W4,`(λ)(bλ)[ζ(x̌)]

to (6.2). Note that ϕ`(x̌, ·) is analytic on Cb,Λ, since both W4,` and ϕ∞(0, λ) are analytic on Cb,Λ. Using (6.30), (6.37) and
identity (6.38), we estimate

‖ϕ`(x̌, λ)‖ ≤ ‖W2,`(λ)(bλ, 0)[ζ(x̌)]‖ + ‖W2,`(λ)(0,H` ·W4,`(λ)(bλ))[ζ(x̌)]‖

≤ C
[
e−µ(λ)x̌ + e−ς∗`

∫ 2`

0

(
e−µ(λ)|x̌−y̌| + e−µ(λ)(|`−x̌|+|`−y̌|)

)
‖ϕ`(y̌, λ)‖dy̌

]
,

(6.39)
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for x̌ ∈ [0, 2`], λ ∈ Cb,Λ. Application of [4, Lemma III.2.1] on the integral inequality (6.39) yields

‖ϕ`(x̌, λ)‖ ≤ Ce−µ(λ)x̌, x̌ ∈ [0, 2`], λ ∈ Cb,Λ, (6.40)

provided ` > 0 is sufficiently large. Moreover, we approximate with the aid of (6.35)

‖A2,`(λ)(bλ, 0) − T s
∞(`, 0, λ)bλ‖

= ‖(P∞(`, λ) − P∞,r(−`, λ))A1,`(λ)−1T s
∞(`, 0, λ)bλ‖ ≤ Ce−(µ(λ)+ς∗)`

(6.41)

for λ ∈ Cb,Λ. On the other hand, using (6.30) and (6.40), we estimate

‖W2,`(λ)(0,H` ·W4,`(λ)(bλ))[`]‖ ≤ Ce−ς∗`
∫ 2`

0
e−µ(λ)|`−y̌|‖ϕ`(y̌, λ)‖dy̌

≤ Ce−(µ(λ)+ς∗)`
(6.42)

for λ ∈ Cb,Λ. Using identity (6.38) and estimates (6.41) and (6.42), we expand ϕ`(x̌, λ) at x̌ = ` as follows:

ϕ`(`, λ) = W2,`(λ)(bλ, 0)[`] + W2,`(λ)(0,H` ·W4,`(λ)(bλ))[`]

= T s
∞(`, 0, λ)bλ + O

(
e−(µ(λ)+ς∗)`

)
= ϕ∞(`, λ) + O

(
e−(µ(λ)+ς∗)`

)
for λ ∈ Cb,Λ. Similarly, using identity (6.38) and estimates (6.7), (6.30) and (6.41), we expand ϕ`(x̌, λ) at x̌ = 0 as follows
for λ ∈ Cb,Λ:

ϕ`(0, λ) = W2,`(λ)(bλ,H` ·W2,`(λ)(bλ, 0))[0]
+ W2,`(λ)(0,H` ·W2,`(λ)(0,H` ·W4,`(λ)(bλ)))[0]

= P∞(0, λ)bλ −
∫ `

0
T u
∞(0, y̌, λ)H`(y̌)T s

∞(y̌, 0, λ)bλdy̌ + O
(
e−3ς∗`, e−2µ(λ)`

)
= ϕ∞(0, λ) −

∫ `

0
T u
∞(0, y̌, λ)H`(y̌)ϕ∞(y̌, λ)dy̌ + O

(
e−3ς∗`, e−2µ(λ)`

)
= ϕ∞(0, λ) + O

(
e−2ς∗`

)
,

where we used that µ(λ) > ς∗. �

Since system (6.2) is Rs-reversible at x̌ = `, ϕr
`(x̌, λ) = Rsϕ`(2` − x̌, λ) is a also solution to (6.2). The next proposition

shows that ϕ`(x̌, λ) and ϕr
`(x̌, λ) are linearly independent, and provides an approximation for their WronskianW`(λ).

Corollary 6.4. For 0 � ` < ∞, the (x̌-independent) WronskianW`(λ) = det(ϕ`(x̌, λ) | ϕr
`(x̌, λ)) is approximated by

‖W`(λ) − E`(λ)‖ ≤ Ce−(2µ(λ)+ς∗)`, λ ∈ Cb,Λ, (6.43)

where C > 0 is a constant independent of ` and λ and E` : Cb,Λ → C is the non-zero analytic map given by E`(λ) =

2ω(λ)e−2ω(λ)`.

Proof. Combining estimates (6.26) and (6.27) yields∣∣∣det (ϕ`(`, λ) | Rsϕ`(`, λ)) − e−2ω(λ)` det (v−(λ) | Rsv−(λ))
∣∣∣ ≤ Ce−(2µ(λ)+ς∗)`,

which concludes the proof. �

6.3 Conclusion
With the preparatory work done in the previous sections, we are able to prove Theorems 4.3 and 4.5 using the aforemen-
tioned approach.
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Proof of Theorem 4.3. In the following, we denote by C > 0 a constant independent of `. First, using (6.7) and (6.27),
we approximate ∣∣∣K`(0) − E∞,s(0)

∣∣∣ ≤ Ce−2ς∗`,

where K`(λ) is defined in (6.4). Combining the latter with (6.3) and (6.43) yields∣∣∣e−iνE`,s(0, eiν)W`(0) − E∞,s(0)
∣∣∣ ≤ Ce−2ς∗`, ν ∈ R. (6.44)

On the other hand, by (6.7) it holds that

|a` − a∞|, |w` − w∞| ≤ Ce−2ς∗`. (6.45)

Finally, applying Proposition 3.3, (6.43), (6.44) and (6.45) on identity (6.1) establishes the desired approximation (4.6). �

Proof of Theorem 4.5. In the following, we denote by C > 0 a constant independent of ` and λ. Let λ∞ ∈ CΛ be a simple
zero of E∞,s satisfying (4.8). Then, we take Cb,Λ ⊂ CΛ an open and bounded neighborhood of λ∞ of E∞,s such that it holds
Re(ω(λ)) > ω∗ for all λ ∈ Cb,Λ. We chose δ > 0 such that

2δ < ς∗, µ(λ) := Re(ω(λ)) − δ > ω∗,

for all λ in Cb,Λ.

We are looking for zeros of E`,s(·, γ) close to λ∞ for 0 � ` < ∞ and γ ∈ S 1. In other words, we are looking for
solutions λ ∈ Cb,Λ in a neighborhood of λ∞, to the equation

0 = E`,s(λ, γ). (6.46)

By multiplying (6.46) with the non-zero (see Corollary 6.4) quantity γ−1W`(λ) on both sides, we obtain the equivalent
equation

0 = 2Re(γ)W`(λ) − K`(λ), λ ∈ Cb,Λ, γ ∈ S 1, (6.47)

see also (6.3). Using (6.7) and (6.27) we approximate∣∣∣K`(λ) − E∞,s(λ)
∣∣∣ ≤ Ce−2ς∗`, λ ∈ Cb,Λ. (6.48)

Note that bothW` and K` are analytic on Cb,Λ, since ϕ`(x̌, ·) and Υ(u, ·) are analytic. By shrinking Cb,Λ if necessary, the
approximations (6.43) and (6.48) provide bounds for the derivatives of the analytic mapsW` and K` via the estimates∣∣∣∣∣∣ ∂i

∂λi

(
K`(λ) − E∞,s(λ)

)∣∣∣∣∣∣ ≤ Ce−2ς∗`,∣∣∣∣∣∣ ∂i

∂λi (W`(λ) − E`(λ))

∣∣∣∣∣∣ ≤ Ce−(2µ(λ)+ς∗)`,

i = 0, 1, 2, λ ∈ Cb,Λ. (6.49)

Consider the analytic function η` : Cb,Λ ×C→ C given by η`(λ, γr) = 2γrW`(λ)−K`(λ). LetD ⊂ C be open and bounded
such that it contains the closed unit circle. Provided ` > 0 is sufficiently large, we have by (6.43) and (6.48)

|η`(λ, γr) + E∞,s(λ)| < |E∞,s(λ)|,

for each γr ∈ D and λ on the boundary of some sufficiently small disk B ⊂ Cb,Λ around λ∞. Thus, by Rouché’s Theorem,
there exists for each γr ∈ D a unique zero λ`(γr) ∈ B of η`(·, γr), which satisfies

|λ`(γr) − λ∞| ≤ Ce−2ς∗`. (6.50)

By estimate (6.49), it holds that ∣∣∣∂λη`(λ, γr) − E′∞,s(λ)
∣∣∣ ≤ Ce−2ς∗`, λ ∈ B, γr ∈ D.
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Hence, using the (analytic) Implicit Function Theorem and the fact that E′∞,s(λ∞) , 0, we conclude that the map λ` : D → C
is analytic. Implicit differentiation of identity (6.47) yields the derivatives

λ′`(γr) =
2W`(λ`(γr))

K ′
`
(λ(γr)) − 2γrW

′
`
(λ(γr))

,

λ′′` (γr) = λ′`(γr)
4W′

`(λ`(γr)) −
[
K ′′` (λ(γr)) − 2γrW

′′
` (λ(γr))

]
λ′`(γr)

K ′
`
(λ(γr)) − 2γrW

′
`
(λ(γr))

,

γr ∈ D.

Approximating these derivatives with (6.50) and (6.49) leads to (4.11). Next, we expand K` in an `-independent neighbor-
hood V∞ of λ∞ with Taylor’s Theorem as

K`(λ) = K`(λ∞) + (λ − λ∞)K ′`(λ∞) + K̂`(λ − λ∞), λ ∈ V∞, (6.51)

with ‖K̂`(λ− λ∞)‖ ≤ C|λ− λ∞|2. By (6.50) and the `-independence of V∞, we can substitute λ`(γr) for λ in (6.51) for ` > 0
sufficiently large. Thus, using estimates (6.43), (6.50) and (6.49), we arrive at

0 = 2γrW`(λ`(γr)) − K`(λ`(γr))

= −K`(λ∞) − (λ`(γr) − λ∞)E′∞,s(λ∞) + O
(
e−4ς∗`, e−2ω(λ∞)`

)
.

(6.52)

Hence, we obtain the desired leading-order expression for λ`(γr) − λ∞ by calculating the leading order of K`(λ∞). First,
since G is C3 on its domain by (S1), the solutions κh(x, u) and Xin(x, u, λ) to (2.4) and to (3.7) are C2 on their domains
R × Uh and R × Uh × Cb,Λ. Therefore, Υ is C2 on Uh × Cb,Λ. Thus, by shrinking the `− and λ-independent neighborhood
U∞ of u∞(0) if necessary, we expand

Υ(u, λ) = Υ(u∞(0), λ) + ∂uΥ(u∞(0), λ)(u − u∞(0)) + Υ̃(u, λ), u ∈ U∞, (6.53)

where ‖Υ̃(u, λ)‖ ≤ C|u − u∞(0)|2. With the aid of identities (6.8), (6.27) and (6.53), we expand

K`(λ) = det (ϕ`(0, λ) − ϕ∞(0, λ) | Υ(u∞(0), λ)Rsϕ∞(0, λ))

+ det (ϕ∞(0, λ) | Υ(u∞(0), λ)Rs (ϕ`(0, λ) − ϕ∞(0, λ)))

+ (u`(0) − u∞(0)) det (ϕ∞(0, λ) | ∂uΥ(u∞(0), λ)Rsϕ∞(0, λ))

+ E∞,s(λ) + O
(
e−4ς∗`

)
= 2 det (ϕ`(0, λ) − ϕ∞(0, λ) | Υ(u∞(0), λ)Rsϕ∞(0, λ)) + E∞,s(λ)

−
2ω2
∗α

2e−2ω∗`

a∞
det (ϕ∞(0, λ) | ∂uΥ(u∞(0), λ)Rsϕ∞(0, λ)) + O

(
e−3ς∗`

)
,

(6.54)

where we used [Υ(u∞(0), λ)]−1 = Υ(u∞(0), λ)Rs, det(Υ(u∞(0), λ)) = 1, det(Rs) = −1 and the bilinearity of the determinant.
Our aim is to approximate ϕ`(0, λ∞) − ϕ∞(0, λ∞) in (6.54). First, recall that H1 is C3 on its domain. Fix x̌ ∈ [0, `]. Using
Taylor’s Theorem and estimate (6.7), we approximate

|∂uH1(u`(x̌),0, 0) − ∂uH1(u∞(x̌), 0, 0) − ∂uuH1(u∞(x̌), 0, 0)(u`(x̌) − u∞(x̌))| ≤ Ce−2ς∗(2`−x̌). (6.55)

By estimate (6.8) and (6.55), we obtain

A`(x̌, λ) −A∞(x̌, λ)

= −
2ω2
∗α

2
∗e
−2ω∗`∂uuH1(u∞(x̌), 0, 0)ũ∞(x̌)

a∞

(
0 0
1 0

)
+ O

(
e−ς∗(3`−x̌)

) (6.56)

for x̌ ∈ [0, `]. Subsequently, we combine (6.28) and (6.56) to obtain a leading-order approximation of ϕ`(0, λ) − ϕ∞(0, λ)
for λ ∈ Cb,Λ:

ϕ`(0, λ) − ϕ∞(0, λ) = −

∫ `

0
Q∞(λ)T∞(0, y̌, λ) (A`(x̌, λ) −A∞(x̌, λ))ϕ∞(y̌, λ)dy̌

+ O
(
e−3ς∗`, e−2µ(λ)`

)
(6.57)

=
2ω2
∗α

2
∗e
−2ω∗`

a∞

∫ ∞

0
Q∞(λ)T∞(0, y̌, λ)Z(y̌, λ)dy̌ + O

(
e−3ς∗`, e−2µ(λ)`

)
,
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where we denote

Z(x̌, λ) :=
(

0
∂uuH1(u∞(x̌), 0, 0)ũ∞(x̌)û∞(x̌, λ)

)
, x̌ ≥ 0.

Since the determinant E∞,s(λ∞) = det (ϕ∞(0, λ) | Υ(u∞(0), λ)Rsϕ∞(0, λ)) equals 0, the vectors Υ(u∞(0), λ∞)Rsϕ∞(0, λ∞)
and ϕ∞(0, λ∞) are scalar multiples of each other. As the u-coordinate of both vectors are equal, we have in fact ϕ∞(0, λ∞) =

Υ(u∞(0), λ∞)Rsϕ∞(0, λ∞). Moreover, Q∞(λ) is a projection along Sp(ϕ`(0, λ)). Therefore, the determinant det(Q∞(λ)w |
ϕ`(0, λ)) equals det(w | ϕ`(0, λ)) for any vector w ∈ C2 and λ ∈ Cb,Λ. Using the latter two observations and the equality
det(T∞(0, y̌, λ)) = 1, we simplify the determinant

det (Q∞(λ∞)T∞(0, y̌, λ∞)Z(y̌, λ∞) | Υ(u`(0), λ∞)Rsϕ`(0, λ∞))

= det (T∞(0, y̌, λ∞)Z(y̌, λ∞) | ϕ`(0, λ∞)) = det (Z(y̌, λ∞) | ϕ`(y̌, λ∞)) .
(6.58)

Finally, using (6.54), (6.57) and (6.58), we rewrite (6.52) as

λ`(γr) − λ∞ = −
K`(λ∞)
E′∞,s(λ∞)

+ O
(
e−4ς∗`

)
=

2ω2
∗α

2
∗e
−2ω∗`

a∞E
′
∞,s(λ∞)

(
det (ϕ∞(0, λ∞) | ∂uΥ(u∞(0), λ∞)Rsϕ∞(0, λ∞))

−2
∫ ∞

0
det (Z(y̌, λ∞) | ϕ`(y̌, λ∞)) dy̌

)
+ O

(
e−3ς∗`, e−2µ(λ∞)`

)

=
2ω2
∗α

2e−2ω∗`

a∞E
′
∞,s(λ∞)

(
2
∫ ∞

0
∂uuH1(u∞(x̌), 0, 0)ũ∞(x̌) [û∞(x̌, λ∞)]2 dx̌

+ [û∞(0, λ∞)]2 ∂uG(u∞(0), λ∞)
)

+ O
(
e−3ς∗`, e−2µ(λ∞)`

)
,

which concludes the proof of identity (4.9). �

7 Discussion and Outlook
Busse balloons have first been introduced as central ‘bridge’ towards complex pattern dynamics in the context fluid me-
chanics [2]. Being defined as the region in (parameter, wave number)-space in which stable spatially periodic patterns exist,
it thus is a priori a relevant concept in any spatially extended and thus potentially pattern forming evolutionary system. In
fact, in recent years, Busse balloons appeared as organizing center in the literature on desertification dynamics in spatial
ecosystems as modeled by reaction-diffusion systems: it serves as a guide for the evolution of vegetation patterns from a ho-
mogeneously vegetated state to the bare soil ‘catastrophe’ under worsening climatological circumstances [37, 39, 40, 43].
Moreover, it was found in these papers that the final ecological catastrophe takes place amid long-wavelength patterns,
i.e. near the homoclinic limit – the (idealized) ecological oasis state – considered in this work. These simulations cor-
roborated earlier observations in the literature on spatially periodic patterns in classical reaction-diffusion systems as the
Gray-Scott and Gierer-Meinhard models [10, 42]: the homoclinic k ↓ 0 limit – i.e. the ‘homoclinic tip’ of the Busse balloon
– comes up as the most stable spatially ‘periodic’ pattern, in the sense that it is the last ‘periodic’ pattern to destabilize
as parameters vary. This phenomenon was first noted in simulations and subsequently conjectured as driving mechanism
by Wei-Ming Ni in [25] in the context of the Gierer-Meinhardt model. Although this was not yet noticed in [25], later
work/simulations also indicated that the destabilization of the limiting homoclinic pattern always is of Hopf type. Here,
we have included this in our formulation of Ni’s conjecture.

In this paper we have investigated Ni’s conjecture in full analytical detail in a broad class of (singularly perturbed, 2-
component, slowly nonlinear) reaction-diffusion equations. We have shown that a Hopf destabilization of a the homoclinic
k = 0 pattern necessarily induces a fine-structure of the boundary of the Busse balloon near the homoclinic limit – called
the ‘Hopf dance’ [10, 43] – formed by successive pieces of two countably many times intersecting curves of distinct Hopf
bifurcations, H+1 and H−1. Moreover, we have established by further refined asymptotic expansions – based on the ana-
lytical methods developed in [7, 11] – that this Hopf dance must be accompanied by a ‘belly dance’, which means that all
intersections of H+1 and H−1 induce co-dimension 2 points on the boundary of the Busse balloon. Especially this latter
finding is surprising, as it implies a correlation of two geometrically independent characteristics, here in the form of natural
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orientation of the leading order shape of the critical destabilizing spectral curve, which is counter-intuitive.

The stability analysis presented in this paper is a spectral analysis, which implies that our findings only provide linear
mechanisms by which near homoclinic spatially periodic patterns are destabilized. Of course, the simulations of reaction-
diffusion models that inspired our work show – better: approximate – the nonlinear dynamics of the system beyond these
destabilizations, i.e. these simulations follow the bifurcations induced by the linear mechanisms established here. In other
words, our analysis – for instance – shows that spatially periodic patterns are destabilized by perturbations with approxi-
mately twice the wavelength of the pattern itself if the boundary of the Busse balloon is crossed through the curveH−1 and
thus that neighboring pulses initially evolve out of phase.

However, to understand the full long-term dynamics, i.e. to track the bifurcations induced by crossing H−1 in the full
nonlinear PDE, a nonlinear analysis is required, because the dominant behavior of a destabilized system in the long run is
not dictated by its linear part. At present this is a very open, challenging – and also extremely relevant – line of research.
The literature by which the long-term behavior of a bifurcation of nearly homoclinic patterns can be explicitly determined
is strongly limited, but a deeper understanding of the bifurcations associated to crossing the boundary of the Busse bal-
loon could have a direct ecological interpretation: the simulations of [1, 39, 40] show that spatially periodic patterns have
a remarkable tendency to evolve towards patterns with only half the number of pulses (with double wavelength) as the
boundary of the Busse balloon is crossed. This dominance of the ‘period doubling bifurcation’ is yet in essence not under-
stood and our present analysis only provides the very first step towards a deeper understanding.

Finally, we note that we have focused in this work on reversibly symmetric pulse solutions to the general class of sin-
gularly perturbed 2-component reaction-diffusion systems (1.1). As already mentioned in the introduction, our choice to
study singularly perturbed systems is partly motivated by the fact that many models in the literature have this singularly
perturbed nature and partly by the fact that this nature enables us to perform the (detailed) analysis necessary for under-
standing destabilization mechanisms near the homoclinic limit. However, we have thus also restricted our analysis to the
class of symmetric solutions in 2-component systems, which induces two natural questions: are the structures uncovered
here special for N-component models with necessarily N = 2 and/or for periodic patterns that are necessarily symmetric?

Without going into any further details, we conjecture that the Hopf and belly dance mechanisms will appear naturally
near a Hopf-type homoclinic tip of a Busse balloon in any reversible N ≥ 2-component reaction-diffusion system. In fact,
we expect that this could be worked out in full analytical detail by application of the methods developed in [7] that work
for multi-component systems.

On the other hand, the Hopf-dance mechanism in the form presented here is expected to break down – or better: to change
significantly – as soon as the reversible symmetry of reaction-diffusion model (1.1) is broken. This happens for instance
as an advection term is included in the model (which appears naturally in ecosystems, where the advection term models
the impact of non-flat terrains on the vegetation dynamics [1, 21, 37, 39, 40, 43]). In general, the spectrum associated with
periodic wave trains to reaction-advection-diffusion systems consists of continuous images of the unit circle S 1 [14]. The
presence of a reversibility symmetry in the eigenvalue problem yields degenerate spectrum: the image of S 1 covers each
curve of spectrum twice. This degeneracy drives the Hopf dance and the non-degeneracy induced by advection terms is
thus expected to affect the destabilization mechanisms discussed here. Numerical investigations in the extended Klaus-
meier system [43] indicate that the Hopf and belly dance destabilization mechanisms indeed break down in the presence of
O(1)-advection: the boundary of the Busse balloon near the homoclinic tip consists no longer of curves H±1 of ±1-Hopf
instabilities in the limit ε→ 0 and the codimension 2 points disappear. Instead, the boundary is smooth in the limit ε→ 0
and consists of oscillating curves of γ-Hopf instabilities, where γ can be any Floquet multiplier in S 1. However, this has
not been investigated analytically. It is expected to be especially interesting to understand and follow the transition from
the reversible case to the non-reversible case by the introduction of small advective – reversibility breaking – effects.

A Prerequisites

A.1 Asymptotically constant systems
The eigenvalue problems arising in our analysis are non-autonomous linear systems of the form

ϕx = A(x, λ)ϕ, ϕ ∈ Cn, (A.1)

depending analytically on a spectral parameter λ. Often we are looking for the eigenvalues λ ∈ C for which (A.1) admits
a non-trivial bounded (or exponentially localized) solution. Therefore, we are interested in the asymptotic behavior of
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solutions to (A.1).

Linearizing about pulse type solutions leads to eigenvalue problems (A.1) that have an asymptotically constant coeffi-
cient matrix. In such systems, the asymptotics of solutions to (A.1) is dictated by the behavior of the constant coefficient
system at ±∞ – see also Proposition A.3. The following result concerns the construction of a unique solution with the
highest decay rate to an asymptotically constant system.

Proposition A.1. [28, Proposition 1.2] Let n ∈ Z>0,Ω ⊂ C open and A ∈ C([0,∞) × Ω,Matn×n(C)) such that A(x, ·) is
analytic on Ω for each x ≥ 0. Suppose that there exists µ,K > 0 and A∞ : Ω→ Matn×n(C) analytic such that

‖A(x, λ) − A∞(λ)‖ ≤ Ke−µx, x ≥ 0, λ ∈ Ω. (A.2)

Furthermore, suppose that the eigenvalue µ(λ) of A∞(λ) of smallest real part is simple for all λ ∈ Ω. Denote by v(λ) an
analytic eigenvector of A∞ corresponding to µ(λ). For any compact subset Ωb ⊂ Ω, there exists C > 0, independent of λ,
and a unique solution y(x, λ) to (A.1) satisfying∥∥∥e−µ(λ)xy(x, λ) − v(λ)

∥∥∥ ≤ Ce−µx, x ≥ 0, λ ∈ Ωb.

The solution y(x, ·) is analytic on the interior of Ωb for each x ≥ 0.

A.2 Exponential dichotomies
Exponential dichotomies enable us to track solutions in linear systems by separating the solution space in solutions that
either decay exponentially in forward time or else in backward time. Moreover, their associated projections inherit analytic
dependence of the problem on a spectral parameter λ. Therefore, they provide a natural framework [34] to capture the
linear dynamics of eigenvalue problems of the form (A.1) arising in our analysis.

Definition A.2. Let n ∈ Z>0, J ⊂ R an interval and A ∈ C(J,Matn×n(C)). Denote by T (x, y) the evolution operator of

ϕx = A(x)ϕ, ϕ ∈ Cn. (A.3)

Equation (A.3) has an exponential dichotomy on J with constants K, µ > 0 and projections P(x) : Cn → Cn if for all x, y ∈ J
it holds that

• P(x)T (x, y) = T (x, y)P(y);

• ‖T (x, y)P(y)‖ ≤ Ke−µ(x−y) for x ≥ y;

• ‖T (x, y)(I − P(y))‖ ≤ Ke−µ(y−x) for y ≥ x.

Let P(x) be the family of projections associated with an exponential dichotomy on J. For each x, y ∈ J, we denote by
T s(x, y) = T (x, y)P(y) and T u(x, y) = T (x, y)(I − P(y)) the stable and unstable evolution of system (A.3), leaving the pro-
jection P(y) implicit.

An autonomous linear system ϕx = A0ϕ, where A0 ∈ Matn×n(C) is hyperbolic, admits an exponential dichotomy on R.
This result can be extended to non-autonomous systems (A.3). If the coefficient matrix A(x) converges to a hyperbolic
matrix A±∞ as x → ±∞, then exponential dichotomies for (A.3) on the half-lines [0,∞) and (−∞, 0] can be constructed
from the exponential dichotomies of the asymptotic systems ϕx = A±∞ϕ.

Proposition A.3. [26, Lemma 3.4], [35, Theorem 1] Let n ∈ Z>0, Ω ⊂ C open and A ∈ C([0,∞) × Ω,Matn×n(C))
such that A(x, ·) is analytic on Ω for each x ≥ 0. Suppose that there exist constants µ,K, α > 0 and an analytic map
A∞ : Ω→ Matn×n(C) such that

i. Identity (A.2) is satisfied for each x ≥ 0 and λ ∈ Ω;

ii. For any λ ∈ Ω the matrix A∞(λ) is hyperbolic with spectral gap larger than α.

Then, system (A.1) admits for any λ ∈ Ω an exponential dichotomy on [0,∞) with constants C(λ), α > 0 and projections
P(x, λ), whose rank equals the dimension of the stable eigenspace of A∞(λ). The projections P(x, ·) are analytic on Ω for
each x ≥ 0. Moreover, the map λ 7→ C(λ) is continuous.
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In addition, we have that the associated dichotomy projections converges to the spectral projection of the hyperbolic matrix
A∞(λ).

Lemma A.4. [26, Lemma 3.4] Let n ∈ Z>0 and A ∈ C([0,∞),Matn×n(C)). Suppose equation (A.3) admits an exponential
dichotomy on [0,∞) with constants K, µ > 0 and projections P(x). In addition, suppose there exists a hyperbolic matrix
A0 ∈ Matn×n(C) with spectral gap larger than µ such that

‖A0‖ ≤ K, ‖A(x) − A0‖ ≤ Ke−µx, x ≥ 0.

Then, there exists a constant C > 0, depending on n, µ and K only, such that

‖P(x) − P0‖ ≤ Ce−µx, x ≥ 0,

where P0 is the spectral projection onto the stable eigenspace of A0.

Exponential dichotomies on an interval J ⊂ R are in general not unique. If J = [0,∞), then the range of the dichotomy
projection corresponds to the space of solutions decaying in forward time and is therefore uniquely determined, whereas
its kernel can be any complement.

Lemma A.5. [33, Lemma 1.2(ii)] Let n ∈ Z>0 and A ∈ C([0,∞),Matn×n(C)). Suppose equation (A.3) admits an exponen-
tial dichotomy on [0,∞) with projections P(x). If Y ⊂ Cn satisfies Y ⊕ P(0)[Cn] = Cn, then (A.3) admits an exponential
dichotomy on [0,∞) with projections Q(x), where Q(0) is the projection on P(0)[Cn] along Y.
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