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1 The Picard group

Let X be a smooth irreducible projective variety over a field k.
A prime divisor on X is an irreducible closed subvariety of codimension 1
defined over k.
We define the divisor group of X, denoted by Div(X), as the free abelian
group generated by the prime divisors:

Div(X) :=
{∑

nZ · Z | nZ ∈ Z, nZ = 0 ∀∀Z
}
.

Remark 1.1. Prime divisors may be singular.

Remark 1.2. If the field k is not algebraically closed then prime divisors may
be geometrically reducible.

Since X is a smooth variety, every prime divisor Z induces a discrete
valuation vZ : k(X) → Z on the function field k(X) of X. Using these
valuations we define the map

div : k(X)→ Div(X)

by sending the function f ∈ k(X) to the divisor div(f) :=
∑
vZ(f) · Z.

Proposition 1.3. The map div : k(X)→ Div(X) is well defined.

Proof. Let f be an element of the function field. Then f can be expressed
as a ration of polynomials. Both numerator and denominator of f have
only finitely many irreducible factors. The prime divisors corresponding to
the curves defined by those factors (finitely many) are exactly those with
non-zero coefficients in div(f).

The elements in the image of the map div, denoted by PDiv(X), are
called principal divisors of X.

Given two divisors D1, D2 ∈ Div(X), we say they are linearly equivalent,
denoted by D1 ∼lin D2, if D1 −D2 is a principal divisor.
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We define the Picard group of X as

Pic(X) := Div(X)/ ∼lin= Div(X)/PDiv(X).

Remark 1.4. In more generality, Pic(X) is defined as the group of isomorphic
classes of line bundles of X, with the sum being the tensor product of sheaves
and the inverse being the dual. Yet the two definitions are equivalent if X is
smooth.

Example 1.5. Let X ⊆ Pn be a smooth variety. A hyperplane section of X
is the intersection of X with an hyperplane. Any two hyperplane sections are
linearly equivalent. In order to see it consider two hyperplanes H1 and H2.
They are defined by two linear equations, so we can write Hi : li = 0, where
li, i = 1, 2 is a linear polynomial. Then D1 −D2 = div(l1/l2) ∈ PDiv(X).

2 Intersection numbers

Let X be a smooth surface over an algebraically closed field k.
Let C1, C2 ⊆ X be two curves on X, given by the equations fi = 0, with
i = 1, 2 respectively.
We say that C1 and C2 intersects transversally at P ∈ C1∩C2 if the maximal
ideal of the local ring OX,P is generated by f1 and f2.

Let D1, D2 be two prime divisors intersecting transversally, the we define
their intersection number as

D1 ·D2 = #(D1 ∩D2).

Proposition 2.1. Let X be a smooth surface.
The definition of intersection numbers extends to a symmetric bilinear pairing

Div(X)×Div(X)→ Z

that respects linear equivalence.

Proof. See [Har77, Theorem V.1.1, p. 357].

Corollary 2.2. Let X be a smooth surface.
The definition of intersection numbers extends uniquely to a symmetric bi-
linear pairing

Pic(X)× Pic(X)→ Z.

Proof. It follows from the fact that the intersection respects the linear equiv-
alence.
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Let [D1] and [D2] two classes of divisors in Pic(X). We say that [D1] and
[D2] are numerically equivalent, denoted by [D1] ∼num [D2] if [D1] · [E] =
[D2] · [E] for any class of divisor [E] ∈ Pic(X).
We define

Picn(X) := {[D] ∈ Pic(X) | D ∼num 0}

and
Num(X) := Pic(X)/Picn(X).

From now on we will drop the notation [D] to denote a class of a divisor
in Pic(X) and we will only write D, specifying whether it is to be viewed as
an element of Pic(X) or Div(X).

Remark 2.3. Let X be a smooth surface and let D an element of Pic(X), its
self-intersection number is D2 = D ·D.
If X ⊆ Pn is a projective smooth variety and H ⊆ X is a hyperplane section,
then H2 is called the degree of X.

Example 2.4. Let X ⊆ P3 be a surface defined by a polynomial of degree d,
and let H be a plane section on X. Then H2 = d. Indeed, if H ′ is another
plane sections intersecting H transversally, we have that H2 = H · H ′ =
#(X ∩H ∩H ′) = #((H ∩X) ∩ (H ∩H ′)). But H ∩X is a plane curve of
degree d and H ∩H ′ is a line. Then, by Bezout’s theorem, H2 = d.

Example 2.5. If X ⊆ Pn is a smooth surface and C ⊂ X is a curve on X,
then C ·H equals the degree of the curve.

Theorem 2.6 (Adjunction formula). If C is a nonsingular curve of genus g
on the surface X, and if K is the canonical divisor of X, then

2g − 2 = C · (C +K).

Proof. See [Har77, Proposition V.1.5].

Theorem 2.7 (Hurwitz’s formula). Let f : X → Y be a finite covering of
nonsingular curves. Let n be the degree of f , then

2g(X)− 2 = n(2g(Y )− 2) +
∑
P∈X

(eP − 1).

Proof. See [Har77, Corollary IV.2.4].
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3 Complex structure on Pic(X)

Let X be a projective smooth complex variety, and consider the exponential
map of sheaves

0 // Z // OX // O×X // 0 ,

where the first map is defined by sending n to the constant function 2πin,
and the second map is the exponential map f 7→ ef .

The exponential sequence induces the following exact sequence of coho-
mology groups:

. . . // H1(X(C),Z) // H1(X,OX) // H1(X,O×X) // H2(X(C),Z) // . . . ,

Proposition 3.1. 1. H1(X,O×X) = Pic(X).

2. H1(X,OX) is a finite dimensional C-vector space and H1(X(C),Z) is
a lattice in it.

3. Let Pic0(X) be he image of H1(X,OX) in Pic(X). Then Pic0(X) is a
torus and Pic0(X) ⊆ Picn(X).

Proof. 1. See [Har77, Exercise III.4.5].

2. H1(X(C),Z) is a Z-module.

3. The first statement follows trivially from point 2.
For the second statemente, just notice that the abelian group Pic0(X)
is the image of C-vector space, therefore it is divisible and let N be an
element of Pic0(X) and let n be an integer. Then there is an element
M in Pic0(X) such that N = nM . This means that for any class
E ∈ Pic(X) the intersection number N · E = nM · E = n(M · E) is
divisible by n. Then, by the generality of n, it follows that N · E = 0
for every E ∈ Pic(X).

By the facts above we have that we have that the image of Pic(X) inside
H2(X,Z) is isomorphic to the quotient Pic(X)/Pic0(X). This quotient is
called the Néron-Severi group of X, and it is denoted by NS(X).

Theorem 3.2 (Néron-Severi). Let X be a smooth projective variety over a
field k. Then NS(X) is a finitely generated abelian group.

From the Néron-Severi theorem it follows that

NS(X) ∼= Zρ ⊕ NStor(X).

The rank ρ = ρ(X) is called the picard number of X.
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Proposition 3.3.

Num(X) := Pic(X)/Picn(X) ∼= NS(X)/NStor(X).

Proof. Let Picτ (X) := {N ∈ Pic(X)|∃n ∈ Z : nN ∈ Pic0(X)} . Then we
have the following chain of inclusions:

Pic0(X) ⊆ Picτ (X) ⊆ Picn(X) ⊆ Pic(X).

It is a fact that Picτ (X) = Picn(X) see [Har73, Proposition 3.1]. But Picτ (X)
corresponds exactly to the set of torsion elements of NS(X). This concludes
the proof.

We can summarize all the constructions we have been through in the
following diagram:

PDiv(X) � � //

��

Div(X) //

��

Pic(X)

��
{0} � � //

� _

��

Pic(X) //

��

Pic(X)

��
Pic0(X)

� � //
� _

��

Pic(X) //

��

NS(X)

��
Picn(X) � � // Pic(X) // Num(X)

Proposition 3.4. Let X be a complex algebraic K3 surface. Then:

1. H1(X(C),Z) = 0 and H2(X(C),Z) ∼= Λ := U⊕3 ⊕ E8(−1)⊕2;

2. the natural surjections

Pic(X) // NS(X) // Num(X)

are isomorphisms.

Proof. 1. See [BHPVdV04, Proposition VIII.3.3].

2. Recall that NS(X) = Pic(X)/Pic0(X) and Pic0(X) is the image of
H1(X,OX) in Pic(X), but for K3 surfaces H1(X,OX) = 0. This proves
that the first map is an isomorphism.
The second statement follows from the fact that H2(X(C),Z) is free
(see the first statement of this proposition), and from Proposition 3.3.
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Remark 3.5. Using Proposition 3.4 and Proposition 3.3 it follows that, if X
is a K3 surface, the sequence on the cohomology groups becomes

. . . // 0 // 0 // NS(X) // Λ // . . . ,

hence the Néron-Severi group can be viewed as a sublattice of Λ.

Remark 3.6. The isomorphism H2(X(C),Z) ∼= Λ is not unique. The choice
of such an isomorphism is called a marking of the K3 surface.

Theorem 3.7 (Hodge index). Let X be a smooth surface. Let H be an ample
divisor on X and suppose that D is a divisor not numerically equivalent to
0 and such that D ·H = 0. Then D2 < 0.

Proof. See [Har77, Theorem V.1.9].

Corollary 3.8. The signature of the intersection form on NS(X) ⊗Z R is
(1, ρ− 1).

Proof. It follows from Sylvester’s law of inertia.

Theorem 3.9 (Lefschetz). Let X be compact surface. Then NS(X) ∼=
H1,1(X) ∩H2(X,Z).

Proof. See [BHPVdV04, Theorem IV.2.13].

Remark 3.10. From Proposition 3.4 it easily follows that the picard number
ρ of a K3 surface is always less or equal to 22.
Recalling the Hodge decomposition for the H2(X) of a K3 surface, Theo-
rem 3.9 tells us that infact ρ ≤ 20.
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