The Gieseker conjecture

From this lecture onwards, we will study D-modules in positive characteristic. But for the sake of motivation, we first recall some facts from characteristic zero. Let X/\mathbb{C} be a proper smooth variety. We have seen equivalences

\[\text{stratified bundles on } X \overset{(1)}{\rightarrow} \text{stratified bundles on } X^{\text{an}} \overset{(2)}{\rightarrow} \text{representations of } \pi_1(X^{\text{an}}) \]

where (1) comes from the GAGA theorems and (2) is the Riemann–Hilbert correspondence. We had trouble in making this fully algebraic since, algebraically, only the étale fundamental group $\hat{\pi}_1^{\text{et}}(X) = \hat{\pi}_1(X^{\text{an}})$ is available. Nevertheless we can say something, due to the following forgotten-and-rediscovered fact.

Theorem 1.1 (Malčev–Grothendieck). Let $G \rightarrow H$ be a homomorphism of finitely generated groups. If $\hat{G} \rightarrow \hat{H}$ is an isomorphism, then the pullback functor $\text{Rep}_C H \rightarrow \text{Rep}_C G$ is an equivalence.

Theorem 1.2. Let X/\mathbb{C} be a proper smooth variety. Then

- $\pi_1^{\text{et}}(X)$ is abelian if and only if every irreducible stratified bundle on X is one-dimensional, and
- $\pi_1^{\text{et}}(X) = 1$ if and only if every stratified bundle on X is trivial.

Proof. Suppose $\pi_1^{\text{et}}(X)$ is abelian. The groups $\pi = \pi_1(X^{\text{an}})$ and $\pi^{\text{ab}} = \pi/\langle \pi, \pi \rangle$ are finitely generated and $\pi \rightarrow (\pi^{\text{ab}})^\ast$ is an isomorphism by assumption, so all representations of π come from π^{ab}. Due to Schur’s lemma, all irreducible representations of an abelian group are one-dimensional.

If all irreducible representations of $\pi_1(X^{\text{an}})$ are one-dimensional, all representations have an eigenvector, hence all representations are conjugate to one on upper-triangular matrices. Let G be a finite quotient of $\pi_1(X^{\text{an}})$ and ρ the regular representation of G, which we may assume upper-triangular. For all $g, h \in G$ the matrix $\rho([g, h])$ is unipotent, i.e. has 1s on the diagonal. As G is finite, $\rho([g, h])$ has finite order, implying $\rho([g, h]) = 1$. The regular representation is faithful, so $[g, h] = 1$ and G is abelian. Then also $\pi_1^{\text{et}}(X) = \hat{\pi}_1(X^{\text{an}})$ is abelian.

Suppose $\pi_1^{\text{et}}(X) = 1$. Then $\pi_1(X^{\text{an}}) \rightarrow 1$ becomes an isomorphism after passing to profinite completions, so all representations of $\pi_1(X^{\text{an}})$ are trivial. Conversely, if all representations of $\pi_1(X^{\text{an}})$ are trivial, then in particular the regular representations of all finite quotients of $\pi_1(X^{\text{an}})$ are trivial. Regular representations are faithful, hence all those finite quotients are trivial and $\pi_1^{\text{et}}(X) = \hat{\pi}_1(X^{\text{an}}) = 1$.

This leads to the following conjecture in positive characteristic.

Conjecture 1.3 (Gieseker). Let k be an algebraically closed field of characteristic $p > 0$ and X/k a proper smooth variety. Then $\pi_1^{\text{et}}(X) = 1$ if and only if every stratified bundle on X is trivial.

The implication \Leftarrow is easy and will be proved in the next lecture. The converse was proved only recently by Esnault–Mehta.
2. F-divided bundles

Let k be an algebraically closed field of characteristic $p > 0$ and X/k a smooth variety. In characteristic zero stratified bundles have a simpler description as integrable connections. In positive characteristic there is a different description.

Definition 2.1. The absolute Frobenius of X is the map $F: X \to X$ that is the identity on topological spaces and the p-power map on sheaves. It fits into a commutative square

$$
\begin{array}{ccc}
X & \xrightarrow{F} & X \\
\downarrow & & \downarrow \\
\text{Spec } k & \xrightarrow{F} & \text{Spec } k.
\end{array}
$$

If \mathcal{E} is an \mathcal{O}_X-module, its Frobenius twist is the \mathcal{O}_X-module $F^* \mathcal{E}$.

Observe that the natural map $\lambda: \mathcal{E} \to F^* \mathcal{E}, s \mapsto 1 \otimes s$ is p-linear, i.e. for $f \in \mathcal{O}_X$ and $s \in \mathcal{E}$ one has $\lambda(f s) = f^p \lambda(s)$.

Definition 2.2. An F-divided bundle on X is a collection of coherent \mathcal{O}_X-modules \mathcal{E}_n, $n \in \mathbb{N}$, together with \mathcal{O}_X-linear isomorphisms $\sigma_n: F^* \mathcal{E}_{n+1} \to \mathcal{E}_n$. A morphism of F-divided bundles $\left(\mathcal{E}_n, \sigma_n\right)_{n \in \mathbb{N}} \to \left(\mathcal{F}_n, \tau_n\right)_{n \in \mathbb{N}}$ is a collection of \mathcal{O}_X-linear maps $\alpha_n: \mathcal{E}_n \to \mathcal{F}_n$ such that all squares

$$
\begin{array}{ccc}
F^* \mathcal{E}_{n+1} & \xrightarrow{\sigma_n} & \mathcal{E}_n \\
\downarrow & & \downarrow \\
F^* \mathcal{F}_{n+1} & \xrightarrow{\alpha_n} & \mathcal{F}_n
\end{array}
$$

commute.

In fact the sheaves \mathcal{E}_n are automatically locally free. We omit the proof.

Theorem 2.3 (Katz). There is an equivalence of tensor categories

$$
\left\{\text{stratified bundles on } X\right\} \longleftrightarrow \left\{\text{F-divided bundles on } X\right\}.
$$

Proof. We just sketch the constructions and omit the verification that they are functorial and quasi-inverse to each other. In one direction, let \mathcal{E} be a stratified bundle. We define subsheaves

$$
\mathcal{E}_n = \{ s \in \mathcal{E} : \theta s = 0 \text{ for all } \theta \in \mathcal{D}^{<p^n} \text{ with } \theta(1) = 0 \},
$$

yielding $\ldots \subseteq \mathcal{E}_1 \subseteq \mathcal{E}_0 = \mathcal{E}$. For $f \in \mathcal{O}_X$ and $s \in \mathcal{E}_n$ one has $f^p s \in \mathcal{E}_n$. Indeed, for $\theta \in \mathcal{D}^{<p^n}$ with $\theta(1) = 0$ we compute $\theta \cdot f^p s = f^p \theta s + \theta(f^p) s = f^p s + 0 \cdot s = 0$. Therefore we can make \mathcal{E}_n into a coherent \mathcal{O}_X-module by defining $f \ast s = f^p s$. Moreover, the maps

$$
\sigma_n: F^* \mathcal{E}_{n+1} = \mathcal{O}_X \otimes_{\mathcal{O}_X} F^{-1} \mathcal{E}_{n+1} \to \mathcal{E}_n, \ f \otimes s \mapsto f^p s
$$

are well-defined and \mathcal{O}_X-linear. Let’s prove they are isomorphisms. We define a connection ∇_n on \mathcal{E}_n as follows: if θ is a derivation, choose a differential operator $\theta' \in \mathcal{D}^{<p^n}$ satisfying
\[\theta'(f^n) = \theta(f)^n \]
for all \(f \in \mathcal{O}_X \) and set \(\nabla_{n, \theta}(s) = \theta's \). This is independent of the choice of \(\theta' \) and preserves \(\mathcal{E}_n \). Observe that at least locally such \(\theta' \) really exists: in coordinates,

\[\theta = f_1 \partial_{x_1} + \ldots + f_d \partial_{x_d} \quad \mapsto \quad \theta' = f_1^{(p^n)} \frac{\partial_{x_1}}{p^{n \alpha_1}} + \ldots + f_d^{(p^n)} \frac{\partial_{x_d}}{p^{n \alpha_d}}. \]

Now \(\nabla_n \) is an integrable connection on \(\mathcal{E}_n \) whose \(p \)-curvature is zero, i.e. \(\nabla_{n, \theta} = (\nabla_{n, \theta})^p \).

Moreover, \(\mathcal{E}_n^{\alpha} = \mathcal{E}_{n+1} \). We are done by the following result.

Lemma 2.4 (Cartier). Let \((\mathcal{F}, \nabla) \) be an integrable connection with \(p \)-curvature zero. Then the natural map \(F^* \mathcal{F}^\nabla \to \mathcal{F} \) is an isomorphism.

The proof is a straightforward but nasty computation in local coordinates, which we omit.

Conversely, let \((\mathcal{E}_n, \sigma_n)_{n \in \mathbb{N}} \) be an \(F \)-divided bundle. We make \(\mathcal{E}_0 \) into a stratified bundle. If \(\theta \) is a differential operator of order less than \(p^n \), locally choose a basis \(u_1, \ldots, u_r \) of \(\mathcal{E}_n \). Via the \(p \)-linear inclusions \(\mathcal{E}_{m+1} \to F^* \mathcal{E}_{m+1} \to \mathcal{E}_m \) this maps to a basis \(\tilde{u}_1, \ldots, \tilde{u}_r \) of \(\mathcal{E}_0 \). Define

\[\theta(f_1 \tilde{u}_1 + \ldots + f_r \tilde{u}_r) = \theta(f_1) \tilde{u}_1 + \ldots + \theta(f_r) \tilde{u}_r. \]

We claim that this is a well-defined stratification. Let’s just verify that it does not depend on the choice of basis of \(\mathcal{E}_n \). Take a second basis \(v_1, \ldots, v_r \) with base change matrix \(A = (a_{ij}) \). The corresponding base change matrix between \(\tilde{u}_1, \ldots, \tilde{u}_r \) and \(\tilde{v}_1, \ldots, \tilde{v}_r \) is \(A' = (a_{ij}^{p^n}) \). Hence the claim follows by the identity \(\theta(f a^{p^n}) = \theta(f) a^{p^n} \) for \(a, f \in \mathcal{O}_X \).

Proposition 2.5. Suppose \(X/k \) is proper. Two \(F \)-divided bundles \((\mathcal{E}_n, \sigma_n)_{n \in \mathbb{N}} \) and \((\mathcal{F}_n, \tau_n)_{n \in \mathbb{N}} \) are isomorphic if and only if \(\mathcal{E}_n \) is isomorphic to \(\mathcal{F}_n \) for all \(n \in \mathbb{N} \).

Proof. Suppose \(\mathcal{E}_n \cong \mathcal{F}_n \) for all \(n \in \mathbb{N} \). The maps \(\text{End}(\mathcal{E}_{n+1}) \to \text{End}(F^* \mathcal{E}_{n+1}) \to \text{End}(\mathcal{E}_n) \) are \(p \)-linear and injective. Since \(X \) is proper, \(\text{End}(\mathcal{E}_0) \) is a finite-dimensional \(k \)-vector space. Thus there exists \(m \in \mathbb{N} \) such that for all \(n \geq m \) the inclusions \(\text{End}(\mathcal{E}_{n+1}) \to \text{End}(\mathcal{E}_n) \) are bijections. Fix an isomorphism \(\alpha: \mathcal{E}_m \to \mathcal{F}_m \) satisfying \(\alpha(\mathcal{E}_{m+1}) = \mathcal{F}_{m+1} \). (For instance take \(\alpha = \beta^p \), where \(\beta \) is an isomorphism \(\mathcal{E}_{n+1} \to \mathcal{F}_{m+1} \).) Because every automorphism of \(\mathcal{E}_m \) preserves \(\mathcal{E}_{m+1} \), we conclude that in fact every isomorphism \(\mathcal{E}_m \to F^* \mathcal{F}_m \) sends \(\mathcal{E}_{m+1} \) to \(\mathcal{F}_{m+1} \). By induction we see that \(\alpha(\mathcal{E}_n) = \mathcal{F}_n \) for all \(n \geq m \). So \(\alpha \) induces an isomorphism of \(F \)-divided bundles.

Corollary 2.6 (Katz). Suppose \(X/k \) is projective. Then a line bundle \(\mathcal{L} \) admits a stratification if and only if it has finite and \(p \)-prime order in \(\text{NS}(X) \). The group of stratifications on \(\mathcal{O}_X \) is isomorphic to the Tate group \(\text{T}_pX = \text{T}_p \text{Pic}(X) = \lim_n \text{Pic}(X)[p^n] \).

Proof. The Frobenius twist of a line bundle is \(F^* \mathcal{L} = \mathcal{L}^{\otimes p} \). So the first statement follows from the facts that \(\text{NS}(X) = \text{Pic}(X)/\text{Pic}^o(X) \) is finitely generated and that \(\text{Pic}^o(X) \) is \(p \)-divisible.

As for the second statement, by the preceding proposition the group of stratifications on \(\mathcal{O}_X \) is precisely the group of systems \((\mathcal{L}_n)_{n \in \mathbb{N}} \) with \(\mathcal{L}_0 \cong \mathcal{O}_X \) and \(F^* \mathcal{L}_{n+1} = \mathcal{L}_{n+1}^{\otimes p} \cong \mathcal{L}_n \).

3