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1. Introduction.

We give a survey on recent results about Wirsing systems and resultant
inequalities.

We define the Mahler measure of f(X) = a0(X−ξ1) · · · (X−ξt) ∈ C[X] by
M(f) = |a0|

∏t
i=1 max(1, |ξi|). A polynomial f ∈ Z[X] is called primitive if

its coefficients have gcd 1 and if its leading coefficient is > 0. The minimal
polynomial of an algebraic number ξ is the primitive irreducible polynomial
f ∈ Z[X] with f(ξ) = 0. We define the Mahler measure M(ξ) of an
algebraic number α to be the Mahler measure of its minimal polynomial.
Algebraic numbers are always supposed to belong to C. We choose for
every algebraic number ξ of degree t over Q an ordering of its conjugates
ξ(1), . . . , ξ(t).

We first introduce Wirsing systems (named after Wirsing who studied such
systems in [19]). Let I be a non-empty subset of {1, . . . , t}. Further, let
γi (i ∈ I) be algebraic numbers and ϕi (i ∈ I) non-negative reals. Then a
Wirsing system is a system of inequalities

|γi − ξ(i)| ≤M(ξ)−ϕi (i ∈ I)
in algebraic numbers ξ of degree t. (1.1)

Second, we introduce resultant inequalities. The resultant of two polynomi-
als f, g ∈ C[X] of degrees r, t, respectively, say f = a0X

r+a1X
r−1+· · ·+ar

with a0 6= 0 and g = b0X
t + · · · + bt with b0 6= 0, is defined by the deter-

minant of order r + t,

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . . . . ar
. . . . . .

a0 a1 . . . . . . ar
b0 b1 . . . bt

. . . . . .
. . . . . .

b0 b1 . . . bt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.2)
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where the first t rows consist of coefficients of f and the last r rows of
coefficients of g. It is well-known that if f(X) = a0

∏r
i=1(X −αi), g(X) =

b0
∏t
j=1(X − ξj), then

R(f, g) = at0b
r
0

r∏
i=1

t∏
j=1

(αi − ξj). (1.3)

This implies at once

|R(f, g)| ≤ 2rtM(f)tM(g)r. (1.4)

By a resultant inequality we mean a Diophantine inequality of the shape

0 < |R(f, g)| < M(g)r−κ in polynomials g ∈ Z[X] of degree t (1.5)

where κ > 0 and where f is a fixed polynomial in Z[X] of degree r. Clearly,
(1.5) is unsolvable if κ > r.

Wirsing systems and resultant inequalities are closely related. Roughly
speaking, if ξ is an algebraic number of degree t satisfying (1.1) then its
minimal polynomial g satisfies (1.5), where f ∈ Z[X] is a non-zero polyno-
mial of degree r with zeros γi (i ∈ I), and where κ =

∑
i∈I ϕi. Conversely,

to any inequality (1.5) we can associate a finite number of systems (1.1) in
which the numbers γi (i ∈ I) are zeros of f and

∑
i∈I ϕi is slightly smaller

than κ, such that any primitive, irreducible polynomial g of degree t with
(1.5) is the minimal polynomial of a solution ξ of one of the corresponding
systems (1.1). We have made this correspondence concrete in Proposition
2.1 in Section 2. More precisely, with the method of proof of Proposition
2.1 one may deduce from an upper bound for the number of solutions ξ of
(1.1) an upper bound for the number of primitive, irreducible polynomials
g with (1.5) and vice versa.

A particular instance of (1.1) is the single inequality

|γ − ξ| ≤M(ξ)−ϕ in algebraic numbers ξ of degree t

where γ is a fixed algebraic number and ϕ a positive real. Wirsing [19]
showed that this inequality has only finitely many solutions if ϕ > 2t and
Schmidt [14] improved this to ϕ > t + 1 which is best possible. In the
special case that t = 1 we can rewrite (1.5) as a Thue inequality

0 < |F (u, v)| ≤
(

max(|u|, |v|)
)r−κ in u, v ∈ Z,
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where g = uX + v with u, v ∈ Z and where F is a binary form of degree
r with coefficients in Z. By a theorem of Roth [11], this latter inequality
has only finitely many solutions if κ > 2 and F is irreducible. Hence (1.5)
has only finitely many solutions if t = 1, κ > 2 and f is irreducible.

The following result follows from work of Wirsing, Schmidt and Ru and
Wong:

Theorem 1.1. (i) Let f ∈ Z[X] be a polynomial of degree r without
multiple zeros, let t be a positive integer and let κ > 2t. Then (1.5) has only
many solutions in (not necessarily primitive or irreducible) polynomials
g ∈ Z[X] of degree t.
(ii) Let I be a non-empty subset of {1, . . . , t} and γi (i ∈ I) algebraic
numbers. Further, let ϕi (i ∈ I) be positive reals with

∑
i∈I ϕi > 2t. Then

(1.1) has only finitely many solutions in algebraic numbers ξ of degree t.

Wirsing [19] showed that for any tuple of algebraic numbers γi (i ∈ I) and
any tuple of non-negative reals ϕi (i ∈ I) with

∑
i∈I

ϕi > 2t ·
#I∑
k=1

1
2k − 1

system (1.1) has only finitely many solutions in algebraic numbers ξ of
degree t. Further, he proved that if f is any polynomial in Z[X] of degree
r without multiple zeros and if κ > 2t ·

∑t
k=1

1
2k−1 then (1.5) has only

finitely many solutions in polynomials g ∈ Z[X] of degree t. By applying
his Subspace Theorem, Schmidt [16] extended Wirsing’s result on (1.5)
to κ > 2t, i.e., proved part (i) of Theorem 1.1, but only for polynomials
f ∈ Z[X] having no irreducible factors in Z[X] of degree ≤ t. Finally, Ru
and Wong [13] proved a general result (Theorem 4.1 on p. 212 of their
paper) which contains as a special case part (i) of Theorem 1.1 without
Schmidt’s constraint on f . We mention that from the result of Ru and
Wong one may deduce a generalization of part (i) of Theorem 2.1 involving
p-adic absolute values. Also the result of Ru and Wong is a consequence
of Schmidt’s Subspace Theorem. Either by combining part (i) of Theorem
1.1 with Proposition 2.1 from Section 2, or by applying directly the result
of Ru and Wong, one obtains part (ii) of Theorem 1.1.

In the other direction, Schmidt [16] proved that if κ < t+ 1 and if f is any
polynomial in Z[X] of degree r without multiple zeros and with a complex
conjugate pair of zeros of degree > t, then (1.5) has infinitely many solu-
tions in polynomials g ∈ Z[X] of degree ≤ t. Further, in [16] Schmidt gave
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for every t ≥ 1 examples of polynomials f ∈ Z[X] such that for every κ < 2t
inequality (1.5) has infinitely many solutions in polynomials g ∈ Z[X] of
degree t. These results of Schmidt on resultant inequalities do not have
consequences for Wirsing systems (indeed, by Proposition 2.1, a particu-
lar Wirsing system has infinitely many solutions in algebraic numbers of
degree t only if the corresponding resultant inequality has infinitely many
solutions in primitive, irreducible polynomials g of degree t; but in his ex-
amples Schmidt did not show that the polynomials g under consideration
are primitive or irreducible). In Section 3, we show that for every t ≥ 1
there is a tuple of algebraic numbers (γi : i ∈ I) with the property that for
every κ < 2t there are non-negative reals ϕi (i ∈ I) with

∑
i∈I ϕi = κ such

that (1.1) has infinitely many solutions in algebraic numbers of degree t.
So for certain polynomials f and for certain tuples of algebraic numbers γi
(i ∈ I) Theorem 1.1 is best possible.

However, in many cases, Theorem 1.1 can be improved. An irreducible
polynomial f ∈ Z[X] is said to be t times transitive if for any two ordered
tuples (γi1 , . . . , γit), (γj1 , . . . , γjt) consisting of distinct zeros of f , there is
a Q-isomorphism σ with σ(γik) = γjk for k = 1, . . . , t. Then we have:

Theorem 1.2. (i) Let f ∈ Z[X] be an irreducible polynomial of degree r
which is t times transitive and let κ > t + 1. Then (1.5) has only finitely
many solutions in polynomials g ∈ Z[X] of degree t.
(ii) Suppose that γi (i ∈ I) are zeros of an irreducible polynomial f ∈ Z[X]
which is t times transitive and let

∑
i∈I ϕi > t + 1. Then (1.1) has only

finitely many solutions in algebraic numbers ξ of degree t.

Part (i) follows from a general result of Schmidt on norm form inequalities
(cf. [15], Theorem 3 or [17], Theorem 10A, p. 237) and part (ii) follows
from part (i) and Proposition 2.1. We believe that if

∑
i∈I ϕi > t + 1 or

κ > t + 1 then the general pattern is, that (1.1), (1.5) have only finitely
many solutions, and that only for numbers γi or polynomials f of a special
shape the number of solutions is infinite. As yet we are not able to make
this more precise.

Recently, Győry and Ru [7] obtained, as a special case of a more general
result of theirs, a result for inequality (1.5) in which also the polynomials
f are allowed to vary within a limited range. Their proof is based on
the “Subspace Theorem with moving targets,” due to Ru and Vojta [12].
From the result of Győry and Ru it is possible to deduce the following
generalization of Theorem 1.1:

Theorem 1.3. Let K be a fixed number field and let r, t be positive integers.
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(i) Let κ > 2t. Then there does not exist an infinite sequence of pairs of
polynomials {fn, gn}∞n=1 in Z[X] such that for n = 1, 2, . . .,

0 < |R(fn, gn)| < M(gn)r−κ,
fn has splitting field K, fn has no multiple zeros,
deg fn = r, deg gn = t

and such that limn→∞
(

logM(fn)/ logM(gn)
)

= 0.
(ii) Let I be a non-empty subset of {1, . . . , t}. Further, let ϕi (i ∈ I) be
non-negative reals with

∑
i∈I ϕi > 2t. Then there does not exist an infinite

sequence of tuples of algebraic numbers (ξn; γin (i ∈ I))∞n=1 such that for
n = 1, 2, . . . and for i ∈ I,

|γin − ξ(i)
n | < M(ξn)−ϕi , γin ∈ K, deg ξn = t,

and such that limn→∞
(

log maxi∈IM(γin)/ logM(ξn)
)

= 0.

Part (i) follows directly from Theorem 6 of [7] (which gives in fact a p-
adic generalization), while part (ii) is obtained by combining part (i) with
Proposition 2.1. Győry’s survey paper [6] contains more information about
resultant inequalities (1.5), resultant equations R(f, g) = c in polynomials
g ∈ Z[X] of degree t where f is a fixed polynomial of degree r and c is a
constant, and their applications.

We now turn to quantitative results. Let again I be a non-empty subset of
{1, . . . , t}, let γi (i ∈ I) be algebraic numbers with

max
i∈I

M(γi) ≤M, [Q(γi : i ∈ I) : Q] = r (1.6)

and let ϕi (i ∈ I) be non-negative reals. Further, let 0 < δ < 1. Put
θ :=

(∑
i∈I ϕi

)
− 2t. By making explicit Wirsing’s arguments, Evertse [2]

(Theorem 2) proved that if

∑
i∈I

ϕi ≥ (2t+ δ)
#I∑
k=1

1
2k − 1

(1.7)

then the Wirsing system (1.1) has at most

2×107 · t7δ−4 log 4r · log log 4r (1.8)

solutions with
M(ξ) ≥ max(4t(t+1)/θ,M) (1.9)

5



and at most

2t
2+3t+θ+4

(
1 +

log(2 + θ−1)
log(1 + θ/t)

)
+ t · log log 4M

log(1 + θ/t)

solutions with M(ξ) < max(4t(t+1)/θ,M).
As a consequence, Evertse ([2], Thm. 3) derived the following result for
resultant inequalities: if f ∈ Z[X] is a polynomial of degree r without
multiple zeros and if

κ ≥ (2t+ δ)
t∑

k=1

1
2k − 1

(1.10)

then there are at most

1015(δ−1)t+3(100r)t log 4r log log 4r

primitive, irreducible polynomials g ∈ Z[X] of degree t satisfying (1.5) and

M(g) ≥
(
28r2tM(f)4(r−1)t

)δ−1(1+ 1
3 +···+ 1

2t−1 )−1

.

We mention that independently, Locher [10] obtained for the single inequal-
ity |γ−ξ| ≤M(ξ)−ϕ in algebraic numbers ξ of degree t a quantitative result
similar to the one mentioned above. More generally, Locher considered in-
equalities involving p-adic absolute values.

It was to be expected that in Evertse’s quantitative results on (1.1), (1.5),
respectively, condition (1.7) could be relaxed to

∑
i∈I ϕi > 2t and condition

(1.10) to κ > 2t, but Wirsing’s method did not provide for that.

By a method very different from Wirsing’s Evertse proved the following
result for resultant inequalities. Evertse’s proof is basically to go through
the proof of the Quantitative Subspace Theorem as in [1] and to show
that in the particular case under consideration all occurring subspaces are
one-dimensional.

Theorem 1.4. ([3]) Suppose f ∈ Z[X] is a polynomial of degree r without
multiple zeros. Let κ = 2t+ δ with 0 < δ < 1. Then there are at most

29t+60t2t+20δ−t−5rt log 4r log log 4r (1.11)

primitive, irreducible polynomials g ∈ Z[X] of degree t satisfying (1.5) and

M(g) ≥
(

22r2
M(f)4r−4

)t/δ
.
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Let I be a non-empty subset of {1, . . . , t} and let ϕi (i ∈ I) be non-negative
reals as in (1.1). Assume that

∑
i∈I ϕi > 2t. By combining Theorem

1.4 with Proposition 2.1 in a more explicit form one obtains an upper
bound for the number of“large solutions” (i.e. solutions with (1.9)) of
the Wirsing system (1.1) which is similar to (1.11). Evertse’s method of
proof of Theorem 1.4, when applied directly to Wirsing systems instead of
resultant inequalities, might produce a bound with a better dependence on
r and t than (1.11), but with the same dependence on δ, i.e., δ−t.

On the other hand, Hirata-Kohno discovered another method to estimate
from above the number of large solutions of (1.1), which combines tech-
niques from the proof of the Quantitative Subspace Theorem with ideas of
Ru and Wong [13] and with the notion of Nochka weight (see [4], Section
2–4). This is work in preparation; see [8]. It is an open problem to ob-
tain an upper bound for the number of large solutions of (1.1) of a similar
quality as (1.8) if the tuple of reals (ϕi : i ∈ I) does not satisfy (1.7).

It does not seem to be possible to prove quantitative versions of Theorems
1.2 and 1.3. Further, it should be noted that Theorem 1.4 gives only
a bound for the number of primitive, irreducible polynomials g, whereas
part (i) of Theorem 1.1 gives a qualitative finiteness result for polynomials
g without this constraint. We explain below that it is likely to be very
difficult to get an explicit upper bound for the number of reducible or
non-primitive polynomials g with (1.5).

First suppose we have an upper bound N for the number of not necessarily
primitive polynomials g ∈ Z[X] of degree t satisfying (1.5) when κ > 2t.
Pick a primitive polynomial g∗ of degree t with (1.5). Then for each non-
zero integer d with

|d| ≤
(
M(g∗)r−κ|R(f, g∗)|−1

)1/κ

(1.12)

the polynomial g = dg∗ satisfies (1.5). Consequently, the right-hand side
of (1.11) is at most N , that is,

|R(f, g∗)| ≥ N−1M(g∗)r−κ.

Hence any explicit upper bound for the number of non-primitive polyno-
mials with (1.5) would yield an effective lower bound for |R(f, g∗)| which
is far beyond what is possible with the presently available techniques.
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Now suppose for instance that t = 2, κ > 2t = 4, and let N be an upper
bound for the number of primitive, reducible polynomials g ∈ Z[X] of
degree 2 with (1.5). We use the notation |a, b| := max(|a|, |b|). Fix a
polynomial g1 = q1X − p1 with p1, q1 ∈ Z and gcd(p1, q1) = 1. Note that
M(g1) = |p1, q1|. Then for every polynomial g2 = q2X − p2 with

p2, q2 ∈ Z, gcd(p2, q2) = 1, (1.13)

|p2, q2| ≤
(

2−rM(f)−1|R(f, g1)|−1 ·M(g1)r−κ
)1/κ

(1.14)

we have by (1.4),

|R(f, g1g2)| = |R(f, g1)| · |R(f, g2)|
≤ 2−rM(f)−1M(g1)r−κM(g2)−κ · 2rM(f)M(g2)r

= M(g1g2)r−κ.

Now the number of pairs (p2, q2) with (1.13), (1.14) is bounded from below
by the square of the right-hand side of (1.14) multiplied by some absolute
constant. This last number is bounded from above by N , since each pair
(p2, q2) with (1.13), (1.14) yields a solution g = g1g2 of (1.5) which is
primitive and reducible. This implies that for some effective constant c1 =
c1(r) depending only on r we have

|R(f, g1)| ≥ c1N−κ/2M(f)−1M(g1)r−κ. (1.15)

Now let f = a0(X − α1) · · · (X − αr) and α ∈ {α1, . . . , αr}. Then by (1.4)
we have

|R(f, g1)| = |a0(p1 − α1q1) · · · (p1 − αrq1)|
≤ 2rM(f)|α− (p1/q1)| · |p1, q1|r.

Together with (1.15) and M(g1) = |p1, q1|, this implies that there is an
effective constant c2 = c2(r) such that

|α− p1

q1
| ≥ c2N−κ/2M(f)−2 · |p1, q1|−κ.

Therefore, any explicit upper bound N for the number of primitive, re-
ducible polynomials g of degree 2 with (1.5) would yield a very strong
effective improvement of Liouville’s inequality.

We recall that earlier, Schmidt [18] gave another example of a Diophantine
inequality, an explicit upper bound for the number of whose solutions im-
plies a very strong effective improvement of some Liouville-type inequality.
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2. Wirsing systems vs. resultant inequalities.

We prove the following:

Proposition 2.1. Let f ∈ Z[X] be a polynomial of degree r without mul-
tiple zeros. Let κ0 > 0. Then the following two assertions are equivalent:
(i) for any κ > κ0 inequality (1.5) has only finitely many solutions in prim-
itive, irreducible polynomials g ∈ Z[X] of degree t;
(ii) for any non-empty subset I of {1, . . . , t}, for any tuple (γi : i ∈ I) con-
sisting of (possibly equal) zeros of f and any tuple (ϕi : i ∈ I) consisting of
non-negative reals with

∑
i∈I ϕi > κ0, system (1.1) has only finitely many

solutions in algebraic numbers ξ of degree t.

We keep the notation introduced in Section 1. Let f ∈ Z[X] be a polyno-
mial of degree r without multiple zeros. We write f =
a0

∏r
i=1(X − αi). Constants implied by �, � depend on f . We write

again |a, b| for max(|a|, |b|).

First assume (i). Consider system (1.1) where
∑
i∈I ϕi =: κ > κ0 and

where γi (i ∈ I) are not necessarily distinct zeros of f . Let g be the
minimal polynomial of a solution ξ of (1.1). Then g = b0

∏t
j=1(X − ξ(j))

with b0 ∈ Z. We may rewrite (1.1) as

|αi − ξ(j)| ≤M(g)−ϕ
∗
ij ( (i, j) ∈ J)

where J is a subset of V := {1, . . . , r}×{1, . . . , t} and where
∑

(i,j)∈J ϕ
∗
ij =

κ. For the pairs (i, j) ∈ V \J we use |αi − ξ(j)| � |1, ξ(j)|. Together with
(1.3) this gives

|R(f, g)| � |b0|r
∏

(i,j)∈V \J

|1, ξ(j)| ·
∏

(i,j)∈J

|αi − ξ(j)|

�M(g)r
∏

(i,j)∈J

|αi − ξ(j)| �M(g)r−
∑

(i,j)∈J
ϕ∗ij

�M(g)r−κ.

By (i), the latter inequality has only finitely many solutions in primitive,
irreducible polynomials g ∈ Z[X] of degree t. Hence system (1.1) has only
finitely many solutions in algebraic numbers ξ of degree t. This proves (ii).

Now assume that (ii) holds. Let κ > κ0. The argument is basically Wirs-
ing’s [19]. Let g ∈ Z[X] be a primitive, irreducible polynomial of degree
t satisfying (1.5). Denote the zeros of g (which are all conjugates of some
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number ξ) by ξ(1), . . . , ξ(t). Let b0 be the leading coefficient of g. For
j = 1, . . . , t, let αij be the zero of f which is closest to ξ(j). Then for any
other zero αi of f we have

|αi − ξ(j)| ≥ 1
2

(|αi − ξ(j)|+ |αij − ξ(j)|) ≥ 1
2
|αi − αij | � 1.

By distinguishing between the two cases |ξ(j)| ≥ 2|1, αi| and |ξ(j)| < 2|1, αi|
we obtain |αi − ξ(j)| � |1, ξ(j)|. Let I be the set of indices j ∈ {1, . . . , t}
for which |αij − ξ(j)| < 1. For j ∈ I we have |ξ(j)| � 1, while for j 6∈ I we
have |αij − ξ(j)| � |1, ξ(j)|. Consequently, by (1.3),

M(g)r−κ � |b0|r
r∏
i=1

s∏
j=1

|αi − ξ(j)|

� |b0|r
r∏
i=1

s∏
j=1

|1, ξ(j)| ·
∏
j∈I
|αij − ξ(j)| = M(g)r

∏
j∈I
|αij − ξ(j)|.

Hence ∏
j∈I
|αij − ξ(j)| �M(ξ)−κ.

Denote the factor with index j in the product on the left-hand side by Aj .
We have Aj < 1 for j ∈ I, hence if M(ξ) is sufficiently large there are reals
ψj (j ∈ I) with Aj ≤ M(ξ)−ψj , ψj > 0 for j ∈ I and

∑
j∈I ψj = κ1 with

κ0 < κ1 < κ. The ψj vary with ξ, but we may choose ϕj from a finite set
such that 0 ≤ ϕj ≤ ψj for j ∈ I and κ0 <

∑
j∈I ϕj < κ1. (We may cover

the bounded set of points (ψi : i ∈ I) ∈ R#I with ψi ≥ 0, κ0 ≤
∑
i∈I ψi ≤ κ

by a finite number of very small cubes and choose for (ϕi : i ∈ I) the lower
left vertex of the cube containing (ψi : i ∈ I); see [2], pp. 79–82 for a more
explicit argument). Thus ξ satisfies one of finitely many systems (1.1) each
of which has by (ii) only finitely many solutions. Hence (1.5) has only
finitely many solutions in primitive, irreducible polynomials g of degree t.
This proves (i). ut
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3. Wirsing systems with infinitely many solutions.

We prove:

Proposition 3.1. For every t ≥ 1, there are algebraic numbers γ1, . . . , γt
and a constant D such that the system of inequalities

|γi − ξ(i)| ≤ D ·M(ξ)−2 (i = 1, . . . , t) (3.1)

has infinitely many solutions in algebraic numbers ξ of degree t.

It follows that for every δ > 0 there are non-negative reals ϕ1, . . . , ϕt with
ϕ1 + · · · + ϕt = 2t − δ such that (1.1) with I = {1, . . . , t} has infinitely
many solutions in algebraic numbers ξ of degree t.

Let α be a real algebraic irrational number. By Dirichlet’s Theorem, there
is a constant C > 1 depending on α such that the inequality

|α− η| ≤ C ·M(η)−2 in η ∈ Q (3.2)

has infinitely many solutions. Let p(X), q(X) ∈ Z[X] be polynomials with-
out common zeros and with max(deg p,deg q) = t, such that the equation
p(x)/q(x) = α has exactly t distinct solutions, γ1, . . . , γt, say. So these are
the zeros of p(X)−αq(X). For η = a/b with a, b ∈ Z, b > 0, gcd(a, b) = 1,
define the polynomial gη := bp(X)−aq(X). For instance, by [9], pp. 59–61,
there are constants C1, C2, depending only on t, such that for a polynomial
f ∈ C[X] of degree t one has C1 ≤ M(f)/H(f) ≤ C2, where H(f) is the
maximum of the absolute values of the coefficients of f . Since M(η) = |a, b|,
this implies that

M(gη)��M(η), (3.3)

where here and below constants implied by�, � depend only on α, p and
q. We prove a few auxiliary results.

Lemma 3.2. Let η ∈ Q with η 6= 0. Then for each solution ξ of
p(x)/q(x) = η there is a solution γi of p(x)/q(x) = α such that

|γi − ξ| � |α− η|.

Proof. First suppose that |η| ≥ 2 · |1, α|. Then by (3.3) we have for any
solution γ of p(x)/q(x) = α,

|γ − ξ| � |1, ξ| � |η| � |α− η|
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which implies Lemma 3.2.

Now assume that |η| ≤ 2 · |1, α|. Then |ξ| � 1 by (3.3). Choose γi
from γ1, . . . , γt which is closest to ξ. Then for γj with j 6= i we have
|γj − ξ| ≥ 1

2 (|γj − ξ|+ |γi − ξ|)� |γj − γi| � 1. Hence

|γi − ξ| �
t∏

j=1

|γj − ξ| � |p(ξ)− αq(ξ)| = |q(ξ)| · |α− η| � |α− η|

which is Lemma 3.2. ut

Lemma 3.3 There are only finitely many solutions η ∈ Q of (3.2) such
that the polynomial gη is reducible in Q[X].

Proof. Let η ∈ Q be a solution of (3.2) for which gη is reducible in Q[X].
Because of the multiplicativity of the Mahler measure, we may choose an
irreducible factor g1,η ∈ Z[X] of gη such that M(g1,η) ≤M(gη)1/2. So if ξ
is a zero of g1,η we have by (3.3),

M(ξ)�M(η)1/2. (3.4)

Let ξ(1), . . . , ξ(s) be the conjugates of ξ, where s = deg g1,η < t. Then by
Lemma 3.2 and (3.2), (3.4) there are solutions γ1, . . . , γs of p(x)/q(x) = α
such that

|γj − ξ(j)| � |α− η| �M(η)−2 �M(ξ)−4 for j = 1, . . . , s.

Now this is a system of the shape (1.1) with t = s and with the sum of the
ϕi’s equal to 4s > 2s. Hence, by part (ii) of Theorem 1.1, this system has
only finitely many solutions in algebraic numbers ξ of degree s. But since
for the ξ under consideration we have η = p(ξ)/q(ξ) this gives only finitely
many possibilities for η. This proves Lemma 3.3. ut

Proof of Proposition 3.1. Lemma 3.3 implies that (3.2) has infinitely
many solutions η for which gη is irreducible. For such η, let ξ be a zero
of gη and let ξ(1), . . . , ξ(t) be the conjugates of ξ. Now by (3.3) we have
M(ξ)�M(η). Together with Lemma 3.2 and (3.2) this implies that there
are solutions γ1, . . . , γt of p(x)/q(x) = α with

|γj − ξ(j)| � |α− η| �M(η)−2 �M(ξ)−2

for j = 1, . . . , t. This is a system of type (3.1). Now it is clear, that for
some choice of the γi this system has infinitely many solutions. ut
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