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1 Introduction

The celebrated Subspace Theorem of W. M. Schmidt [12] says the following:

SUBSPACE THEOREM. Let Lq,...,L, be linearly independent linear forms in n
variables, with real or complex algebraic coefficients. Suppose 6 > 0. Consider the in-
equality

(1.1) ILi(z)...Ly(2)| < |z in zeZ",

where ||z|| = (2 4+ ... + 22)Y2. Then there are finitely many proper linear subspaces
Ti,...,Ta of Q™ such that the set of solutions x of (1.1) is contained in

(1.2) TyU...UTy.

Schmidt derived the Subspace Theorem as a consequence of a result on integral points
in certain parallelepipeds, the so called Parametric Subspace Theorem. In fact, suppose
Q > 1. Let ¢ = (cq,...,¢,) be a tuple of real numbers with

(1.3) G+ +e,=0.

Define the set

(1.4) Q. ¢) = {z e R"| |Li(z)| < Q% (1<i<n)}.
Given A > 0, put

(1.5) MI(Q,¢) = {z € R"| |Li(2)] < QA (1<i<n)}.

Then the Parametric Subspace Theorem can be stated as follows.

PARAMETRIC SUBSPACE THEOREM. Let ¢ be a fized tuple satisfying (1.3).
Let 6 > 0. Then there are finitely many proper linear subspaces T, ...,Tg of Q™ such
that for any Q which is sufficiently large there exists a subspace T; € {11, ...,Tg} with

(1.6) Q(Q,c)NZ" C T;.



In [14], Schmidt succeeded to give an explicit and rather uniform bound for the number
A of subspaces needed in (1.2) to cover the set of solutions @ of (1.1). Schlickewei [9]
extended this result to the case when the variables @ lie in an arbitrary number field K
and also to the case when instead of the standard absolute value we have a finite set S of
absolute values of K. The bound obtained depends in particular upon the cardinality of
the set S. Evertse [4] derived a much improved bound for A which however still depends
upon the cardinality of S.

It turns out that the bounds one can obtain for the number A of subspaces in (1.2)
in the Subspace Theorem and for the number B in the Parametric Subspace Theorem
differ substantially. In the number field case and for a finite set S of absolute values,
Schlickewei [10] obtained an explicit upper bound for the number B of subspaces needed
in the Parametric Subspace Theorem which does not depend upon the set S at all.

To quote this result, we have to introduce some notation. Recall that the set of places
of Q equals M(Q) = {oco} UP, where P is the set of prime numbers. We write | |, for
the ordinary absolute value on Q, whereas for p € P we write | |, for the p-adic absolute
value, normalized such that |p|, = p~'. Given a number field K we write M(K) for the
set of its places. We denote the set of archimedean places of K by 9., (K) and the set of
finite places of K by My (K). For v € M(K) we write | |, for the absolute value having
|z|, = |z|, for € Q if v lies above p € M(Q). We further define the normalized absolute
value

(17) | lo=1 1
where
(1.8) d(v) = [K, : Q)]/[K : Q].

Here Q, is the completion of QQ at p, and K, is the completion of K at v.

Write d = [K : Q]. Suppose that S is a finite subset of 9 (K).
Suppose that for each v € MM (K) we have a set of n linear forms {L(lv), cee L,(:’)} such that

(1.9) (L, LY Xy, X, X4+ X))
and such that moreover
(1.10) V=x,,. LW=X, for vg5s.

Further let ¢ = {¢;, |1 <@ < n, v € M(K)} be a tuple of real numbers satisfying

(1.11) > cw=0, Y le| < 1
veEM(K) i=1 veEM(K) i=1
(1.12) Co=0 (i=1,...,n;0¢D5).



Given ) > 1, define the parallelepiped Ik (Q, €) as the set of points & € K™ satisfying
the simultaneous inequalities

(1.13) 1L (@) < Q" (1 <i<n,veMK)).

For A > 0 define the dilatation of I (@, ¢) by the factor A\ as the set of points @ € K"
satisfying

(1.14) 1L ()], < QAU (1<i<n,ve Me(K)),

(1.15) I @)l < Q% (1<i<n,veM(K))

where the exponent d(v) in (1.14) is as in (1.8). We write more briefly M (Q, ¢) for the
set of points given by (1.14), (1.15).
Now Schlickewei’s result [10] reads as follows.

Suppose § > 0. For Q > 1 let Ik (Q, ¢) be defined as in (1.13). In particular assume that
we have (1.9) - (1.12). Write D for the absolute value of the discriminant of K. Then,
there are proper linear subspaces Ty, ..., Ty of K™, where

22271572

(1.16) t<2 ,

with the following property:
For every QQ satisfying

(1.17) Q > max{n*°, @i(/d}

(and some technical hypothesis which has no relevance in our context)
there exists a subspace T; € {T,...,T;} such that

(1.18) Q Nk (Q,c) C T;.

In [11], Schlickewei applied this result as follows.

Let ay, ..., a, be elements in K*. Let G be a multiplicative subgroup of K* of finite rank
r. Consider the equation

(1.19) mry+ ..t ape, =1

in z1,...,2, € G. Then the number of nondegenerate solutions of (1.19) (i.e., solutions
such that no proper subsum on the left hand side of (1.19) vanishes) is below a bound
c(n,r,d), where ¢(n,r,d) is an explicit function which depends only upon the dimension
n, the rank r of the group G and the degree d of K.

It has been known for some time, that any quantitative version of the Parametric Subspace
Theorem where it is possible to avoid the term @%d in hypothesis (1.17), would imply
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an upper bound of type ¢(n,r) for the number of solutions of (1.19), i.e., a bound which
does not depend upon d.

It is the purpose of the present paper to prove such a version of the Subspace Theorem.

THEOREM 1.1. Let K be a number field. Let S be a finite subset of M(K). For each
v € MK) let {Lg”), e L%v)} be a subset of {X1,...,Xn, Xi + ...+ X, }. Assume that
we have (1.10).

Suppose that

(1.20) 0<d<1,

and let ¢ = (¢ |i=1,...,n;v € M(K)) be a tuple with (1.11), (1.12). Define lIx(Q, c)
as in (1.13).

Then there are proper linear subspaces Ty, ..., T, of K™ where

(1.21) t =t(n,d) < 49754

with the following property:
For any Q with

(1.22) Q > n*°
there exists a subspace T; € {1y, ...,T;} with

(1.23) Q Mk (Q,c) C T;.

The consequences for equation (1.19) will be derived in a subsequent paper [5].

In the proof of his result (1.16) - (1.18), Schlickewei used the generalization of Minkowski’s
second theorem on convex bodies, as derived independently by McFeat [7] and by Bombieri
and Vaaler [1]. This generalization gives an upper and a lower bound for the product of
the successive minima of a convex body in A}, where Ay is the ring of adeles of K.
The quotient of the upper bound and the lower bound is equal to c(n)@}?ﬂd with some
function ¢(n) of n. It is the dependence on ®  of this quotient that is responsible for the

occurrence of the term with the discriminant in (1.17).

In the current paper we apply the recent “absolute” Minkowski theorem, versions of which
were obtained independently by Roy and Thunder ([8], Theorem 6.3) and, in a more
general Arakelov Theory setting, by Zhang ([15], Theorem 5.8). In our paper we have
used the version of Roy and Thunder since this is better adapted to our purposes. The
absolute Minkowski theorem has the advantage that it does not involve any discriminant
at all. However, when applying it in our proof, we have to deal with vectors whose
coordinates are algebraic, but where we cannot specify the number field in which these
coordinates lie. Thus, we are forced to extend all other arguments in our proof so that we
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can handle arbitrary vectors in Q" instead of just vectors in K™ for some fixed number
field K. At the end, we arrive at a result which is much more general than the classical
Subspace Theorem, in fact we obtain “absolute” generalizations of both the Parametric
Subspace Theorem and the Subspace Theorem, dealing with vectors  in Q" rather than
in K™

In the next two sections we will give the absolute generalisations of both the Parametric
Subspace Theorem and the Subspace Theorem and not just for forms in {Xj, ..., X,,
X1+ ...+ X, } but for arbitrary linear forms.

Another feature of Theorem 1.1 is the much better upper bound (1.21) for the number of
subspaces as compared with the upper bound (1.16) in Schlickewei’s result. This is due
to the fact that in his proof, Schlickewei applied Roth’s Lemma, whereas in our deduction
of Theorem 1.1 we use the improvement of Roth’s Lemma obtained by Evertse [3] by
making explicit the arguments in the proof of Faltings’ Product Theorem [6].

We point out however that the removal of the discriminant term from the lower bound of
Q (cf. (1.17), (1.22)) is due only to the use of the absolute Minkowski theorem and has
nothing to do with the improvement of Roth’s lemma. In fact, also with the old Roth
lemma we would have obtained a result with a lower bound for @ as in (1.22). But the
upper bound for the number of subspaces would have become doubly exponential in n.

2 The absolute Parametric Subspace Theorem

We need some further notation. We fix an algebraic closure Q of Q. All algebraic number
fields occurring in this paper will be considered to be subfields of Q.

As in section 1, let K be a number field and M(K) = M. (K) UM,(K) the set of places
of K. The absolute values || ||, introduced in (1.7), (1.8) satisfy the product formula

(2.1) H |z||l, =1 for ze K™
vEM(K)

If F'is a finite extension of K and if w € 9M(F) lies above v € M(K), then the normalized

absolute values || ||, and || ||, are related by

22) el = 220 for z e K
where

(23 dw/v) = [Fy: K] /[F : K].

Note that for any v € M(K)
(2.4) > d(w/v) =1

wlv



where the sum is over all places w € 9M(F) lying above v.

In section 1, (1.13), we considered parallelepipeds
M(Q,e) = {x e K"| L (@), < Q% (veM(K), i=1,...,n)}.

There is a height function which we call the twisted height and which is closely related to
g (Q,c). Tt is defined as follows.

(2.5) Higelx) = max —————" for x € K" \ {0}.

It is clear that « € I1x(Q, ¢) implies Hi g (2) < 1 and more generally, in view of (1.14),
(1.15)

(2.6) x € Mlg(Q,c) implies Hggelx) <A

The forms in (1.9), (1.10) defining [Tx (@, ¢) in (1.13) are very special. We will now study
a more general setting.

Let {Ly,...,L,} be a family ! (i.e., an unordered sequence, possibly with repetitions) of
linear forms in X7, ..., X, with rank {L;,..., L.} =n and

(27) LZ(Xl,,Xn)EK[Xl,,Xn] (2217,7")
Suppose that for each v € M(K) we have a set {L{”, ... LI} of linear forms with
(2.8) (L, ... LW}y c{L,,...,L,} and rank {L", ..., L} = n.

For v € M(K) we put

(2.9) A, = || det(L, ..., L@,

Furthermore, we let ¢ = (¢;) (v € M(K), i = 1,...,n) be a tuple of real numbers
satisfying

(2.10) Cly = ... = Cpy =0 for all but finitely many v € 9M(K).

For each finite extension F' of K and for every place w € 9M(F) lying above v € IM(K)
we define

(2.11) L =L ciw = d(w/v)ep, Ay = AJT

"'We deal with families of linear forms instead of just sets since this simplifies our arguments and since
it is slightly more convenient for applications.



(i=1,..n), where d(w/v) is asin (2.3). By (2.2), (2.9) we have A,, = || det(L™, ..., LI |-
Let Q > 1. Forx € Q", @ # 0 we define the twisted height Hg () as follows: We choose
a finite extension F of K with & € F™ and we put

L (@) ).
LT (@)

(2.12) Hge(x) = H 1<i<n A%U/"Qc@-w '

weM(F)

Notice that in view of (2.11) the right hand side of (2.12) does not depend upon the
particular field F' D K with & € F". Notice moreover that by (2.8) - (2.10) for « # 0 all
but finitely many factors in (2.12) are equal to 1. So Hg . is a well defined function on
Q"

We remark that for the forms considered in (1.9), (1.10), for each v € M(K) we have
A, = 1. So for the forms (1.9), (1.10) and for & € K™ the height Hg .(x) from (2.12)
coincides with the height Hy g () in (2.5). Thus Hg . on the one hand generalizes the
height Hy g . from (2.5) to more general linear forms and on the other hand it extends it
from K™ to Q".

Given our family {L,..., L,} of linear forms we introduce the quantity
(2.13) H=H(L,...,L)= [] max|ldet(Ls,..., L)
vEM(K) fntn
where the maximum is taken over all subsets {i,...,i,} of {1,...,7r}. H may be viewed

as some height of L,..., L,.

Our central result is as follows.

Theorem 2.1 Let K be a number field. Let {Li,...,L.} be a family of linear forms
with (2.7). Suppose that for each v € M(K) we have forms L. LY with (2.8). Let
c = (cy) (veMK), i =1,...,n) be a tuple of real numbers with (2.10) satisfying
moreover

n

(2.14) Z Civ =0, Z max{ciy, ..., Cnp} < 1.
1

vEM(K) 1=

Let
(2.15) 0<d<1.

Forxz € Q" define Hg.c(x) asin (2.12). Then there are proper linear subspaces Ty, ..., T;
of Q", all defined over K, where

1

(2.16) t1 =ty (n,r,8) < 40+ 5774 1og(21) log log(2r)



with the following property:
For every Q with

(2.17) Q > max {H"/ () 2%}
there is a subspace T; € {Ty,..., T, } such that

(2.18) {z€Q"|Hgelz) <Q°} C T

In applications often we have the situation that the forms L; have coefficients in the field
K but that we are interested in particular in those solutions & of Hg () < Q~° whose
components lie in a prescribed subfield £ of K. We give a Corollary which reflects this
situation.

For a number field E we write Gal(Q/E) for the Galois group of Q over E. Given
x=(r1,...,2,) € Q" and ¢ € Gal(Q/E) we put o(x) = (o(x1),...,0(z,)). We prove

Corollary 2.2 Let the hypotheses be the same as in Theorem 2.1. Suppose moreover that
E is a subfield of K.
Then there are proper linear subspaces 17, ..., T} of Q", all defined over E, where

(2.19) ty = ty(n, 7, 8) < A0+ 5774 1og(2r) log log(2r)

with the following property.
For every Q with

(2.20) () > max {Hl/(:L), n2/5}

there is a subspace T € {T},...,T] } such that

(2.21) {a: cQ"

max Ho.(o(@)) Q") C 7.
0c€Gal(Q/E)

Notice that any & € Q" with max Hg.(o(x)) < Q~° a fortiori satisfies Hg o(x) <
c€Gal(Q/E)

Q7%. Therefore the only difference between Theorem 2.1 and Corollary 2.2 lies in the fact
that in (2.21) the subspaces T} are defined over the subfield £ of K and not just over K

as are the subspaces T; in (2.18).

We finally show that Theorem 1.1 is an immediate consequence of either Theorem 2.1 or
Corollary 2.2.

In Theorem 1.1 we deal with sets Q°IIx(Q, c). By (2.6) any x € Q °Ilx(Q, c) satisfies
Hygelx) < Q7% with Hy g as in (2.5). Thus in order to prove Theorem 1.1 it suffices
to study the solutions of Hx g () < Q~°. As observed after (2.12), Hg g () is a special
instance of the twisted height Hg o(x) introduced in (2.12).
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We apply Theorem 2.1 or Corollary 2.2 with {Xy,...,X,,, X1 + ...+ X, } in place of
{Li,...,L,}. So the parameter r becomes n+1. Moreover the quantities A, from (2.9) for
{X1,...,X,, Xy + ... + X} are all equal to 1. Similarly, by (2.13),
H(Xy, ..., X, Xi+...+X,,) = 1. Thus hypothesis (2.17) reduces to

(2.22) Q > n??,

i.e., to (1.22). With Theorem 2.1 or Corollary 2.2 we therefore obtain:
there are proper linear subspaces T1,...,T; of K™ where

(2.23) t =t(n,d) <40 577 160 (2(n + 1)) loglog(2(n + 1)) < 4% 5=

with the following property:
For any @ with (2.22) there exists T; € {T1,...,T;} such that

(2.24) {zc c K"

Higelx) < Qﬂs} C 1;.

Theorem 1.1 follows.

3 The Absolute Subspace Theorem

We now formulate a result that is more in the spirit of (1.1).

Given © = (x1,...,2,) € K" we introduce for v € M(K) the v-adic norm

(3.1) |, = { (|21 24 ... 4 |2 2)4/2 for v e Mo (K)

max{||x1||v, -, ||Tallo} for v e My(K),

where d(v) is given by (1.8). The height of @ then is defined by

(3:2) Ha) = ] le|.

vEM(K)

More generally, given € Q" we may choose a number field K such that € K™. We then
define H(x) again by (3.2). It is an easy consequence of (2.2) - (2.4) that our definition of
H(x) does not depend upon the choice of K. For a linear form L(X) = oy X, +.. .+, X,
with coefficients a; € Q we put H(L) = H((ay, ..., ay)).

We quote a version of the quantitative Subspace Theorem proved by Schmidt [14]:

Let Ly, ..., L, be linearly independent linear forms with coefficients in an algebraic number
field K of degree d. Consider the inequality

[Li(®)]  [Lo(z)]

(3:3) el Tl

< |det(Ly, ..., Ly)|H(x)™"°




where 0 < 0 < 1.
Then there are proper linear subspaces T, ..., T, of Q™ where

22611672

(3.4) t < (2d)
such that the set of solutions € € Q™ ~ {0} of (3.3) with

(3.5) H(x) > max{H(Ly),...,H(L,), (n)%°}
s contained in the union

ThU...UT,.

Comparing Corollary 2.2 with Schmidt’s result, we see that in (3.3) - (3.5) the field Q of
rational numbers plays the role of the field £ in Corollary 2.2. However in Corollary 2.2
the absolute values under consideration are normalized absolute values on the larger field
K, or even more generally normalized extensions thereof. In contrast with this, in (3.3)
we consider the absolute value | | corresponding to the place at infinity of Q and we then
deal with a non-normalized extension of | | onto K.

We proceed to give the absolute generalization of Schmidt’s result.

Let E be a number field. Let S be a finite subset of 9(F) and suppose that for each

v € S we have linear forms Lg”), . LY with coefficients in Q and with
(3.6) rank {L\",... L")} = n.

For a nonzero linear form L = a1 X7 + ... + @, X,, we define the extension F(L) of E by

E(L):E(ﬂ %)

(67 ’ Q;
where 7 is a subscript with «; # 0. We suppose that for i = 1,...,n and for v € §
(3.7) B(L”): E) < D,

and moreover that

(3.8) HIL")<H (weS:i=1,...,n).
For v € S write || ||, for the normalized absolute value on E corresponding to v (cf. (1.7),
(1.8)). The absolute value || ||, has a unique extension || ||/, say, to E,, the algebraic

closure of the completion F,. Fix an embedding 7, of Q over E into E,. We then extend
| ||, from E to Q by putting
(3.9) lzllo = I7()Il, for z € Q.

v

We obtain
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Theorem 3.1 Let E be a number field and suppose S is a finite subset of IM(E) of
cardinality s. Assume that for each v € S we are given linear forms Lﬁ”), - ,Lff)

X = (Xy,...,X,) satisfying (3.6) - (3.8). Suppose moreover that for each v € S the
absolute value || ||, is extended to Q as in (3.9). Let 0 < < 1.

Then there exist proper linear subspaces Ty, ..., T;, of @n, all defined over E, where

(3.10) ty = ta(n, s, D,8) < (3n)2"s 2349 5=ns=n—4 100 (4 D) log log (4D)

with the following property.
The set of solutions & € Q" of the inequalities

(v)
(3.11) gﬂaeé%m Z“a ‘;< v < 1}; | det(Z, ..., LY, H(z)™°
and
(3.12) H(x) > max{n'/° H}
s contained in the union
TyU...UT,.

Comparing Theorem 3.1 with Schmidt’s result quoted above we see that the role of Q in
(3.3) - (3.5) now is played by the field E. On the other hand the compositum F', say, of
the fields E(LEU)) (veS;i=1,...,n) replaces the field K. So the analogue of the degree
d in Schmidt’s result now is [F': E]. By (3.7) we have [F': E] < D",

In particular Theorem 3.1 with £ = Q, S = {oco} gives the absolute generalization of
Schmidt’s theorem with a bound which is much better than (3.4).

Evertse [4] has proved a result like Theorem 3.1, but with solutions @ restricted to lie in
E". He obtained the bound

ta < (297°67™) " log(4D) log log(4D).

Clearly (3.10) again is better. However instead of (3.12) Evertse has only to assume
H(x) > H.

Our paper is organized as follows.

In section 4 we treat the rationality of the subspaces in the assertions of Theorem 2.1 and
Corollary 2.2.

In view of the remark in section 2 the assertion of Corollary 2.2 then will follow once we
have proved Theorem 2.1.

The proof of Theorem 2.1 in turn is given in sections 5 - 19.

Finally in sections 20 and 21 we deduce Theorem 3.1 from Corollary 2.2. On the way of the
deduction of Theorem 3.1 we give in section 20 a related result on simultaneous inequalities
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(Theorem 20.1). This intermediate result may be of some independent interest, as the
bound we obtain there will be independent of s.

The core of the paper clearly is the proof of Theorem 2.1. We have tried to make the
exposition selfcontained. To give the reader a clear picture of the essential developments
in comparison with the classical Subspace Theorem we proceed as far as possible along
the same lines as does Schmidt in [14] and in [13] (chapter VI).

4 Rationality of the Subspaces

Lemma 4.1 For x € Q" let Hg () be as in (2.12). Then for any o € Gal(Q/K) we
have

Hge(o(x)) = Hge(T).

Proof. Given € Q" we choose a finite normal extension F of K with € F™. For a
place w € M(F) and for 0 € Gal(Q/K) we write w, for the place in 9U(F) such that for
any x € F' the non-normalized absolute values | |, and | |, satisfy the relation

|x‘wa = |U(x)|w-

If w lies above v € IM(K) then so does w,. Moreover, since the extension F/K is

normal, we have [F,, : K,| = [F, : K,]. Therefore with our notation (2.3) we get
d(w,/v) = d(w/v). In conjunction with (2.2) we may conclude that the normalized
absolute values || ||, and || ||, satisfy

||| w, = ||o(z)]] for each z € F.

We now fix v € M(K) and consider w € M(F') with w|v. In view of (2.11) we have

L(wg) = L(w) y Ciw, = Ciw Awo = Aw

7 (3

for any o € Gal(Q/K). Since moreover the linear forms L; in (2.7) have coefficients in K

we obtain
1LY (0(2)) [l lo(L (@) [l L8 ()|
max L = max v — max 4t /W
1<isn AY"Qei 1Sisn AY"Qei 1<isn AM™Qeiwe

Furthermore, given v € 9M(K) and o € Gal(Q/K), if w runs through the places of M (F)
lying above v then so does w,. Thus we may conclude that for any o € Gal(Q/K)

L(w) y L(wg) y L(wg) y
T s 0@l _ [T I @l 0 12 @l
1<isn AY"Qei 1<isn AM™ Qe 1<isn - A" Qciu,

wlv wlv We |V

Taking the product over v € IMM(K) we get the assertion.
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Lemma 4.2 Let F be a number field. Let M be a subset of Q" such that for any € € M
and for any o € Gal(Q/F) we have o(x) € M. Let T be a linear subspace of Q" with
M C T. Write T' for the subspace of Q" generated by TN F™. Then T’ is defined over F
and

McT.

Proof. Since 7" has a basis in F" it is clearly defined over F.

Now suppose x € M. Pick a finite normal extension GG of F' such that * € G", and let
{o1,...,0,4} be the Galois group of G over F. Choose a basis {w,...,w,} of G over F.
Then x can be written as

(4.1) T=wy +... +wy,
with y,...,y, € F". Consequently we get
oi(z) = oi(w)y, +... +oilwy)y, (i=1,...,9).

The matrix (0;(w;))i<ij<g is invertible. Thus, y,,...,y, are linear combinations of
o1(x),...,04(x). By hypothesis we have o1(x),...,0,(x) € M C T. We may conclude
that y,,...,y, € T and therefore

Yy, Y, ETNF CT.

In view of (4.1) we may infer that & € 7", and the Lemma follows.

We are now in a position to prove for Theorem 2.1 and Corollary 2.2 the respective as-
sertions on the rationality of the subspaces, assuming that all other assertions are true.
In each case we apply Lemma 4.2.

As for Theorem 2.1, M is replaced by {33 eQ” | Hge(x) < Q“;} with @ fixed and F' is
replaced by K. By Lemma 4.1 and by (2.18) the hypotheses of Lemma 4.2 are satisfied.
Thus the subspaces T; in Theorem 2.1 may be chosen such as to be defined over K.

Finally, we turn to Corollary 2.2.

The role of M now is played by {:13 cQ" | MaX, ¢ @/p) Heclo(T)) < Q*‘;} with @ fixed
and the role of F' is played by the field E. By (2.21) the hypotheses of Lemma 4.2 again
are satisfied and therefore the subspaces 7] may be chosen such as to be defined over E.

5 A First Reduction

To prove Theorem 2.1, according to section 4 it suffices to show that in (2.1), (2.18) we
do not need more than ¢; subspaces T} of Q", never mind whether these are defined over
K or not.
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In this section we want to reduce the assertion of Theorem 2.1 further.

Proposition 5.1 In order to prove Theorem 2.1 without loss of generality we are allowed
to make the following additional assumptions:
(i) The family of forms {Ly, ..., L.} satisfies

(5.1) Li=Xy,...,L, = X,.
(ii) There exists a subset My of My(K) such that

(5.2) Mo(K) NIy is finite
and such that for each v € My we have

(5.3) LV =X, LY =X, clo=...=cny=0.

Proof. We first show that without loss of generality we may assume that there is a subset
My of Mo (K) with (5.2) such that we have for each v € My

(5.4) LW =Ly, . LW =L, cly=...=cp =0.

n

Let 9, be the subset of My (L) such that for each v € My
(5.5) Cly = ... = Cpp = 0.

By (2.10), 9t (K) \ My is finite.
Consider the family {L4,..., L,} from (2.7) and write

LZ(X):OQle—{——i—OéZan (Zzl,,T)
For all but finitely many v € 91, we have
(5.6) lovijllo =1
for every pair (7,7) with a;; # 0. Moreover, for all but finitely many v € 9, we get

(5.7) || det(L JLi)|le =1

TRERE

for any subset {i1,...,4,} of {1,...,7} such that det(L;,,...,L; ) # 0.
Let 91, be the subset of My such that for each v € M, simultaneously (5.6) and (5.7) are
satisfied.

Suppose € Q" and let F be a finite extension of K such that & € F™. We infer from
(5.6) that for any v € 9ty and for any w € M(F') with w|v we obtain

(5.8) [Li() ]| < max{|[z1]fw, - -, [l2n]lw}-
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On the other hand applying Cramer’s rule, (5.6) and (5.7), we see that for any v € 9y,
for any w € M(F') with w|v and for any set {iy,...,4,} such that det(L;,...,L; ) # 0

(5.9) masx [yl < x| L, (@)

Combination of (5.8) and (5.9) implies that for each set {i1,...,4,} with (5.7), for each
v € My and for each w € M(F) with w|v we get

ax |lz]le = max | Li, ()]l

In particular, for any pair of subsets {i1,...,i,} and {j1,...,Jn} of {1,...,r} satisfying
(5.7) we may infer that

(5.10) max || Li, (2)[lw = max [|L;, (@)l

1<v<n 1<v<n

for each w € M(F') under consideration. Our construction of M, is such that
My C i)ﬁo(K), mo(K) ~ M, is finite.

Moreover for v € M we have (5.5) and (5.7). Thus, in view of (5.10) it is clear that in the
definition of Hec(z) in (2.12) we may assume that for v € 90, the forms {L{",... L}
in that ordering are always the same, {Ly, ..., L,}, say. This proves our claim (5.4).

We next claim that for the family {L1, ..., L.} we may suppose without loss of generality
that

(511) L1:X1,...,Ln:Xn.

To verify our claim, we show that Theorem 2.1 is invariant under linear transformations
AeGL,(K).

Indeed suppose A € GL,(K). For a linear form L = L(X) we define LW (X) = L(AX).
The product rule for determinants and the product formula (2.1) imply that for any finite
extension F' of K

[T a = TI (detAfuan)”™ = TT ldet((LS), . (L) @)y

weM(F) weM(F) weM(F)

Moreover H in (2.13) remains unchanged if we replace {Lq,..., L.} by {L(IA), o L,(nA)}.

Therefore, taking in Theorem 2.1 instead of { L4, ..., L.}, x, Ty, ..., T}, respectively {LSA), e

we get an equivalent statement.

Our claim (5.11) now follows if for A we take the inverse of the matrix B, where the row
vectors of B are the coefficient vectors of the forms L4, ..., L, from (5.4). Combination
of (5.4) and (5.11) finally proves Proposition 5.1.
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From now on we will always assume that (5.1) - (5.3) are satisfied.

Our next goal is to further reduce the assertion of Theorem 2.1 to a situation where in
(2.9) we have
A, =1 foreach v e M(K).

In Proposition 5.2 which will be formulated below, we will make the following assumptions:

We have a number field K and a family {L;, ..., L,} of linear forms in X, ..., X, of rank
n with

(512) Li(Xl,...,Xn)EK[Xl,...,Xn] (izl,...,r)
and
(5.13) Li=X1,...,L, = X,.

For each v € M(K) we have a set {L{”, ..., L} with

(5.14) (L, LWy c{L,,... L}
and
(5.15) det(L{, ..., L0y =1.
Moreover we have a tuple ¢ = (¢;,) (v € M(K), i = 1,...,n) of real numbers with
(5.16) Z zn:c,-v =0, Z max{ciy, ..., Cnp} < 1.
vEM(K) i=1 vEM(K)

Finally we suppose that we have a subset 9t of M,(K) such that

(5.17) Mo(K) ~ My is finite,

and such that moreover

(5.18) LW =X, LW =X, cty=...= =0 forve M.

n

H and Hg(x) are as in (2.13), (2.12) respectively.

Theorem 2.1 is a consequence of

Proposition 5.2 Suppose we have (5.12) - (5.18). Let 0 < d < 1.
Then there are proper linear subspaces 11, ..., T, of Q" where

(5.19) ty = ts(n,r,8) < A7 5774 1og(2r) log log(2r)
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with the following property:
For every Q with

(5.20) @ > max {H1/<;), n?/%}
there is a subspace T; € {T1,...,T,,} such that

(5.21) {xeQ"|Hoelx) <Q°} CTh

Remark (i) The only difference between the hypotheses of Proposition 5.1 and 5.2 is

(5.15).
(ii) In the deduction of Theorem 2.1 from Proposition 5.2 we will use the fact that
{Ly,..., L.} is a family and not necessarily a set. If we assume that {L,..., L.} is

a set, the technicalities of the deduction become more complicated.

We proceed to deduce Theorem 2.1 from Proposition 5.2.

Starting with the hypotheses we have in section 2 and assuming moreover (5.1) - (5.3)
(as we may by Proposition 5.1) we will construct a finite extension F of K and a family
of forms {M;, ..., M,} with coefficients in E.

From the family {M,..., M} we will obtain for each u € 9(F) sets of linear forms
(MM M} and a tuple e = (es,) (u € M(E), i = 1,...,n) such that the ana-
logue of (5.12) - (5.18) is true for E, {My,..., M}, {Ml(u), . ,Méu)}, e. Denoting the
corresponding twisted height by Hg, (), our construction will be such that

(5.22) Hj () = Hge(z) forallzeq’,

where Hg . is the height (2.12) we have to study in Theorem 2.1.
Combination of (5.22) and Proposition 5.2 then will imply Theorem 2.1.

To begin our construction, let {L,..., L.} be the family of forms we study in Theorem
2.1. Let Z be the collection of sets {iy,...,1,} C {1,...,r} such that {L;,,...,L; } is
linearly independent. For I = {iy,...,i,} € Z we put

(523) Oé([) - det(L’i17 ey Lin>71/n

with a fixed choice of the n-th root and with 1'/* = 1. Let E be the finite extension of K
generated over K by the numbers (1) (I € 7). Let {My,..., M} be the family of linear
forms consisting of

(5.24) all)L; (I€Z;i=1,...,r).
Then we have

(5.25) M€ E[Xy,....X,] (i=1,...,s)



and
(5.26) s=r|Z] < T(T) <
n

Moreover by (5.1), {X1,..., X} C{Mi,..., Ms}. So we may suppose that
(5.27) My =X1,....,M, = X,,.

Notice that by (2.11) we have for u € 9M(E) lying above v € M(K)
(5.28) L =LY e =d(u/v)ew (i=1,...,n).

We now define for u € M(E) and fori =1,...,n

(5.29) M™ = det (L™, ..., LeN L™,

Our definition (5.24) of {My, ..., M} implies

(5.30) (MM, M®™} c {M,,...,M} foreach u € M(E).
Moreover, by (5.29)

(5.31) det (M{™,...,M{®) =1 for each u € M(E).

We define the tuple e = (e;,) (v € M(E), i =1,...,n)

(5.32) i = d(u/v)cy,

where v is the place in M(K) lying below u. We denote by 9, (E) the set of places of E
lying above the places in My (with M C My(K) as in (5.2), (5.3)). By (5.2) we get

Moreover, by (5.3), (5.28), (5.29), (5.32)
(5.34) M™ =X, .. MW =X, eu=...=ep=0 foruecM(E).

Finally, by (2.14) and (5.32)

(5.35) Z i eiw =0, Z max{€iy, ..., e} < L.

ue€M(E) i=1 ueEM(E)

So replacing K, My, {L1,..., L}, {LY, ..., LY} (v € MK)), ¢ = () (v € M(K),
i =1,...,n) respectively by E, My (E), {Mi,..., M}, {M™, .. M"Y} (u € ME)),
e = (ew) (u € ME), i = 1,...,n) we see that (5.25), (5.27), (5.30), (5.31), (5.35),
(5.33), (5.34) in that ordering respectively are the analogues of (5.12) - (5.18).
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We next define the height Hp, (). For a finite extension F' of E and for w € 9(F) lying
above u € 9M(F) we put, as usual,

M™ =M™ | e =dw/u) e, (i=1,...,n).
Moreover, we write

Al = det (M™,..., M&)|L,  (w € M(F)).

n

Now let € Q" and suppose that F' is a finite extension of E such that & € F". In
complete analogy with (2.12) we define

(w)
o 1M @)
(5.36) Hoelw)= 11 o =0
weM(F) w

Notice that by (5.31)
Al =1 for each w € M(F).

Thus (5.36) becomes

(5.37) Hp () = max ————="

We may apply Proposition 5.2 to conclude that there are proper linear subspaces
Ty, ..., T, of Q" where

(5.38) ty = t3(n, s,6) < 407 5774 10g(25) log log(2s)

with the following property:
Write H' = H(M;, ..., M,). Then for any @) with

(5.39) () > max {H’l/(i),nz/‘s}

there is a subspace T; € {T, ..., T} such that

(5.40) {zeQ"|Hy (z) <Q°} CT.

To deduce Theorem 2.1 we claim that the height Hg (x) from (2.12) satisfies
(5.41) Hgo(x) = Hj (x) foranyz e Q"

We claim moreover that

(5.42) H(Ly,...,L)YG) = 1/ C) > wVC) = 1o, a)Y G,

Suppose for the moment (5.41) and (5.42) to be shown. Then by (5.42), any @ with
(2.17) a fortiori satisfies (5.39). But then combination of (5.40) and (5.41) shows that in
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Theorem 2.1 we do not need more than t3(n, s, d) subspaces with ¢3 bounded as in (5.38).
All this is true under the assumption that (5.1) - (5.3) are satisfied. By Proposition 5.1 we
are allowed to make this assumption. So we may conclude that in Theorem 2.1, t3(n, s, d)
suspaces suffice. Notice however that by (5.26) s < ™" and so the right hand side of
(5.38) is not larger than the right hand side in (2.16).

Theorem 2.1 follows.

To complete the deduction of Theorem 2.1 from Proposition 5.2, we still have to prove
our claims (5.41) and (5.42).

As for (5.41), we return to (5.37). By (5.29)
IME (@) ]| = ALY | L ()] for 2 € F™ and w € M(F).
Here A, = || det(L{", ..., L\")|.,.. Moreover by (5.32)
eiw = d(w/u) ey, = d(w/u) d(u/v) ¢y = d(w/v) ¢y = Cinp
fori=1,...,n and for w € M(F), w|u, u € M(E), u|v, v € M(K), i.e.,
Ciw = Ciy forw € M(F)and i =1,...,n.

So indeed by (5.37)

(w) (w)
/ _ 1M (@) ||lw 1L (®)][w
HQ,G(Q:) - 11,2%)% Qciw - H 1§Z‘§}; Aqlﬂ/chlw - HQ,C(fL')

weM(F)
and assertion (5.41) is established.
As for (5.42) we prove

Lemma 5.3 Let {M,..., M} be the family of forms given by (5.24). Then

H(Ly, ..., L)YG) > 1o, . M)V G,

Proof. Write ¢ = |Z| and let a4, ..., @, be an enumeration of the numbers a(I) from
(5.23) with I € 7.

After reordering My, ..., M, we may suppose that
(543) {Ml, ceey MS} = {ozlLl, ce ,O[qu, PN 7OZ1LT, PN ,OéqLT}.
We may relabel M, ..., M, as

(544) MZ]:CYZLJ (z:l,,q,jzl,,r)
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Notice that by definition the factors oy, ..., a, are all different from zero. Therefore we
may conclude that for an n-tuple of pairs (i1, j1), ..., (in, jn)

det(Mil,jl, ey M'Lny,]n) # 0

if and only if det(L;,,...,L;,) # 0, i.e., if and only if {j1,...,7,} € Z.
Now suppose {ji,...,Jn} € Z. Then for u € M(E) and for any {i,...,i,} with
1<y <q(l=1,...,q) we get

[ det(Mi, jy, -, Mi g ) llw = lleviy - - e [l | det( Ly, s L) -

In particular

(5.45) max (|| det(M;, 4y, s My ) |lu) <

(ilrjl) 7777 (Z’ﬂ ]n) B
< .max) (||ozZl ) .ain”u) (Jmax (|| det(Lj, ... L]n)||u)

where the maxima are taken over 4y and 5; (I=1,...,n) with 1 <4 <gand 1 <j <r.
Given [ with 1 <[ < g, by (5.23)

ol < max || det( Ly s L )™

ﬁl ~~~~~

Thus Ly
Jorlu < (_, min Indet(Lﬁ,-..,Ljn)nu) .

J1se-sdn €
We may conclude that in (5.45) the first term on the right hand side satisfies

-1
(5.46) ('mai() (||a“. .ozin||u) < ({ 1}71.1;11 || det( ]1,...,Ljn)||u> .

Combining (5.45) and (5.46) we may infer that

(547) max (H det( i1 ]17 st 7M'Ln»]n)Hu) <

(11,415 (in,jn) o

< max det(L; ,...,L; )|lu min det ooy L M) -
T Ui jn)EI(H (Lj, i)l ) G (H (Lyj, i)l )

Write
(5.48) p= [ det(Lj,....L;,)

Then by the definition of Z we have § # 0. Recall that we had |Z| = ¢. By (5.48) we get
for any u € 9M(E)

(5.49) max (||det(Lj1,...,Ljn)||u) min (||det( ]1,...,Ljn)||u)§

(J15-3n) €T (J15-5Jn) €T

< det(L;,, ... / .
< (s (ldetzi,e L)1) /191

77777
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Combination of (5.47) and (5.49) yields

M, j)ll) <

1,410 0 "

(5.50) mex (|| det(M;

(ilvjl) ----- (inyjn
q
< <(j1max (H det(Lj,, ..., Ljn)Hu)) /HQHU

Taking the product over v € M(E) and applying the product formula we get with (5.50)
(5.51) H =H(M,..., M) < < 11 HﬁHUI)H(Ll, L)1 =M
ueM(E)

The assertion of Lemma 5.3 (and thus of (5.42)) is
(5.52) HYC) > /().

To establish (5.52), by (5.51) it suffices to show that

()= ()

however by (5.26) and since |Z| = ¢ this is certainly true. The Lemma follows.

So we have reduced Theorem 2.1 to Proposition 5.2. The main part of the following
sections (sections 6 - 19) deals with the proof of this Proposition.

6 Parallelepipeds

In this section we reduce Proposition 5.2 to an assertion about “parallelepipeds” in Q.
Parallelepipeds already play a central role in Schmidt’s original proof of the Subspace
Theorem.

The result we are going to formulate is quite similar to Theorem 1.1.

Again we start with our number field K and the family {L,..., L,} of linear forms in
Xi,..., X, of rank n with

(6.1) Li(X1,...,X,) e K[ Xq,...,X,] (i=1,...,7)
satisfying
(62) L1:X1,...,Ln:Xn.

For each v € M(K) we have a set {L{”, ... LY} with
(6.3) (LY, LW)Y € (L., L)}
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and

(6.4) det (L3, ..., L®) = 1.

We have the tuple ¢ = (¢;) (v € M(K), i =1,...,n) of real numbers with

(6.5) Z z”: Cin =0, Z max{Ciy,...,Cnp} < 1.
vEM(K) i=1 vEM(K)

Finally we have a subset 9t of 9y(K) such that

(6.6) Mo(K) ~ 9y is finite

and such that moreover for each v € 9

(6.7) V=X, LY =X, clp=...=cn = 0.

If F is a finite extension of K we have put for any w € M(F) lying above v € M (K)

(6.8) L =W e, =dw/v)ew (i=1,....n)

with d(w/v) as in (2.3).
Let z € Q" and suppose that indeed € F™. Then in our current situation the height
Hg o(x) becomes

(6.9) Hpo(x) = max —-— 1

We define the parallelepiped II#(Q, €) to be the set of points & € F™ satisfying
(6.10) I ()]l < Q% (w e M(F),i=1,...,n).
We define the algebraic closure I1(Q, ¢) of IIx(Q, ¢) by

FOK

where the union is over all finite extensions F' of K.
We now fix a place

(6.12) vy € M.

For A > 0 and a finite extension F' of K we define the dilatation of IIz(Q, ¢) by the factor
A to be the set of points x € F™ satisfying the simultaneous inequalities

I (@) < Q™ (weM(F), wivy, i=1,...,n)

1LY (@)l < Qv X (w & M(F), w] vy, i =1,...,n).

23



In view of (6.12) and (6.7) these become
(6.13) ILM ()] < Q%  (weM(F), wtvy, i=1,...,n)
(6.14) @il < AP (€ M(F), wv, i =1,...,n0).

We write briefly A x I1p(Q, ¢) for the subset of points & € F'™ given by (6.13), (6.14).
The algebraic closure of A1 (Q, ¢) then is defined by

(6.15) Ax11(Q.¢) = | J A*T1p(Q, o),

FOK

where again the union is over all finite extensions F' of K. We call II(Q, ¢) the paral-
lelepiped associated with the height Hg ().

Remark. Our definition of A  II(Q), ¢) might seem somewhat artificial. We have “con-
centrated” the factor of dilatation to the places lying above vy with vg € 9t; simply for
technical reasons. In view of Lemma 6.3 below it will become clear that the assertion
we will enunciate in the following Proposition 6.1 would be true just the same if in the
definition of A * I1(Q, ¢) instead of (6.13), (6.14) we would use the inequalities

1L (@) ]| < Q% A (w € Mo (F), i =1,...,n)
1L ()], < Qe (weM(F),i=1,....n).

This definition would be the natural extension of (1.14), (1.15). We will not discuss this
further. At any rate (6.13), (6.14) will smooth out certain details in our proof later on.

Proposition 6.1 Let K be a number field. Suppose we have a family {Li,..., L.} of
linear forms, for each v € IM(K) a set of forms {Lﬁ“), o ,Lq(f)} and moreover a tuple
c=(cw) (WeEMK),i=1,...,n) such that (6.1) - (6.7) are satisfied.

For @ > 1 define the parallelepiped 11(Q, ¢) with (6.8), (6.10), (6.11) and for A > 0 let
AxI1(Q, ) be defined by (6.12) - (6.14).

Suppose 0 < & < 1. Then there exist proper linear subspaces Ti, ..., Ty, of Q" where

(6.16) ty =ty(n,r,0) < 4400 5=n=4 150(2r) log log(2r)

with the following property:
For each Q) with

(6.17) () > max {H1/<2)7 n'/}
there exists i with 1 < ¢ < t4 such that

(6.18) Q7 xI(Q, c) C T,
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It turns out that Proposition 6.1 essentially is equivalent to Proposition 5.2.
Given @ with (5.20) we write

(6.19) M(@Q) ={z € Q" |Hoel®) <Q°}

for the set considered in (5.21). Obviously Q°*I1(Q, ¢) C M(Q). Therefore Proposition
5.2 implies a result of the type stated in Proposition 6.1 (with slightly different numerical
constants in (6.16), (6.17)).

Since we want to reduce Proposition 5.2 to Proposition 6.1 we need the opposite implica-
tion.
We will prove:

Lemma 6.2 Let 9 >0 and A > 0. Then for any x € Q" with
there exists 3 € Q  such that

(6.21) Bz € (1+9) )+ I1(Q, c).

Suppose for the moment Lemma 6.2 to be shown.

We proceed to deduce Proposition 5.2 from Proposition 6.1.
Suppose 0 < § < 1. Put ¢’ = 6/2. Pick ¥ > 0 such that

(6.22) 149 <n.
Now by (5.20) we have Q%2 > n. So with 9 from (6.22) we get for any Q with (5.20)
(6.23) (1+0)Q°<Q™7.

On the other hand, any @) with (5.20) satisfies (6.17) with 0 replaced by ¢'. Let T3, ..., Ty,
be the subspaces we get in Proposition 6.1 with ¢ replaced by ¢’. Then for any ) having
(5.20) we get by Proposition 6.1

(6.24) Q7 +1(Q,¢) C T,

for some @ with 1 < i < ty(n,r,d).

Now consider for () with (5.20) the set M (Q) introduced in (6.19). Suppose & € M(Q).
We apply Lemma 6.2 with A = Q% and with ¥ as in (6.22).

Accordingly there exists 5 € Q such that

Bz € (1+9) Q™ + T1(Q, ).
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Combination of (6.23) and (6.24) implies Sz € T}, hence € T;. We may conclude that
M(@Q) T

for some ¢ with 1 < ¢ < ty(n,r,d/2).
However, it is easily seen that the upper bound given in (6.16) for t4(n,r,d§/2) does not
exceed the upper bound we claim for t3(n,r,d) in (5.19). Proposition 5.2 follows.

We still have to prove Lemma 6.2. We use

Lemma 6.3 Let F' be a number field. Suppose that for w € M(F) we are given positive
real numbers A, satisfying

(6.25) A, =1 for all but finitely many w € IM(F),

(6.26) IT 4.>1

weM(F)
Then there exist a finite extension E of F and an element 8 € E* with the following
properties:

(6.27) 18]l < AL ™) for all u € M(E) lying above
w € M(F) and for all w e M(F),

(6.28) g* € F for some k € N.

Proof. Let T be the finite subset of 9M(F') consisting of all archimedean places and
of all places w € 9M(F) with A, # 1. Write Gr for the group of T-units in F. So
Gr ={g9 € F*|||gllw = 1 for w € M(F) ~T}. Suppose T has cardinality ¢. Then by
Dirichlet’s unit theorem, Gr is a finitely generated multiplicative group of rank t — 1. In
fact it is well known that the set of vectors (log||g||w)wer With g € G forms a lattice of
rank ¢ — 1 in the subspace of RY = {(2y)wer | T» € R} defined by the equation

(6.29) > =0

weT

In particular this implies that there exists a positive constant ¢ such that for any tuple
(Zw)wer of real numbers with (6.29) we can find an element g € G satisfying

(6.30) [log[|lgllw — 2| <c¢ (weT).

Write A= [] Ay By (6.26) we can find a positive integer k such that
weM(F)

(6.31) AR > et

26



We consider the vector (z,)yer with components z,, = klog A,, — % log A. We infer from
the definition of A and T that (z,,) satisfies (6.29). For this vector we choose g € Gr
according to (6.30). Let 8 be a k-th root of g. With this choice of 3, (6.28) is true. Write
E = F(B) and let R be the set of places of E lying above the places in T'. Let u € R and
suppose w € T is such that u|w. We then get using (6.3) and (6.31)

1
‘ log ||B]|u — d(u/w){log A,, — ;logAH

1 k
= 1 [logllgll — d(u/w){klog A, — —log A}|

= % | 10g [|gllw — Kk log Ay + glogA!
< d(uk/w)c < d(u/w)%logA.

This implies (6.27) for u € M(F) lying above some w € T, i.e., for u € R.
For u € R we obtain

1811 = llgll/™ = llglli /" = 1 = Aff/)

(here w is the place in M(F) \ T lying below ). So (6.27) is true for u € M(E) \ R as
well. Lemma 6.3 follows.

We now derive Lemma 6.2 from Lemma 6.3.

Let ¢ € Q" with Hg.c(x) < A be given. We may assume x # 0. Suppose F is a finite
extension of K such that @ € F". Then by (6.9) we have

(w)
L, w
(6.32) max M <A\
1<i<n  (Q%w
weM(F)
Put
= e M @)
(6.33) By, = max Qe (w e M(F))
By (6.4), B, > 0 for each w € M(F).
We want to apply Lemma 6.2 with
A, = B! for w € M(F), w 1 vg
(6.34)
Ay = B {(1 +9)A}@/%) for w € M(F) with w | vo.

Notice that in view of (6.32), (6.33)



Hence

11 )sz( 1T B;l)(1+z9)A>1.

weM(F weEM(F)
So (6.26) is satisfied.

Moreover, by (6.6) - (6.8) for all but finitely many w € 9M(F'), ¢y = ... = Cpw = 0. Also
for all but finitely many w € 9(F), max ||L§w)(33)||w = 1. Thus we may conclude that

for all but finitely many w € MM(F), B, =1 and hence A,, = 1. So (6.25) is satisfied as
well.
By Lemma 6.3 we can find a finite extension F of F' and an element § € E* with

(6.35) 18]]a < AW/ for u € M(E) lying above w € M(F) with w f v
Combination of (6.33) - (6.35) yields

(u)
I ),
1<i<n Qcin

= Bl < 1
for u € M(F) lying above w € M(F') with w { vy, whereas for u € M(E) lying above
w € M(F) with w| vy we may infer, again with (6.33) - (6.35), that

ma 8 = B 8]l < (1 +9)2) ",

1<i<n

But this means fx € (1 4+ )\ x I1(Q, ¢) and Lemma 6.2 follows.

To summarize, so far we have reduced the assertion of Theorem 2.1 to Proposition 6.1.
Proposition 6.1 will be proved in sections 7 - 19.

7 Absolute Geometry of Numbers

Let
A= (Ap|lveMK),i=1,...,n)

be a tuple of positive real numbers with

(7.1) Ay, =...A,, =1 for all but finitely many v € 9(K).

For a finite extension F' of K and for w € 9M(F) lying above v € 9M(K) we put
(7.2) Ajyy = AN

with d(w/v) as in (2.3). For v € M(K) let LI, ... LY be the linear forms from (6.3),
(6.4), (6.7). For & € Q" we define the twisted height H(x) as follows. If F is a finite
extension of K such that & € F™ we put

B 1L ()]
weEM(F)
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Following Roy and Thunder [8] we introduce for the height Ha(x) successive minima
ALy Ap.

For A > 0 we let V4(\) be the Q-vector space generated by the elements x € Q" with
Ha(x) < A Fori=1,...,n we define

= inf{\| dim Va(\) > i}.

We quote Theorem 6.3 of Roy and Thunder [§].

Proposition 7.1 Suppose A = (A |v € M(K), i = 1,...,n) satisfies (7.1). Suppose
moreover that for each pair (i,v) (1 <i<n,v € M(K)) there exists a;, € K with

(7.4) Ay = ||tiv|o-

For v e M(K) put

(7.5) A, =[] 4w

Then the successive minima Ay, ..., A\, of Ha(x) satisfy the inequality
_n ) n(n—1) A’U
(7.6) n"s A—ngl...Anng 11 i
vEM(K) vEM(K)

with A, as in (2.9).

Actually, Roy and Thunder consider a slightly different twisted height, with the Euclidean
norm at the infinite places in (7.3) instead of the maximum norm, i.e., they consider

d(w)

7o) — S ILT @) L8 )]l
Ha@)= ] (Z i) max T
weMoo (F) \ =1 iw weNMp (F)
They define minima pg, ..., u, with respect to ﬁA(m) and prove
A, n(n-1) A,
7.7 — oy <2 —.
(7.7) H b m=2 I F
EM(K vEM(K)
Now, it follows easily from ) d(w) =1 that
w|oo
(7.8) Ha(z) < Ha(z) < n'/? Ha(z).

(7.6) is a consequence of (7.7) and (7.8).

For our application it will be convenient to prove that in Proposition 7.1 we may drop
hypothesis (7.4). Indeed we have
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Corollary 7.2 Proposition 7.1 remains true without hypothesis (7.4).

Proof. Let S be the set of places in 9(K) such that
(7.9) LW =X, Ay=1 for i=1,...,n and for each v € M(K) . 5.

By (7.1) and (6.6), (6.7), S is finite.
For each v € S we pick an element 3, € K with

(7.10) 18l # 1.

Suppose € > 0. Then we can find numbers n;, € Z, my, € N (v € S, i =1,...,n) such
that

(7.11) (14 ) Ay < |8y /mie < (14 €) Ay,

Let E be a finite extension of K containing the numbers ﬁi/m” (vesS,i=1,...,n). For
q € M(E) we define the linear forms LZ(-q) in analogy with (6.8). Moreover we define the
tuple B = (B, |¢ € M(E),i=1,...,n) by

(| B, ||/ miw) da/v) for ¢ € MM(E) lying above v € S, i =1,...,n
(7.12) Big = 1 for ¢ € 9M(F) not lying above some

veS i=1,...,n.

Given a finite extension F' of E, for w € 9M(F') lying above ¢ € IM(E) we write
By, = BXY (i=1,...,n).

We define the twisted height Hg(x) as follows. For & € Q" let F' be a finite extension of
FE such that € F". We then put

B 1L ()]
weM(F)

Let A],..., A, be the successive minima of Hg(x). Writing B, = [[;_, By, (¢ € M(E))
we may infer from Proposition 7.1 that

-2 Aq / / n(n-1) Aq

qeMm(E) ¢ gem(e) 1

where A, = ||det(L\?, ... L)||, (¢ € M(E)).

We next compare the heights Ha(x) and Hg(x).
Again let F' be a finite extension of E, such that & € F™. Let w € 9(F) be a place lying
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above ¢ € M(E), and suppose moreover that ¢ lies above v € M(K). Using the relation
d(w/v) = d(w/q) d(q/v) we obtain in view of (7.1), (7.2), (7.11), (7.12)

(

(14 &)~ 4w/ A, < By < (14 e)M@/M A, for w e M(F) lying
above v € S and
fori=1,....n

(7.15)
Ay = Biw for w € M(F) not lying

above some v € S

\ and forz=1,...,n.

On the other hand H(x) and Hp(x) involve the same linear forms. Thus by (7.15) the
terms making up Ha(x) and Hp(x) satisfy

1L @) L5 @)
Aiw Biw

fori=1,...,n and for w € M(F) not lying above some v € S. Moreover

(w) (w) ()
(1 4 eyt 1”@l L@ g 127 @)l

LW w Aiw

fori =1,...,n and for w € M(F) lying above v € S. Writing s for the cardinality of S
we may infer that for any € Q"

(14¢e) Ha(x) < Hp(x) < (1+¢)°Ha(x)
and therefore
(7.16) (I+e)N< AN <(A+e)’N (i=1,...,n).

We now compare the quantities

A, A,
=4 d =
q an H i
qEM(E) vEM(K)
For v € M(K') we obtain
A, = A,
qEM(E),qlv

and by (7.15)

1+e)™4, <[] B, < (144, forves
qE€M(E),qlv

A, = H B, forv ¢ S.

qEM(E),qlv
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Altogether this implies

A, A,
(7.17) (14¢)” H A— H E (1+e)" H ll
EM(E EM(K
Combination of (7.14), (7.16), (7.17) yields
—2ns, —n A’U ns n<n D A
(L+e)>n 2 ] T <M< (e ) H -
veM(K) =Y EM(K
Since € > 0 is arbitrary, the Corollary follows.

In (6.10), (6.11) we have defined the parallelepiped I1((, ) which corresponds to the
height Hg (). In complete analogy, we define the parallelepiped II(A) corresponding to
the height Ha(x) as follows:

For a number field F' containing K we write [1z(A) for the set of points & € F™ satisfying

1LY (@) ]| < A (w € M(F),i=1,...,n),

and we put

= |J mrAa

FOK
where the union is over all finite extensions F' of K. Moreover, given A > 0, we define
A II(A) in analogy with (6.13) - (6.15).

We may introduce successive minima py,. .., u, of II(A) as follows. For p > 0 we let
Ua(p) be the Q- vectorspace generated by the elements @ € Q" with = € pu * [I(A). For
1 =1,...,n we then put

=inf{p| dimUa(u) >i}.

The following Lemma indicates that there is no big difference between the space Va(\)

defined via the height Ha(x) and the space Ua()\) corresponding to the parallelepiped
II(A).

Lemma 7.3 Let ¥ >0 and A > 0. Then for any x € Q" with
(7.18) Ha(z) <\
there exists 3 € Q such that

(7.19) B € (1+0)A«I1(A).

The proof is analogous to the proof of Lemma 6.2. It suffices to apply Lemma 6.3. We
will not detail it her.

As a consequence of Lemma 7.3 we obtain
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Corollary 7.4 The successive minima puy,. .., i, of II(A) coincide with the successive
minima A1, ..., A\, of Ha(x).

Proof. Our definitions of H4 and II(A) imply that if & € A x II(A) then Ha(x) < A
Consequently, for i =1,...,n we get

Ai <
On the other hand, using Lemma 7.3 we see that any ¥ > 0 and fori=1,...,n
i < (1+9)A;.
The Corollary follows.

In view of Corollary 7.4 from now on we write A{,..., A, for the successive minima of
Ha(x) as well as of II(A).

Corollary 7.5 Suppose 1 < i <n and that
(720) A < >\i+1-

Then there exists a subspace T of Q™ of dimension i such that for each \ with

we have
(7.22) Va(A) =Ua(N) =T.

Moreover T is defined over K.

Proof. Our definitions of A * II(A) and of H4(x) < A imply at once
Ua(A) € Va(A).
On the other hand by Lemma 7.3 we obtain for any € > 0
Va(A) CUAN1+¢)).

To prove the relation V4(A) = Ua()) it therefore suffices to prove that for any pair A, A
with

we have

Ua(A) = Ua(N).
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But this is plain from the definition of the successive minima and (7.23). As for the
rationality of V4(\), by definition, V4()) is generated by M = {x € Q" | Ha(x) < A}.
In exactly the same way as in the proof of Lemma 4.1 we may show that for each o €
Gal(@/K)

Hy(ox) = Hp(x) for each x € Q.

In particular M satisfies the hypothesis of Lemma 4.2 with F' replaced by K. By that
Lemma we may conclude that indeed V() is defined over K.

We finally apply Corollary 7.2 to the parallelepiped I1(Q, ¢) given by (6.10), (6.11) with

forms Lgv)

and with parameters ¢;, satisfying (6.1) - (6.8). So in our special situation
the parameters A;, in Corollary 7.2 become (Q“v. Accordingly, the successive minima
Ai = Ai(Q) will depend upon the parameter ). Combination of Corollary 7.2 and of

(6.4), (6.5) yields

Corollary 7.6 For each QQ > 1 the successive minima of 11(Q, ¢) satisfy

n(n—1)

<AM(Q). . A(Q) <272

s

(7.24) n-

8 A Gap Principle

Our goal in this section is to prove

Lemma 8.1 Let II(Q, ¢) be the parallelepiped in Q" defined by (6.10), (6.11) with forms
LY and tuples ¢ = (Cip) (WEM(K),i=1,...,n) as in (6.1) - (6.8).

(2

Suppose 0 < 0 <1 and B > 1, and let Qg be a parameter satisfying

(8.1) Qo > n'/°.

Then there are proper linear subspaces Ty, ..., T, of Q" where
5

(8.2) t < 1—|—glogB

with the following property:
For each ) with

(8.3) Q<Q<Qf

there exists 1 with 1 < i <t such that

(8.4) Q7 *11(Q,c) C T;.

We will derive Lemma 8.1 from the following two auxiliary Lemmata.
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Lemma 8.2 Suppose

1+6

(8.5) 0>0, A >1, (<RSQE

Let € > 0.
Then for any x € Q~° xI1(Q, c) there exists 3 € Q" such that

(8.6) Bz € (1+)Q7 *11(Qy, ¢).

Proof. Let x € Q7% +I1(Q, ¢). Let F be a finite extension of K such that & € F™. Then

by (6.13), (6.14) we have
a7) I (@)l < Qv (w € M(F), whvg, i=1,...,n)
| il < Q04 (w € M(F), vy, i =1,...,n).

For w € M(F) we write
Co = max{Ciy, -, Cpw |-

Notice that by (6.5)

(85) > ws
weM(F

(8.5) yields for w € M(F),i=1,...,n

e sarar(§) o (@)

whence by (8.7)

.10) 1L (@) < Q5 (&)™ (w e M(F), wivy, i=1,....n)
' lzille < Q7M™ (we M(F), wlvy, i =1,...,n).

We want to apply Lemma 6.3 with

(811) W (Q/Q1) ™ (w € M(F), w1 o)

{(1+2)(Q/Q)}™ ™ (w e M(F), w|vo).

Let R be the set of places w € M(F) with ¢,, # 0. By (6.6), (6.7), R is finite. Thus for
all but finitely many w € 9(F') we have A,, = 1. Moreover by (6.7), (6.12) we get

(8.12) cw = 0 for w | vy.

Combination of (8.11), (8.12), (8.8) yields

H Ay = (Q/Q1) ’ﬂe%w)cw) (1 —1—5)% >(1+¢) > 1

weM(F)
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Thus the hypotheses of Lemma 6.3 are satisfied.
Accordingly there exist a finite extension E of F' and § € E* with

18]l < AZ (uw € M(E), ulw, w e M(F)).
Writing for u € M(E) ¢, = max{ciy,- - ., Chu}, this means that
181 < (&)™ (v € M(E), utwvo)
18]l < (1 +) &)™ (u € M(E), uvp).
Using the analogue of (8.10) with F instead of F' we obtain in view of
Ciu = d(U/W)Ciy, ¢y = d(ujw)ey, (u € M(E), u|w, w e M(F))

and by (8.5) the relations

u Ciw cw\ d(u/w) —Cu Ciu
I B2l < (@ (F)™) ™ (F) ™ = @
(ue ME), utwvy,i=1,...,n),
—dd(w/vo)d(u/w d(u/vo) _ 35\ du/vo)
Bzl < QPRI (14 &) = (140 -2m0rY)
35y d(u/vo) '
< Qufmfﬁ (w € M(E), u|vy, i =1,...,n).

But this is the assertion in (8.6).

Lemma 8.3 Suppose
(8.13) §>0, Q>n'l.

Then there is a proper linear subspace T of Q" with the following property:
For every QQ with

(8.14) Q<<
we have
(8.15) Q7 x1(Q,c) CT.

Proof. By (8.13) there exists ¢ > 0 such that

(8.16) (1+¢)Q,

3
5

=

’ < (1+5)n_% <n 2.
Let T be the subspace of Q" generated by the vectors y € Q" with
—35
ye(l+e)Q,° x1(Q1,c).
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By Corollary 7.6 the n-th minimum \,, of I1(Q4, ¢) satisfies

(8.17) A >n7 7

By Corollary 7.5, (8.16) and (8.17), T" has dimension < n.

On the other hand, in view of Lemma 8.2 for any & € Q~° * II(Q, ¢) with @ as in (8.14)
3

we can find a nonzero multiple Sx such that fx € (1 + €)@, * II(Q1, ¢). Therefore

Bx € T, whence & € T. This proves (8.15).

The assertion of Lemma 8.1 now follows easily. The interval (Qo, QF] in (8.3) may be

covered by

log B
_logB 5y g
log(1+55) )

intervals of type (8.14).
By Lemma 8.3, the collection of sets Q@ * II(Q, ¢) where @ runs through a fixed interval

(8.14) may be covered by a single proper subspace T' of Q". Therefore, to cover the whole
collection of sets Q% x I1(Q, ¢) with Q as in (8.3),

5
t§1+glogB

subspaces will suffice and Lemma 8.1 follows.

9 Davenport’s Lemma

In this section we adjust Davenport’s Lemma (Schmidt [14], Lemma 6.1) to our current
situation. Actually, following Evertse [4] we prove a stronger version which is crucial to
guarantee that the bound (2.16) in Theorem 2.1 is not doubly exponential in n.

Given a number field F, we introduce for u € 9MM(FE) the quantities

S(u)_{ [E,:R]/[E:Q] foruec M (F)

&) 0 for u € My(FE).

This notation will be used throughout the remainder of the paper. It has the advantage
that at several instances we do not have to make a distinction between estimates for
archimedean absolute values and for nonarchimedean absolute values.

Lemma 9.1 Lett > 2. Suppose ¥1,...,91 € Q. Suppose e > 0. Let vy € My(K) be as
in (6.12).

Then there exists a finite extension E of K and a vector v = (vy1,...,7) € E' with the
following properties:

(92) V1,...,91 € E.
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(9.3) Yille <75 (u € Mo(E), 1 <i < 1).

2\ d(u/v .
94)  Jy—=Olle <1, el < (1+)27) ™ (we ME), ulvy, 1<i <),

(9.5) [Villa 1 (u € Mo(E) N {vo}, 1 <i <0).

(9.6) A0,

Proof. Let F' be a finite extension of K containing ¥, ...,%_1. For w € 9M(F) we define
linear forms l§w), e lﬁ“’) in Xq,...,X;:

For w € 9MM(F') with w | vy we put

(9.7) =X, —0.X, (i=1,...,t—1), =X,
whereas for w € IM(F), w { vy we put

(9.8) =X, (i=1,...,t).

Moreover we define the tuple A = (A, |w € M(F), 1 < i <t) by

(9.9) A = t7°5@ (weM(F), 1<i<t)
(9.10) A =1 (weMF), wivy, 1 <i<t)
: : to t=1) ) 4w/ o)
(9.11) Aiwzl(lgzgt—l),Atw:(t(l—i-é)Q 2 ) (w e M(F), w|uvy).

Let I1z(A,1) be the parallelepiped in F* given by the inequalities
1 @) < Ay (weEMF), i=1,....1)

and write II(A,1) for its algebraic closure.
For A > 0 we define A « IIp(A,1) by

15 (@) | < Ag (w e M(F), wivy, i=1,....1)

(9.12)
‘|lz(W)(w)‘|w S A’iw)\d(w/vo) (UJ € m<F>, w ‘ Vo, 1= 1, R ,t)

A« TI(A,1) will denote the natural extension of (9.12) to Q. By (9.7), (9.8) we get

IT Irdet@™,.... 5"l = 1.
weM(F)
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(9.9) - (9.11) imply that

H HAzw: 1+5 WQ_U-

weEM(F

Let A1,..., A\ be the successive minima of II(A,l). By Proposition 7.1 and Corollaries
7.2 and 7.4 we obtain
Moo < (1+e)™
and therefore in particular
M<(1+e)h
We may conclude that there are a finite extension E of F' and a point v = (71,...,7) # 0
in £™ with

1 ()l < As (e ME), utvy, i=1,....1)
(9.13) (w) d(u/vo) ‘
Yl < A (A +200) T < A (weME), ulw, i=1,....1).

Combination of (9.7) - (9.11), (9.13) yields assertions (9.3) - (9.5).
We still have to prove (9.6).
Assume v, = 0. Then by (9.3) - (9.5) we would obtain

H Ivill. <t7'<1 (1<i<t-—1),

ueM(E)
and therefore 74 = ... = 7,1 = 0. Since v # 0, this would be a contradiction, and (9.6)
follows as well.
We now consider our forms LZ(-U) and our tuples ¢ = (¢;,) (v € M(K),i=1,...,n) from

(6.1) - (6.8) and we let II(Q, ¢) be the parallelepiped in Q" defined in (6.10), (6.11).

Let A1, ..., A, be the successive minima of TI(Q, ¢) and define the integers
I1<r<rm<...<ry=n

by

(9.14) M=...= A, < A1 =...= 2y, <...< M _41=...= A\

Let € be a positive number, small enough such that

(9.15) M(l+e) <N, (t=1,...,s=1).

Moreover let g4, ..., g, be linearly independent points in Q" with

(9.16) g,€ (142 +1(Qc) (1<j<n)

39



Write g; = (gj1,---,9jn) and let F' be a finite extension of K with g,,...,g, € F". By
(6.13), (6.14) we may detail (9.16) as

(9.17) 1L (@)l < Q% (w e M(F), whvg, 1 <i,j <n)

w d(w /v,
918) LG e = llgille < ((1+2)A;) /™)
(w € M(F), w|vg, 1 <i,j <n).

Lemma 9.2 (Davenport’s Lemma).

There ezists a finite extension E of K and there exists a permutation w of {1,...,n} with
the following properties:

We can find vectors hy = (hi1,. .., h1n), -« By = (hpty ooy hyy) in E™ satisfying

forj=1,...,n the set {hy,..., h;} spans the same Q-vector space as

(919) {917"‘79]'}7

and
L) < Q% (uwe M(E), utvy, 1< i,j<n)

u ntl on2 d(u/vo)
(9:20) IS (Bl = [Bjmll < ((142)m 27 min{ds, A }) ™
(u € M(E), u|vo, 1 <i,j <mn).

Proof. We first determine the permutation 7. For t = 1,...,s, let V., be the

Q-vector space spanned by g, . .. ,g,,- By (9.15), (9.16) and Corollary 7.5, for each ¢ the
space V., is defined over K. Consequently it has a basis y,,...,y,, with y, € K"

(1 <j<r). In fact we may pick points y,...,y, such that

(9.21) Yy, ---,Y, are linearly independent
(9.22) Yy, Y, € K"
(9.23) fort=1,...,s, the points y,,...,y,, are a basis of V,,.

For i = 1,...,n, let V; be the subspace of Q" generated by y,,...,y,. For a point
y = (y1,--.,Yn) € V; we obtain n — ¢ linearly independent linear relations between its
components. Since V; has a basis in K", these relations may be taken such as to have
coefficients in K.

In particular, on V,,_; there is a nontrivial relation

(924) ayr + ...+ apyn, = 0 (y € Vn—l)
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with a1,...,a, € K.
Let vy € 9y C My(K) be the distinguished place in (6.12). After reordering the variables,
if necessary, we may suppose that in (9.24) the coefficient a,, satisfies

lanllvy = max{lallvy; - - - [[anlv, }-
Dividing by a,, we may rewrite (9.24) as
(9.25) ayr ..o +ad Y=y, (Y€ V1)
with af,...,al,_; € K and
(9.26) laille, <1 (i=1,...,n—1).

Points y € V,,_o, apart from (9.26) will satisfy a second relation, independent of (9.26).
Indeed we may find such a relation of type

(927) b1y1 + ...+ bn—lyn—l =0 (y € Vn—l)-
Again we may reorder the variables such that in (9.27)

1bn—1llo = max{[|biflug, - - [1ba-1llu}-
So (9.27) will be equivalent to a relation of the shape
(9.28) Viyi+ .+ by oUn2=Yn1 (Y € Via)
with b],...,b/,_, € K and
(9.29) 16y <1 (i=1,...,n—2).

Now for points y € V,,_», we may substitute (9.28) into (9.25), such that on V,,_» relation
(9.25) may be rewritten as

(9.30) alyi + ...+ ah_oYn—o = Yn

with af,...,a]_, € K and

) Ym—2
(9.31) laill, <1 (1=1,...,n—2).

(To guarantee (9.31) it is crucial that the distinguished place vy is non-archimedean.)
We may continue in this manner. The final outcome is as follows. After a suitable
permutation of the variables, for each i (i = 1,...,n) the points y € V; will satisfy n — i
linearly independent relations of the following type

(9.32) yk:Za,(g?yj fork=:¢+1,...,n

j=1
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with coefficients a,(c? eK (i+1<k<n,1<j<1) having

(9.33) laill <1 (i+1<k<n, 1<j<1).

This finishes the construction of the permutation 7. For simplicity of notation, from now
on we assume our permutation to be the identity.

Before we start the construction of the points h;, we derive a very simple consequence

from (9.32). Suppose z1 = (211, -, 210)-- > 2i = (Zi1,- -+, 2in) 18 a basis of V;, then in
the matrix

R115 -+ -5 ”ln

Zily - -+ Rin

the first ¢ columns are linearly independent. We may conclude that for any point
Y=Y, YisYis1s---,Yn) € Q" we can find elements 91, . .., 9; such that

We proceed to construct the vectors hy, ..., h,. The construction will be by induction on
t with 1 <t < s as the procedure to find h, with r,_; +1 < ¢ < r, will follow the same
pattern.

We start with ¢t = 1 taking hy = g,,..., h,, = g,,. With this choice, by (9.14), (9.17),
(9.18) relations (9.19), (9.20) are satisfied for j =1,...,r; and fori =1,...,n.

Now suppose that 1 < ¢t < s and that hy,...,h,,_, have already been constructed
such that (9.19), (9.20) are true for j = 1,...,7,7 and for ¢ = 1,...,n. Our vectors
h., ,11,...,h,, will be of the shape

rt—1

(9.35) hy =749, + qujhj forg=mr,_1+1,...,1;

=1

with coefficients 7,4, 74 € Q, v4q # 0 yet to be determined.

Suppose for the moment that for ¢ with r,_14+1 < ¢ < r; we have found suitable coefficients
Yag» Vais - - > Yare_1 With 744 # 0. Then by the induction hypothesis it follows at once that
assertion (9.19) will be true for j =1,... 7.

So in the sequel we have only to worry about (9.20). We fix ¢ with r,_; +1 < ¢ < r; and
we proceed to construct the point h,. To avoid heavy notation we write instead of (9.35)

Tt—1

(9.36) hy=h=",g,+> 7h;
j=1
Here h = (hy,...,h,). At the end of our construction we will return to double indices,
ie.,
(9.37) ho=(h,... k) = (hgts .-« ).
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Relation (9.36) for the i-th component reads as

Tt—1

Jj=1

We will first treat (9.38). We distinguish the ranges 1 <i <r;, jand r,_1 +1<i <n.
We begin with the range 1 < i < r,_;. By the induction hypothesis hq,..., h,, , form a
basis of V;,_,. Thus by (9.34) for i = 1,...,7:—1 we obtain relations

(939) Gqi = ﬁlhli +.o+ 197’tf1h7"t71,i

with certain coefficients ¥y, ...,9,, ,. Substituting (9.39) into (9.38) we get

Tt—1

(940) hz = Z(”}/qlgj + ’}/j)hﬂ (Z = 1, . ,Tt,1>.

j=1

We next deal with the range r;_; +1 <7 < r;. By the induction hypothesis hq, ..., h

Y Tt—1

liein V,,_,. However, on V,,_, we have relations (9.32). So there exist fori =r,_1+1,...,n
elements a;1,...,a;,,_, € K with
(9.41) i)l <1 (1<k<ry)
such that
Tt—1
(942) hji = Zaikh]‘k (1 S] S rt—l)-
k=1

Substituting (9.42) into (9.38) and interchanging the order of summation we obtain

Tt—1 Tt—1
(9.43) hi = 749qi + Zaik Z’thjk (re1 +1<i<n).
k=1  j=1

Notice that in (9.43) the inner sum by (9.38) equals

Tt—1

(9.44) D Aihik = —Vabak +

j=1
Substituting (9.44) into (9.43) we finally get

Tt—1

(9.45) hi = 749qi + Z aik(hk - f)/ngk)v
k=1

and this is for r,_1 +1 <17 < n.
So the components h; of our vector h to be constructed satisfy (9.40) and (9.45).
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We now choose the numbers v,, 71, ..., 7%, , in (9.38).

Let F' be a finite extension of K such that hy,... h,,_,,g, € F". Then the elements

V1, ..., Y, in (9.39) will lie in F' as well. We now apply Lemma 9.1 with ¢ replaced

by r;—1 + 1. Accordingly, given ¥,...,9,, , we can find a finite extension E of F' and

elements vi,...,7,_,,7 in E such that

( lle < (rey + D)@ (w e M(E), utvy, j=1,...,71 and j = q)
Hry]_kﬁjlyqn”iél (UEW(E>7u|U07j:17"'7Tt—1)

H’Yq”u < ((1 + E)Tt—1+12(7’t—1+1)2)d(u/’UO) (u c m(E), w ’ UO)

(L % #0.

We prove that with this choice of v, 71, . . . 7»,_, the vector h = h, in (9.37), (9.38) satisfies
assertion (9.20) for j = g and for j =1,... n.

(9.46)

We begin with u € M(E), u | vp.
For i with 1 < ¢ < r;_; we use (9.40) and (9.46) to obtain

N ) ) ) . < 3
Mgl =l < mase {lld + 3 llglh} < mase {sll}.
Now by the induction hypothesis
||h]z||u < ((1 +8)n+1 2n2 min{)\i’)\j})d(u/vo) < ((1 +€)n+1 2n2)\i)d(u/vo)

foryj=1,....,r,_yand fore=1,...,n.
So indeed, since r;_1 + 1 < g < r; we get

(9.47) hgillu < (14 €)™ 27 min{A;, A )™ fori=1,...,r .

We next treat for u| vy the range ;1 + 1 < i < n. In view of (9.45), we may infer that
for such ¢

[ hgillu = [[hillu < max {||Vgllullggillu; N llullfn — Yogarlle (& =1,... r21)}
By (9.18), (9.46) and (9.14) and since r; 1 + 1 < g <y
Yallullggille < ((1 4 &)+ 2(Tt71+1)2)\q)d(“/”0)
— ((1 + g)rt_1+2 2(rt_1+1)2)\rt71+1)d(u/vo)
< ((1 + g)ntt an)\mlﬂ)d(u/vo).
Moreover, by (9.41), (9.47) (which is already established), (9.46) and (9.18)

HaikHUHhk_%quHu = ||aik”u||hqk_7q9qk||u <

IA

max { | Agkllus [1alullgar 1 }
max {(1 + 8)”—‘1—1 2n2)\rt_1’ (1 + 8)7},1-&-2 2(Tt71+1)2kq}d(u/v0)

IA

(L+e) 12 n, )™ for 1 <k <r .

IN
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So altogether, for r;,_1 + 1 <7 < n we obtain

(9.48) Ihaille < ((142)™ 2N, 50)
= ((1 + €)n+1 2n2 min{)\i’ )\q})d(u/vo)

(the last equation since 7,1 + 1 < ¢ < r; and by (9.14)).
Inequalities (9.47) and (9.48) imply that assertion (9.20) is satisfied for j = ¢, i =1,...,n
and for u € M(F) with u | vo.

We still have to verify (9.20) for u { vy. We use (9.36) to get
1L (gl < (1 7)) mae { g lull 5" (g0 s 15 lull 8" () (1< 5 < )}
By (9.46), (9.17) and the induction hypothesis this is
< (T4 7)™ (1 4 rg) Q™ = Qv

So (9.20) is satisfied for u € M(E), ut vy, for j =qand fori=1,...,n.

Since ¢ with 7,_1 +1 < ¢ < r; is arbitrary it follows in fact from our construction
and the induction hypothesis that (9.19) now is satisfied for j = 1,...,r, and (9.20) for
j=1,....rpand for i =1,...,n. The Lemma follows.

10 Multilinear Algebra

For k with 1 < k < n, we write C(n, k) for the set of ordered k-tuples

o={1<i; <...<i, <n}

Put
n

10.1 N =
(10.1 ()
and let 71,...,7y be the enumeration of C'(n, k) in the lexicographical ordering. For a
field F' and vectors ag,...,ar € F™ with a; = (a;1,...,a;,) we define a1 A ... A ay =
(Al,...,AN) by

Q14 .. Q14
(10.2) A; = det : : (t=1,...,N)

Akgy -+ Qg
where {i; < ... < 4} = 7. Given linear forms L, = anX; + ... + apnX,

(t=1,..., k), write a; = (a1, ..., a;,) for the coefficient vectors and put Ly A ... A Ly =
A1X1+...—|—ANXN, where (Al,...,AN):al/\.../\ak.
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Now let LZ(-U) and ¢ = (¢;p) (€ M(K),i=1,...,n) be as in (6.1) - (6.8). We define for
o={i1 <...<ix} €C(n,k)

v) _ 1) (v)
(10.3) LY =LA ALy (veMK))
and
(10.4) Cov = Cigp + - - - + Cirw (v € M(K)).

Notice that by (6.4)
v v v o)\ E
det (L&), L&) = det(L{”, ..., L)aN = 1.

For a finite extension E of K and for u € M(E) lying above v € M(K) we define in
analogy with (6.8) for o € C(n, k)

(10.5) LW =1W . = d(u/v)cqy.

e (e

Let gy, ..., p, be positive real numbers. For o = {i; < ... < i} € C(n, k) we put

(106) Ho = iy - -« Hiy, -

Given linearly independent points hq, ..., h, € Q" we write

(10.7) h,=hy N...\Nh;, (0 € C(n,k)).

Assume that the points hq, ..., h, have components in the finite extension F of K. Given
a permutation m of {1,...,n} and 0 = {iy < ... < it} € C(n, k) we write 7o for the
element in C(n, k) consisting of m(i1),...,m(ix) (reordered according to increasing size).

Now suppose that we have
1LY ()l < Q@ (we ME), wtvo, 1<ij<n)

(10.8) IS (Bl = [hgmolla < min{pg, g}
(u € M(E), ulvg, 1 <4, <n).

IN

We will also study the situation when (10.8) is replaced by the simpler hypothesis

IR < Qv (ue M(E), utvy, 1 <i,5 <n)
(10.8a)
1L () = gl < "™ (€ OB, ulvo, 1 < i < ).

J

For o € C(n, k) we write hy = (hory, .-, hory)-

Lemma 10.1 Let hq, ..., h, be linearly independent points in Q" as above. Let [y e ey
be positive real numbers. Suppose we have (10.8). Then there ezist a finite extension F
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of E and an element § € F* with the following property:
The points Bh,,, ..., Bh., satisfy the simultaneous inequalities

125 (Bho)ll < Q% (w € M(F), wivg, 1 <i,j < N)

w d(w/v
(10.9) [ (B8R )l = |5hs, on, per)

w < (KFmin{pg,, p,
(weM(F), w|vy, 1 <i,57 <N).

If instead of (10.8) we have (10.8a), then there exist F' and 3 as above such that instead
of (10.9) we have

1LY (Bh,)
(10.9a) LS (BR) o = [18r,

IA

Qv (weM(F), wivg, 1 <i,j < N)
(k‘klu .)d(w/vo)
(w e M(F), w|vy, 1 <i4,5 < N).

IN

Proof. We first deal with (10.9). We apply Lemma 6.3 with F' replaced by K and with
(KIV/RY=d@) for v € M (K)
(10.10) A, =< (T+e)kE for v =y
1 for v e My(K) ~{vo},
where € > 0 is a small parameter to be specified later. (10.10) implies

H A, =1+e>1.

vEM(K)
So the analogue of (6.26) is true. Consequently we can find a finite extension F' of K and
an element v € F* satisfying

(K1V/ky=dw/v)d@) - for € Mo(F), w|v, v € M(K)
(10.11) 17l < (1+e)k!F  for we M(F), w|uv
1 for w e My(F), w1t vo.
We may assume that F' contains the field £. Combination of (10.8) and (10.11) yields
(L ()l < (R 700Qew (€ Moo(F), 1 <4, j <)
LS Rl = ol < (L k1% mins 1 }) "7
(weM(F), wlvy, 1 <i,5<n)
LI (k) < Qo (w € Mo(F), wvo, 1 i j <n).

(10.12)

Now suppose that o; = {i; < ... <y}, 0; = {j1 < ... < jx}. Writing 8 = 7*, we obtain
using Laplace’s identity

L (vhy) . LY (k)

(10.13) L) (Bh,,) = det (w € M(F)).

L (vhy) .. LY (vhy,)

i i
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Combining (10.12) and (10.13) we may infer with (10.4) that

|25 (Bhr, )l < KISR0 Qe = Qerin
(weMF), wtvy, 1 <i,j<mn)

w S ((1 + €)k’k! min{MTi7MTj})d(w/U0)
(w Gm(F), w|1}0’ ]_ Slyj STL)

(10.14)
H/BhT]',ﬂ'TZ‘

Choosing ¢ such that (1 +¢)¥ < k we get with (10.14) assertion (10.9).

To prove (10.9a) we proceed in exactly the same way. Instead of (10.12) we get ana-
logous inequalities with min(y;,, ;) replaced by p; and with 7(7) replaced by 4. Similarly,
instead of (10.14) we obtain inequalities with min{s,,, i, } replaced by p,, and with m7;
replaced by 7;. This completes the proof of Lemma 10.1.

In section 12 we will be interested in the particular instance of the situation studied above
when k£ =n — 1. Then (10.1) becomes

n
10.15 N = =n.
(1015) (")) ="
The lexicographical ordering 74, ..., 7, of C(n,n—1) is given by {1,... ,n—1},....{2,...,n}.
So (10.3), (10.4) and (10.7) respectively become

(10.16) LY =LYA L ALALY A ALY =TV (=1,... n),

Tn+1l—i 7

(10.17)  ¢rpiy v =Clo+ oo+ Cimtp + Cig1p + -+ Cpw = Ciy (1=1,...,n),

and

(1018) th_H_i:hl/\-‘-/\hi—l/\hi—&—l/\---/\hn:ﬁi (izl,...,TZ),

say.

Lemma 10.2 Suppose i, ..., 1, are positive real numbers. Let E be a finite extension

of K and suppose hy, ..., h, are linearly independent points in E™ with (10.8a). Then
there exist a finite extension F of E and an element 3 € F* such that the point

(10.19) Bhy, = Bhi A ... Nhy
satisfies
IZ(Bh)le < Q% (weMF), wivy, 1 <i,j<n)

~ d(w/v
(10.20) 1Bhnille < ((n—=1)"" g+ pin1) /o)
(weMF), w|vy, 1 <i,5 <n),

where ;\Ln = (Enl, . ,ﬁnn).
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Proof. The assertion follows at once from (10.9a) with k =n —1 and j = 1.

Lemma 10.3 Let hy, ..., h, be linearly independent points Q". Suppose 1 < k <n. Let
N be given by (10.1) and let oy,...,0n be an enumeration of C(n,k) such that oy =
{n—k+1,n—k+2,...,n}. Define the points hy,, ..., hy\, asin (10.6). Once the span

sy oy

of hgyy ... hgy_, in @N 1s determined, the span of hy, ..., h,_j 1s determined as well.

This is Lemma 6.4 of Schmidt [14].

11 Heights

For vectors € Q" we will work with the height H(a) introduced in (3.1) and (3.2). For
a polynomial P the height H(P) will be the height of its vector of coefficients. The local
heights || P||, are defined in analogy with (3.1).

As in section 10, for 1 < k < n we let C(n,k) be the set of ordered k-tuples 7 =
{1<id; <...<ip<n}. Welet 7,...,7y be the enumeration of C(n, k) in the lexico-
graphical ordering. Here N = (Z) For k =n— 1, writing a1 A ... Aa,—1 = (Aq,..., A,)
we define the vector (ayA. .. Aay_1)* = (An, —Ap_1, An_s, ..., (=1)""1A;). Fora,bc Q"

we let ab = a;by + ...+ a,b, be the canonical bilinear form. For b,a.,...,a, € K" we
get

(11.1) blas A ... ANay,)" =det(b,as,...,a,).

In particular this implies for any points a4,...,a,_1 € K"

(11.2) ailag N...Na,—1)"=0 fori=1,...,n—1.

Moreover, for ay,...,a; € K™ and for any v € MM(K) we have

(11.3) llar A .. A aglle < |lai|lo-- - ||lak]o-

For k = n this gives

(11.4) | det(ays A ... Aay)|lo < llaills- - ||an]o
Also by (11.3)
(11.5) H(ag N...Nay) < H(ay)...H(ag).

Lemma 11.1 Let a,b € K" such that
(11.6) ab # 0.
Then we have for any subset T' of IM(K)

(11.7) [T labll. = T lall; 615"

veT vgT
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Proof. Using (11.6) and the product formula we obtain

1= ]I labll.=T]llabll, ] llabl..

veEM(K) veT vgT
Combining this with
[Tllabll. < TTllall. TT 101
vgT vgT vgT

we get the assertion.

Lemma 11.2 Let A = (a;;) (1 <14,j < n) be a matriz with entries in K and with
(11.8) det A = 1.

Let B be the inverse matriz. Write a; = (aq,...,ay,) for the row wvectors in A
(i=1,...,n) and b; = (byj,...,by;) (j =1,...,n) for the column vectors in B. Then

(119) bj ::i:(a,1/\.../\aj,l/\ajﬂ/\...Aan)*.
This is an immediate consequence of (11.1) and (11.2).

Lemma 11.3 Let {aq,...,as} be a family of points in K™. Let H be a quantity with
(11.10) H(a;)) <H (t=1,...,s).

Suppose that there exists a point h € Q", h # 0 with

(11.11) aih=0 (i=1,...,s).

Then there exists a point hg € Q", hy # 0 satisfying (11.11) and having moreover

(11.12) H(hy) < H™ .

Proof. By (11.11) rank{a,...,as} =t < n. Suppose without loss of generality that in

fact rank{a,...,a;} = t. By adding suitable n — 1 — ¢ among the canonical unit vectors
ey,...,e,, for simplicity say e; 1, ..., €, 1, we will have
rank{a,...,a;, €1,...,€, 1} =n— 1.

From (11.2) we obtain
ai(lagN...NagNe, 1 N...Ne,_1)" =0 fori=1,... ¢t

By our choice of a4, ..., a, for any j (1 < j <s), a; is a linear combination of a4, ..., a;.
We may conclude that

ajlaN...NagNe, 1 AN...Ne,_1)" =0 forj=1,...s.
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Weput hg = (a1 A...Na;Ne 1 A...Neyq)".
Then by (11.5) and (11.10) we get

H(hy) < H(ay)...H(a;) < H' < H" .

The assertion follows.

Now let {Ly,...,L,} be our family of linear forms from (6.1), (6.2). Recall from (2.13)

-----

vEM(K)
For v € M(K) we put
(11.13) Hy = max [[det(Li,, ..., L)l
and
K, Rl/[K:Q] for ve M (K
(11.14) s(v) = | 4 ] =
0 for v e My(K).

Notice that

Z s(v) = Z s(v) = 1.

vEM(K) VEMoo (K)

Lemma 11.4 Let T be a subset of M(K). Then we have fori=1,...,r

(11.15) T[Tz <[] 1) < (Hns@)/z)%

veT veT veT

i particular

(11.16) H(L;) <n'?*H.

Proof. Since {X1,...,X,} € {Ly,..., L.} the quantity H, in (11.13) satisfies H, > 1.
Moreover, we may conclude that
[[#H <n.

veT
This proves the second part of (11.15). Write L;(X) = an X1 +. ..+ a;n X, Fixv € M(K)
and suppose without loss of generality that ||a; ||, = max{||la;||v, - -, ||@in||}. Then

1Lillo < n*@2 -
On the other hand, we have

Hv Z || det(Lla XQa s 7Xn)||v = ||ai1||v
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and therefore
HLiHv < n*()/2 H,.

This proves the first part of (11.15).

Since > s(v) =1, (11.16) is a special instance of (11.15).
vEM(K)

Lemma 11.5 Let iy,...,i,_1 be in {1,...,r} such that L;,,...,L; _, are linearly inde-
pendent. Then we have for any subset T of M(K)

(11.17) T A ALl < T[22 R,
veT veT

i particular

(11.18) H(L;

11

A AL ) <n'?H.

Proof. Notice that the coefficients of L;; A... A L; _
det(Xl, L’i17 ce 7L’in_1)7 e ,det(Xn, Li17 Ce 7Lin—1)'
Thus for any v € M(K) we get

, apart from sign and ordering are

iy A A Ly Jlo < 0% max || det(X, Ly, - Li,) o

However, by definition and since {X7,..., X} C {L1,..., L, } we see that

The Lemma follows.

Lemma 11.6 Let iy,...,4, € {1,...,r} and suppose that det(L;,,...,L;,) = 1. Let A

be the coefficient matriz of L;,, ..., L;,. Then the entries of the inverse matriz B = (b;;)
satisfy
(11.20) bijlle < H, (veMK), 1<1,5<n).

Proof. The assertion follows from combination of Lemma 11.2 and formula (11.19) in
the above proof.

Lemma 11.7 Let iy, ... i1 € {1,...,7} and let g € K. Suppose that we have

(11.21) (Liy A...A Ly, )(g) #0.

Then we get for any subset T' of M(K)

(11.22) ITI@ A AL, ) (9], > (Hn‘s(“)/2 HJI) [T sl

veT vgT vgT
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Proof. Lemma 11.1 says that

H ||(Li1 ARERNA Lin—l)(g)Hv =z H HLil A A Lin—lH;l H HgH;1

veT vgT vgT

On the other hand by Lemma 11.5

| 2oy 2 =N | Em e e
vgT vgT

The Lemma follows.

Lemma 11.8 Suppose that each form L; of our family {L.,..., L.} has some coefficient
equal to 1. Then

(11.23) H(L.,...,L,) < H(L)... H(L,).

Proof. For v € M(K) let iy(v),...,i,(v) be such that

| det (Liy ), - - - Linw) ||, = max | det (Liy, ..., Li,) ||, = Ho.

15y

Then (11.4) implies
(11.24) Ho < || Liw)l, - - [| Linw)]],-
However, our assumption on the forms L; yields
|\Lill, >1 fori=1,...,r
In conjunction with (11.24) we may conclude that
Ho < Lallo- - (1 Lr[l

and therefore

H= 1] "< [I UZillo-- lILell) = H(L) ... H(L).
)

VEM(K) vEM(K

In Lemma 11.3 we have given an upper bound for the height of a solution of a system of
linear equations in terms of the heights of the coefficient vectors. During our proof we
will however also need another much more precise result in that context.

The following Lemma is an immediate consequence of Theorem 9 of Bombieri and Vaaler

1].
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Lemma 11.9 Let K be a number field of degree d. Write Dy for the absolute value of
its dicriminant. Suppose

(11.25) m<n

and let aq,...,a,, be nonzero points in K™. Then there exists a nmonzero point x €

K"~ {0} with

(11.26) a;ix=0 for i=1,....m
and
(11.27) H(z) <n'?DY* (H(ay)... H(an)" .

Remark. Since H(\x) = H(zx) for any A € Q', we may clearly suppose that the vector
 in Lemma 11.9 has integral components.

12 The Height of the Penultimate Minimum Sub-
space

We consider the parallelepiped II(Q, ¢) defined in (6.10), (6.11) with forms LEU) and tuples

c=(cp) (WeMK),i=1,...,n)asin (6.1) - (6.8).

Again we let A\ = A\1(Q), ..., Ay = A\ (Q) be the successive minima of I1(Q, ¢) (according
to (6.12) - (6.14)).

Suppose
(12.1) 0<d<l1.

We will study the set of () such that

(12.2) Q° > n'/?
and
(12.3) A1 = Ao1(Q) < Q77

Corollary 7.6 says that A, (Q) > n~2. Thus by (12.2), (12.3) there exists ¢ > 0 with
(12.4) A—1(l4+¢€) < Ay

Let g, = ¢,(Q),..., 9, = g,(Q) be linearly independent points in Q" with

(12.5) g, € 1+ x1I(Q,c) (1<i<n).
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Write T' = T'(Q) for the linear subspace of Q" generated by di,---,9,_1- By Corollary
7.5, given @, the space T is uniquely determined. In particular it does not depend upon

e, nor upon the choice of g,,...,g,_, with (12.5). However, in general T will clearly
depend on Q.
Given T, there is a vector v # 0 in Q" such that T consists of the points € Q" with

vxe = 0.

Up to a factor of proportionality v is uniquely determined. If v = (vy,...,v,) we write
V(X) for the linear form v; Xy + ... + v, X,.

In this section we will prove an assertion of the following type:

Either foreach @ under consideration which is sufficiently large the height H(V') will
be above some fized positive power of )

or T does not depend on @) at all, i.e., there is a single subspace Ty, such that for all Q)
under consideration we have

T(Q) = To.
For g = (g1,...,9n) e Q" we put
(12.6) g = (Gns =1, (=1)"""qn).
Moreover, in analogy with (10.18) we write
(12.7) 9, =g N NG, .
Since g x = det(g,,...,g,_,, ), the space T consists of the points € Q" satisfying
(12.8) Gz =0.
So we may take v = g, and consequently
(12.9) H(V) = H(g,) = H(g,)
Let ng),/c\w (veM(K),i=1,...,n) be defined as in (10.16), (10.17) respectively.
Lemma 12.1 Assume that we have (12.2) and (12.3). Let R be the number of distinct
sets {L) .. L} we are considering in (6.1) - (6.7).

Moreover suppose that v — i(v) (v € M(K)) is a map from M(K) into {1,...,n} such
that

(12.10) LE ) (Gn) # 0 for each v € M(K).
Then
(12.11) H(g,) >nt(1+e) tH ((A il Qc @, ) o

vEIM(K
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Proof. Let E be a finite extension of K such that g,,...,g, € E". We apply Lemma
10.2 with p; = (1 + ¢)\; and conclude that there exist a finite extension F' of E and an
element § € F* with the following property:

For any tuple (i(w)) (w € M(F)) with 1 < i(w) < n the point Sg, = g, A ... NG,
satisfies

(1212 T 1L (gl < 14+ =1 Aoy T Qo
weM(F) weM(F)

Now suppose that (i(w)) (w € M(F)) has the property that there exists (i(v)) (v € M(K))

such that

(12.13) i(w) =i(v) forwe MF), w|v, veMK).

For such a tuple we get

Z Ci(w),w = Ci(v)w

weEM(F),w|v
and thus in view of (6.5), (10.17) we may infer from (12.12) that
1214) ] I G < 0+ (=1 A [T @ee.
wWEM(F) vEM(K)

We now assume that the tuple (i(v)) (v € M(K)) satisfies (12.10) and we choose (i(w))
(w € M(F)) as in (12.13). We will derive a lower bound for the left hand side of (12.14).

We partition 9M(F) into R subsets T, (p = 1,...,R). For w € T,, the system
{ng), . LT(lw)} C {Ly,...,L,} will be always the same, {Lg’)), . ,LT({))} say. We par-
tition moreover T}, into n subsets T,; (i = 1,...,n). T,; consists of those w € T}, for which
we have i(w) = 1.

We apply Lemma 11.7 to obtain

I 1 @@l = (T 0l) TT (vl
weTp; weT)p; w&Tp;
Taking the product over ¢ and p we get
~(w N 1 _ SN Rn—1
[T 0 Ea = (T o) (it @) )™
weM(F) weM(F)
and using the product formula we may conclude that
~(w =N 1 _ N Rn—1
(12.15) [T 12863801 > (n 2 m HEG) ™)
weM(F)

Combination of (12.14) and (12.15) yields with R > 1 (which we may assume)

H(/g\n)Rn—l > n—(Rn—l) (1 + 6)—(Rn—l) ()\1 L )\n—l)_l H—(Rn—l) H Qci(v),v'
veM(K)
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Taking (Rn — 1)-st roots we get assertion (12.11).

Let & be the set of tuples (j(v)) (v € M(K)) (1 < j(v) < n) such that

(12.16) > Ciwwe =0
veEM(K)

Corollary 12.2 Suppose 6 > 0 and

(12.17) At =A(Q) <Q7°

(i.e., (12.3)). Suppose moreover that

(12.18) Q° > (nH)5%.

Assume that there exists a tuple (j(v) (v € M(K)) in the set S defined by (12.16) with
(12.19) quzi)(’g\n) #0  for each v € M(K).

Then

(12.20) H(g,) > QR

Proof. Let (j(v)) (v € M(K)) be a tuple in & satistying (12.19). Then Lemma 12.1 in
conjunction with (12.17) implies

n—1 5

(12.21) H(g,) >n'(1+e) " H ' Qr1°,

As we have seen at the beginning of this section, (12.17), (12.18) entail that the space
generated by g,(Q),...,g,_;(Q) does not depend upon ¢ with (12.4). In particular this
implies that H(g,,) does not depend on e. Therefore by (12.21)

H(g,) > ntHQE
> QmntHL
Assertion (12.20) now follows from hypothesis (12.18).

We now deal with the case when hypothesis (12.19) is not true. In other words, we
consider the situation when for every tuple (j(v)) (v € M(K)) in the set & from (12.16)
there exists v € M(K) such that

(12.22) L' (@,) =o.
Notice that g,, = g,,(Q). Therefore condition (12.22) depends on Q). However (12.22) im-
plies that there exists a vector h € Q', h # 0 such that for each tuple (j(v))

(v € M(K)) in the set & there is v € M(K) with

(12.23) L% (k) = 0.

i(v)
Obviously (12.23) is independent of Q.

57



Lemma 12.3 Suppose that there exists h € Q", h # 0 satisfying (12.23).
Then there exists hg # 0 in Q" with the following property:
For every QQ with

(12.24) Aol = Ano1(Q) < Q7°

and

(12.25) Q0 >n"H"

we have

(12.26) 9:1(Q)hg = ... =g, 1(Q)hy =0,

where h{ is defined in analogy with (12.6).

Proof. Using hypothesis (12.23) we may apply Lemmata 11.3 and 11.4 to conclude that
there exists indeed a point hy # 0 in Q" satisfying (12.23) and

(12.27) H(ho) < n2= 1D 1,
Fix such a point hy and write
ho = (h1,...,hy).
Let q4,...,q,_; be linearly independent points in Q" satisfying
(12.28) hyg, =0 (i=1,...,n—1).
Then g; A ... Ag,_; is a nonzero multiple of hy, and in fact q,, ..., q,_; may be chosen
such that
(12.29) g N...Nq,_, = ho.

To prove (12.26), in view of (12.28) it suffices to prove that

(12.30) det(qy,...,49,-1,9,(Q)) =0 (i=1,...,n—1).

Let F' be a finite extension of K such that q,...,q,_1,91,--.,9,.1 € F". To verify
(12.30) ist suffices to prove

(12.31) I ldet(q, .. .q, 1. g)llw<1 fori=1.. n—1
weM(F)

Using (6.4) and Laplace’s identy we get for w € 9(F)

( L(lw)((h) e ng)(qn—l> ng) (9:)
||det(q17"'7qn—lﬂgi)||w - S
(12.32) Liq) ... L¥(q,) L¥(g) ||,

< n*® maxi<jen | L57(g:) - L8 (@ A - Ayl <

7

<0 maxs i< | L") (90)ll - 125" (o) -
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For v € M(K) we define

(12.33) J,={ie{1,...,n} | L (ho) # 0.

Pick k(v) € J, such that

(12.34) Civ < Ch(v),p for each i€ J,.

Our definition of the set & in (12.16) together with (12.23), (12.33), (12.34) implies that

(12.35) > ryw < 0.
M(K)

For each place w € M(K) with w |v we put J,, = J,, and k(w) = k(v). Then (12.32) and
the definition of J,, entail

(12.36) [ det(@r.. .. 199l < n°* max L5 ()| 25" (o)
Now by (12.5)
125 (@)l < Q% (weMF), wivg, 1<j<n, 1<i<n—1)
1257 (gl < Q@ (14 2)™™ (weMF), wlw, 1<j<n1<i<n—1)
On the other hand by Lemma 11.5 we have
IS (o) [l < 02 My ||

Combining (12.36) with these two estimates and observing also (12.24) we obtain
W23, (gl max Qo (w € M), wi )
ldet(qy, .- . gnr,gi)llw < § ™02 Ha [lhollu (14 )70/ max Qw0 /to)
(w € M(F), wl|vy).
Taking the product over w € 9M(F) and using (12.27), (12.34), (12.35) we may infer that

-6 + Z Ck(w),w
H Hdet(q17"'7qn—17gi)”w S n%(n+1) Hn (1+5)Q wEM(F)
weM(F)

< prtD pn (1+e)Q°.
Finally, taking ¢ sufficiently small, we get with (12.25)

H ||det<q17"'7qn—lagi)|’w < nanQi(S < 1
weM(F)

and this is the desired (12.31).

Combining Corollary 12.2 and Lemma 12.3 we may summarize the results proved in this
section as follows:
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Lemma 12.4 Suppose § > 0. Consider the set of Q) with

(12.37) A1 = A1 (Q) < Q7°
and
(1238) Qé > (n H)max{n,ﬁR}.

Then one of the following two alternatives is true:

(i) For all Q under consideration the linear form V =V (Q) has height

H(V) = H(g,) > Q"""

ii) There exists a single proper subspace Ty of Q" such that for all Q under consideration
g

we have T'(Q) = Tj.

Proof. Notice that in view of (12.37) and (12.38) we have (12.24), (12.25) as well as
(12.17), (12.18).

Now, if there exists @ such that g,(Q) does not satisfy (12.19), then clearly hypothesis
(12.23) is satisfied and we get with Lemma 12.3 alternative (ii).

Otherwise for all @ hypothesis (12.19) is true and Corollary 12.2 gives alternative (i).

13 The Index

We write R for the ring of polynomials
P=PX1, ., Xin; o5 Xty oo, Xonn)
in mn variables and with coefficients in Q. Let
r=(ry,..., m)
be an m-tuple of natural numbers and
T = (11,5 81ns - lmly -« s bmn)

an mn-tuple of nonnegative integers. Put

i th1+ ...+ i

h=1

and . .
1 8Z11+---+Zmn

il ! OXPE L O X
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Now suppose P is a polynomial in R and let K be a number field containing its coefficients.
We write H(P) for the height of the coefficient vector of P, and for v € 9M(K) we denote
the local height by || P||,. If P has degree 7, in the block of variables Xp1, ..., Xy, (h =
1,...,m) then, putting

(13.1) d=ri AT

we have for any J and for v € M(K)

(13.2) 1P, < 2 P,

and consequently

(13.3) H(PJ) < 29H(P).

(For a proof cf. Schmidt [13], p. 172, Lemma 5A).

Let Dy, ..., D,, be nonzero linear forms with coefficients in Q, such that for h = 1,...,m,
Dy, is a form in the variables X1, ..., Xp,. Let T be the linear subspace of @mn defined
by the equations

Dy=...=D, =0.

Following Schmidt [13] (p. 166 ff.) we define the indez of a polynomial P € R with respect
to (D1, ..., Dp;r) as follows:

When P = 0, we set ind (P) = co. When P # 0, the index ind (P) is the least value of ¢
such that there exists I with J /v = ¢ and such that P? does not vanish identically on T.

The following fact is proved in [13] (Lemma 4C, p. 171). If our forms D, are of the shape
Dy, = ap Xp + ...+ apnXinn

with ap; # 0 for h =1,...,m, then there exists

(13.4) T =(i1,0,...,0;...59,0,...,0)

with J /r = ind (P) and with

(13.5) PY £0 onT.

We now quote Evertse’s version of Roth’s Lemma ([4], Lemma 24). He derived it from
his explicit version [3] of Faltings’ Product Theorem [6].

We write R(r) for the set of polynomials in & which are homogeneous of degree 7, in the
block of variables X1, ..., Xp, (h=1,...,m).

Proposition 13.1 Let m,n be integers > 2. Let 0 < ¥ < 1 and suppose v = (r1,...,Tm)
satisfies

2 2
(13.6) h/Thet > % (h=1,...,m—1).
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Let P be a nonzero polynomial in R(r). Suppose that for h =1,...,m we are given linear
forms Vi, with coefficients in Q in the variables Xp1, ..., Xpn. Assume that

(13.7) H(Vy)™ > {exp(ri + ...+ 1) H(P)}W—l)(?’%) (h=1,...,m).
Then the index of P with respect to (Vi, ..., Vi, 1) satisfies
(13.8) ind P < md.

14 The Approximation Polynomial

The set R(r) defined in the last section consists of polynomials
(14.1) P = "c(jir,- s jmn) XS X
where the summation is over j;; > 0 with
Jui+ .-+ jpm=ry forh=1,....,m.
For each h, the number of such jp1, ..., Jn equals
(rh +n— 1)
n—1 )

Hence the number of summands in (14.1) is

(14.2) M = <T1 + nl_ 1) R (T’m T nl_ 1) < 27‘1+n—1+...+7"m+n—1 — 2q+M(n—1)’
n — n—

where we have put

(14-3> g=1r1+...+7Tm.

Lemma 14.1 Suppose D = a1 X1 + ... + a, X, has coefficients «; in a number field K
and oy # 0. Let P be given by (14.1). Construct a polynomial P* in the mn —m variables

X127-"7X1n;"';Xm27'"aan

by setting
p* = pJ (—oXio — ... — @ Xin, 1 Xq2, -« o, 1 X1} - - -
—oXmo — - — W Xpn, 1 X2, - 1 Xonn )
with 3 as in (13.4), i.e.,
(14.4) 3 = (i1,0,...,0;. .. 2im,0,...,0).

Then every coefficient v of P* is a linear form v = L,((c¢(J11,- -, Jmn))) in the M coeffi-
cients c(Ji1, - - -, jmn) of P. The coefficients of L., lie in K and each L, # 0 has

(14.5) H(L,) < 2™ (3n"* H(D))".
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This is Lemma 9.1 of Schmidt [14].

Now, given a linear form D = a1 X7 + ... + o, X,,, we make m forms out of it by setting
Dy = anXp1 + ... + an X (b =1,...,m). The index with respect to (D,r) is defined
as the index with respect to (Dpy, ..., Dpy); 7).

Lemma 14.2 (Index Theorem) Suppose that Dy, ..., Dy are nonzero linear forms with
coefficients in a number field K of degree d. Let Dy be the absolute value of the discrimi-
nant of K. Let H be a quantitiy such that

(14.6) H(Dy) <H fort=1,...,s.
Let ¥ > 0 and suppose that
(14.7) m > 409~ log(2s).

Then given v = (ry,...,Ty), there exists a nonzero polynomial P € R(r) with integral
algebraic coefficients in K satisfying

(i) indP > (% - 19)m
with respect to (Dy,r) fort=1,...,s;

(ii) H(P) < Dy 25" (6n2H)".

This is essentially the Index Theorem as in Schmidt [14], section 9. Since we give here a
version where P has coefficients in K and not necessarily in Q, we detail nevertheless the
necessary changes as compared with [14].

Proof. We write P as in (14.1). The number M of available coefficients is given by
(14.2). To deal with condition (i) for a particular form D, = D = a1 X; + ... + @, X,,
say, we proceed as follows.

Without loss of generality, we suppose a; # 0. Then in view of (13.4), (13.5) the index
condition will be satisfied for D if for every J of type (14.4) (i.e., (13.4)) with

(3 /r) < (l—ﬁ)m

n

PJ vanishes on the subspace 1" defined by the equations Dy = ... = Dy,,) = 0. This
means that for each such J the corresponding polynomial P* as defined in Lemma 1.1
vanishes identically.

P* is homogeneous in Xy, ..., Xy, of degree ry, — i, (h=1,...,m). Thus P* has

re—i+mn—2 T — &m + 1 — 2
14.8
( ) < n—2 > ( n—2 )
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potential coefficients . In order to assure that P* = 0, each of the coefficients v has to
be set equal to zero.

However, by Lemma 14.1 each v is a linear form L, in the coefficients ¢(j11, . . ., Jmn) of P.
So for a single form D and a single T, we get (14.8) linear equations in the ¢(ji1, ..., jmn).
Summing over t from 1 to s (for the forms Dy,..., D,) and over J we infer from (14.8)
that altogether the ¢(ji1, ..., jmn) have to satisfy

rn—i+n—2 T — m + N — 2
U=
SZ( n—2 ) ( n—2 )

linear equations, where the sum is over nonnegative integers 4, . .., i, with
. . 1
Z—14-...—1—Zﬂ< (——ﬁ)m.
r1 Tm n

By [13] (Lemma 4C, formula (4.3), p. 124) we obtain the estimate

U<s ntn-1 Tmtn =1 e~ 'm/4 — g pf o= Pm/4,
n—1 n—1

So, using hypothesis (14.7) we see that

1
U< =M.
2

Write a., for the coefficient vector of the linear form L. and c for the vector with compo-
nents c(ji1, .., Jmn). Then a, € K™ and ¢ should be a nonzero solution of the system
of equations

(14.9) a,x =0 forall 7.

We apply Lemma 11.9 and conclude that the system (14.9) has a nonzero solution ¢ € K
with "
1 M—U
H(e) < M2 D} (max H(a,)) " "
il
Indeed we may suppose that ¢ has integral components. Hence we obtain a nonzero
polynomial P with integral coefficients in K satisfying

U

H(P) < MYV?D3 (maxH(aW))m
il

a1 T
— M'/2p2 (maxH(Lﬁ) N

v

1
< M'Y?*D3? max H(L,).

a gl
Combining this with (14.2), (14.5) we get in fact

H(P) < D¥ 25mn (6n7% max H(Dt))q.

1<t<s
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By (14.6) this gives the assertion in (ii).

We will now adjust the general setting of our construction to the special situation we
encounter when dealing with the linear forms in (6.1) - (6.8).

From now on we suppose that the polynomial in the Index Theorem has been constructed
with respect to the forms {Li, ..., L,} we start with. Then the parameter s in the Index
Theorem becomes

(14.10) s=r.

We assume moreover that the number of distinct systems {L\"),..., LY} c {L,...,L,}
under consideration in (6.3) equals R. Then we get a partition IM(K) =M, U... U Mg
such that for v € 9M, the system {L{"),... L} is always the same, {L\",... LY}
(p=1,...,R), say.

Given an mn-tuple J and given v € M(K) we may write pJ uniquely as

J _ T . (v)j (v)jin (v)Jm (v)jmn
(14.11) Pt = Z Ul RPN S 2 S A N /i e
J115---y, Jmmn
where the sum is restricted to ju1 + ... 4+ jpn <7rp (h=1,...,m).

Lemma 14.3 (Polynomial Theorem) Let P be the polynomial of the Index Theorem,
constructed with respect to Ly,...,L.. Suppose we have (6.1) - (6.8). Let ‘H be the
quantitiy defined in (2.13).

Then with the representation of PJ in (14.11) we obtain

(i) For each v € M(K), when T /r < 29m then dvj (J11,- - -+ Jmn) = 0 unless

’(Z]ﬂ)—@‘g?)mnﬁ fork=1,....n
n

~ L
H , maJX Hd{;j (i1 -+ Jmn) [l < D2 H2).

Proof. (i) is exactly as in Schmidt [13] (p. 182 f.). As for (ii) we use the partition
ME) =M U...UMp. We fix p (1 < p < R) and we study v € 9M,. Recall that
{Lg”),...,LS’)} = {Lgp),...,L%p)}. For j=1,...,mandi=1,...,n we write

_ ) r(p) () 7 (p)

Substituting in (14.11), we get for a typical monomial in pJ
- : ~ w0\ ~ D7)
X = () (e
k=1 k=1
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This is a polynomial in Lg’g], ceey Lflp[%]. For v € 9, its coefficients have modulus

14 13 < S(’U) ]11++]mn
(14.13) < (0 max b)) .
On the other hand, by (13.2)

(14.14) 1P [l < 20500 Y.

Notice that PY is homogeneous in each block of variables. Therefore the sum j11+. . .4+7mn
in the exponent in (14.13) does not depend upon the particular monomial under consi-
deration. Consequently (14.13) is true for any monomial. More precisely we may write

say, (where ¢ is given in (14.3)). The number of monomials in PJ s < M < 29t™n by
(14.2).
Combining (14.13), (14.14), (14.15) we may infer that for each v € M,
!
max 7 Giar, - gl < (2205 00 | Py max 2 )

J11y--sJmn 1<4,k<n

and so we get

(14.16) [T max 1 Gu.ooo i)l <
ve f)ﬁpjll ----- ]7nn
l
2g+mn
< g(m a1 (s 121)' ).
v P

Lemma 11.6 says that the 7(,5) given by (14.12) satisfy the estimate

[T max il < IT 7.

vedM, vEM,
Thus (14.16) yields
14.17 ma. d PR .mn v < 22q+mn P Hq
N I O Ll T | Jiz

Taking the product over p we obtain
(14.18) [T max [ (i, dmn)lle < 220 08 1O H(P).

115005 Jmn

Introducing the bound for H(P) from Lemma 14.2 and observing, that we use that Lemma
with Ly,..., L, in place of Dy, ..., D,, we get with Lemma 11.4

H(P) < D” 23" <6n1/2 max H(L; ))q

1<i<r
1
< D25 (6nH)".
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Together with (14.18) we may infer that

~ 1
[T max (162 Gireeoosjma) o < DF (2750 722)"

and this is the assertion in (ii).

15 The Index with Respect to V(Q1),...,V(Q.)

Again we consider our forms L®),... LY (v € MK)) and tuples ¢ = (c¢;)

(v e MK),i=1,...,n) from (6.1) - (6.8). II(Q,c) is the parallelepiped defined in
(6.10), (6.11) and A * I1(Q, ¢) is as in (6.13) - (6.15).

Let A\ (@), ..., A\ (Q) be the successive minima of II(Q, ¢) and g, = ¢4(Q),...,g,_; =
g,,—1(Q) are linearly independent points in Q" with

(15.1) 9:(Q) € (1+2)Xi xI(Q, ),

i.e., with (12.5). e is a small positive number. We construct the point g, =

=g, N...NGg,1 = g,(Q) and we write v(Q) = g, (Q) in analogy with (12.6). v(Q)
is orthogonal to g,,...,g,_, and, as we have seen in the discussion at the beginning of

section 12, v(Q) is unique up to a factor in Q' provided that we have
(15.2) Q>n'?, N1 <Q7°

and provided that ¢ is chosen such that

(15.3) An—1(1+¢) < A

We let V. = V(Q) be the linear form with coefficient vector v(Q). If V(Q) =
nXi+ .. v X, wewrite for h=1,...,m Vjp(Q) =1 Xp + ... + v, Xpn.

We suppose that ¥ > 0 and m > 49 2log(2r) such that (14.7) with s = r is satisfied.
We suppose moreover that P is the polynomial of the Index and Polynomial Theorems in
section 14.

Lemma 15.1 Suppose that 0 < d < 1 and that

154 P < .
(15.4) 0< — 20n?

Let Qq,...,Q., satisfy

(15.5) rilog Qi < rlogQ < (1+ W) logQu (h=1,....m),
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(15.6) M1(@Q) Q0 (h=1,...,m)
and
(15.7) Q) > 2B P DM Y2 (=1, m).

Then P has index > mv with respect to (Va(Q1), - .., Vim)(@Qm); 7).

It will be convenient to prove first the following auxiliary result:
For v € 9M(K) put

(15.8) ¢y = max{Ciy, ..., Cny}
and define the tuple b = (b;,) (v € M(K),i=1,...,n) by

Civ—C, for veEMK),v#uvy,i=1,...,n

(159) biv: Z Co for v = vy, 9 = 17...,711-
vEM(K)

Then by (6.5), (6.7), (6.12) and (15.8) we get

n

(15.10) > by = 0

vEM(K) 1=1
(15.11) max{biy,..., b0} =0 (v € MK), v # vp)
(15.12) 0 < bryg = ... = by < 1.

For a finite extension F' of K we define for w € 9(F') lying above v € M(K') and for
1=1,...,n
bz‘w = d(w/v)bw

Lemma 15.2 Let Qq,...,Q, be as in Lemma 15.1. Let g,(Q),...,9, 1(Q1),...,
91(Qm)s -, 9,_1(Qm) be points satisfying the analogue of (15.1). Then there exist a
finite extension F' of K and elements B, € F* (h =1,...,m) with the following property:
The points g(Qn) = 5rg;(Qr) (1 <j<n—1,1<h <m) all lie in F" and satisfy the
mequalities

1L (g5(Qn) | < Qb
(weMF), wtvy;i=1,....n;j=1,....n—1; h=1,...,m)

v i d(w /v
IL! )(Q;‘(Qh))Hw < Qb ((1+2)2)\) (w/vo)
(weMF), wlvg;i=1,....,n55=1,....,n—1; h=1,...,m).

(15.13)
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Proof. We apply Lemma 6.3 with F' replaced by K. Fix h with 1 < h < m and put for
v € M(K)
Q" for v # vy
Av - >oew

vEM(K)

(14+¢)Q, for v = wy.
Since ¢,, = 0 by (6.7), we obtain

H A, =14e> 1.
veEM(K)

So by Lemma 6.3 we can find a finite extension F}, of K and an element ), € F} satisfying
180w < A2/ for each w € Fy, w|v, v € M(K).

We may perform this construction for h = 1,...,m. Choosing the field F' so large that
F, C F (h=1,...,m) and such that moreover g,(Q) € F" fori = 1,...,n — 1 and
h =1,...,m, the assertion follows easily in view of (15.1) and (6.13) - (6.15).

We now turn to the proof of Lemma 15.1. Let T be the subspace of Q" defined by
Vip(@Q1) = ... = Vi (@m) = 0.

Tt suffices to show that P¥ =0 on T whenever J /T < UIm.
The points g7 (Qr), - - -, g,_1(Qp) constructed in Lemma 15.2 obviously are a basis of the
subspace of Q" defined by V(Qn) =0 (h=1,...,m). For h =1,...,m let I'; be the grid

consisting of points

(15.14) u=u1gy(Qn) + ... + U1, 1(Qn)

where uy, ..., u,_; run through the integers in 1 < u; < [¢7!] + 1. It is shown in Schmidt
[13] (p. 189) that it suffices to prove that

S~

(15.15) PY (uy, ... up) =0

when J /r < 20m and u, € Ty, (h = 1,...,m). Let F' be the field obtained in Lemma
15.2. To verify (15.15), by the product formula it will suffice to show that

(15.16) IT 177 . wa)lle < 1

weM(F)

whenever J /r < 29m and u, € ', (h = 1,...,m). In analogy with (14.11), for w €
M(F) we write P¥ (uy, ..., u,) uniquely as

(1517)  Po(ur e un) = Y A Gy o) I ()0 L) ().
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To verify (15.16), we first study the terms ng)(ul)j“ . L%w)('u,m)jm” in (15.17). It clearly
suffices to deal with exponents (ji1, ..., Jmn) such that d;U’ (J11s - -+ Jmn) 7# 0. Combining
(15.14) and (15.13) we obtain

VLS () oy < 050 (97 4 1) QR < (2220 gl

(weMF), wtvy, L <k<n,1<h<m)

w 1\ 5(®) Abiu _ 5 d(w/vo)
LY (un) o < (22)" Qe (1 + )25 %) ™7™
(weMF), w|v, 1 <k<n,1<h<m).

Therefore

(L () L (i < ()OI Qe Qe
(wtwvg, 1 <k <n)
(J1e+-FJmi)

(15.18)

||L§€w)(u1)j1k N .ngw)(um)jmknw < ((%n)s(w)(l + E)2d(w/vo)>

\

Combination of (15.5) with assertion (i) of the Polynomial Theorem yields

d;{ (j117 . e 7Jmn) — O

unless
m . m . 1

(15.19) Z]hk log Qy, > r1 log Q1 Z % > r1log Qq (ﬁ — 3m9>m
h=1 h=1

and

(15.20) > julog Q< (1+ 9)rilog Qi > ]Tﬁ < rlog Qi(1+ ) (E + 3m9)m.
h
h=1 h=1

Using (15.18) - (15.20), (15.11), (15.12) and the fact that our tuples (ji1, ..., Jmn) satisfy
J11+ -+ Jmn < @, we may infer that

maxt (|| L8 (wn) L L () ,) <

wivg
(15.21) () (T —3mnd) (b1 Abow)
< T (et
weM(F)
wtvg
where the * means that the maximum is taken over all tuples (ji1, ..., Jmn) such that
d? (j11, ..., jmm) # 0. For w | vy we use moreover the estimate

1 1 7
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(which follows from (15.4)) to conclude that

(1 sma LG L o ) <
weM(F) /24 mn

wlvg
T (@)
weM(F)
w|vg

IA

(15.22)

r1( 24 %mnﬂ)(b1w+...+bnw)—n§rl (T —3mnd)d(w/vo)

Xy )

\

Now by (15.10) - (15.12)

0<— > (bt tbuw)= Y (brut...+bw) <

wEM(F) wEM(F)
whvg wlvo

Therefore (15.21) and (15.22) in conjunction with (15.4) entail
[T max (" (L () <
(15.23) < <<%n> (1+ 8)2>qQ;mr15+3mn2r119+%mn2r1ﬁ+3mn2ﬁr16)
<((@)a+er) Q.
We return to the sum in (15.17). By (14.2) it has < 29" summands. Thus
1PT (wr, . ) [ <

<2950 max ||d2 (jir, -+ Gl - maxt (L7 (w0 LS () o)

J11s--45 Jmn J115eees Jmn
So we get
[T 1P (wrswm) | <
weM(F)
(15.24) <2t [T max [|d (i, G [l

wem(F) 1150 Jmn
x T1 max (LS ()™ o LG () ).

By (ii) of the Polynomial Theorem (Lemma 14.3)

max (||d;{ (115 s Jmn)llw) =
WEM(F) J1Lr-sdmn

(15.25) N
s Jmn)|lo) < DRI H)

I
—
=
IS
i
=
“Q
<

Combination of (15.23), (15.24), (15.25) yields

2n

"1 L
(152600 T 1P7 (wrr- o un)ll < 27 DF (27127 ( (5

weM(F)

Ja+eR) @,
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We now use (15.5) and assume 1+ & < V2 to conclude that

lmrié

I 1P7 (s )| < 219 DI 12970 Q2
weM(F)

< H <210n rD2dq H219 Q;—é 1—0—19)_1)7%.
h=

By (15.4) and (15.7) this is
m 1 2
<TI (o o @y 5) <1.
=1

So (15.16) is established and the Lemma follows.

16 The Penultimate Minimum

Again we consider for () > 1 the parallelepipeds II(Q, ¢) defined with our forms (LZ(U )
(veMK),i=1,...,n) and tuples (¢;) as in (6.1) - (6.8). We write \(Q), ..., \(Q)
for the successive minima of T1(Q, ¢).

Suppose 0 < e < 1 and let g,(Q),...,g,_1(Q) be linearly independent points in Q" with

(16.1) 9:(Q) € (14X (Q) *I(Q,¢) (1=1,...,n—1).
Write T(Q) for the subspace of Q" generated by g,(Q),...,g, ,(Q).

Lemma 16.1 Let 0 < < 1. Suppose that

(16.2) m > 1600n* 52 log 2r.
Put

(16.3) E=41m?n*§".
Suppose that

(16.4) A1 =2 1(Q) > Q°
and

(16.5) Q° > (2H)*Em.

Assume that there does not exist a single proper subspace Ty of Q" such that for all Q
with (16.4), (16.5) we have T(Q) = Tp.
Then the numbers Q satisfying (16.4) and (16.5) are contained in the union of

m—1
intervals of type
(16.6) Qn<Q<QF (h=1,...,m—1).
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Proof. We proceed along the same lines as Schmidt [14] (p. 159 ff.).

Suppose the Lemma were false.

Let @1 be the infimum of values @ with (16.4) and (16.5). So @ with (16.4), (16.5)
will satisfy @ > Q1. Now if all the values @ with (16.4), (16.5) were in the interval
Q1 < Q < QF the Lemma was true. Therefore there are Q > Q¥ with (16.4). Let Q5 be
their infimum. And so forth.

In this way we will find numbers @1, ..., Q,, with

(16.7) Ma(Qn) Q0 (h=1,...,m)
and with
(16.8) Qni1>QF (h=1,....m—1).

Our goal is to apply on the one hand Lemma 15.1 and on the other hand Proposition
13.1. We will prove that under our hypotheses the two assertions contradict each other.
We first check the hypotheses of Lemma 15.1. We put

)
Y = .
20n2

Then (15.4) is satisfied. Choose r; so large that

(16.9)

(16.10) r > 9 og Q/log Q.
Given ry, we put for h =2,...,m
(16.11) rp = [r1log @1/ log Qpn] + 1.

In conjunction with (16.10) this implies
(16.12) rilog@Qr < rplog@Qn < (1+9)rilog@r (h=1,...,m),

so that (15.5) is satisfied.
To guarantee (15.7), apart from (16.10) we require for r,

(16.13) 2" > D%.
Since ¢ =11 + ...+ ry,, we then have D;’(qu < 2 and (15.7) will be true provided
(16.14) Q% > 2P H5 . 2. 673 (20n2)%/2

Clearly, (16.2) and (16.5) amply imply (16.14).

Let P be the approximation polynomial from section 14, constructed with respect to
Ly,...,L., with ¥ as in (16.9) and with r,...,7, having (16.10) - (16.13). By (16.2)
and (16.9), hypothesis (14.7) of the Index Theorem with s = r is satisfied. Moreover, by
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Lemma 11.4 hypothesis (14.6) will be true with H = n'/2H.
So the approximation polynomial P from the Index Theorem by Lemma 15.1 satisfies

(16.15) ind P(Vig(Q1); - -, Vi (@) > m0.

To derive an upper bound for this index we want to apply Proposition 13.1. Let us check
its hypotheses.
Using (16.11), (16.12), (16.8), (16.9), (16.3) we see that

> 11log Q1/1og Qn > 1 Thi1 10g Qnya/ log Qn
(16.16)

41m2n26-t

_o
1+ 20n2

E 2m?
2 109 Th+l 2 The1 2 =5 Th+1,

and this is hypothesis (13.6).

As for (13.7), we first remark that by (16.4) and (16.5) the hypotheses of Lemma 12.4 are
satisfied. By our assumption the second alternative in that Lemma is excluded.

Thus by the first alternative of Lemma 12.4 we obtain

HV(@Qy) > Q) (h=1,...,m).
In conjunction with (16.12) this gives
.
(16.17) HV(Qw)™ > Q" (h=1,...,m).

Therefore, to verify (13.7) is suffices to show that

3m2)m

5, n—
(16.18) QIF" > {exp(ri + ... + ) H(P)} v
By Lemma 14.2 with H = n'/?H (cf. Lemma 11.4)
H(P) < D2 22 (6n'H)".

By (16.16) and (16.9)

Therefore

To guarantee (16.18) it therefore suffices in view of (16.9) to guarantee that

1 (n—1)(60m2n25—1)™
IR (e2 DX (6n H)2)

However by (16.13) and (16.2) we get

3m

) (n—1)(60m2n26—1)™

(aZ D2 (6nH)? < 2H)™
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Altogether we see that (16.5) implies (16.18). Thus by (16.17) hypothesis (13.7) is satisfied
as well.
Now Proposition 13.1 says that

(16.19) ind(Viyy(Q1), - .., Vi (Qm); 7) < md.

This contradicts (16.15) and therefore the assertion of the Lemma follows.

Lemma 16.2 Suppose 0 < < 1. Let

(16.20) m > 1600 n* 6% log 2r
and put
(16.21) E=41m*n*5".

Given QQ > 1, let T(Q) be the subspace generated by the points g,(Q),...,g,_1(Q) in
(16.1).

Then there is a collection of proper linear subspaces Ty, ..., T, of Q" with
5000

16.22 < (1 5 E)

( ) a<m(l+ 999 og

and with the following property:
For any Q satisfying

(16.23) Aic1(Q) < Q7
and
(16.24) Q° > (2H)3Em"

the subspace T'(Q) will coincide with one of the subspaces Ty, ..., T,.

Proof. By Lemma 16.1 we have two alternatives.

Either one single subspace will suffice and we are done.

Or the numbers @) satisfying (16.23) and (16.24) are contained in the union of m — 1
intervals

(16.25) Qrn<Q<QF (h=1,...,m—1).

For each interval (16.25) we may apply Lemma 8.1.

By (16.1) the points g;,...,g,_; liein (1 4+ &)Q° * I1(Q,¢). Since 0 < ¢ < 1 and by
(16.20) and (16.24) they certainly lie in Q10009  I1(Q, ¢). So we apply Lemma 8.1 with
% d instead of §. The analogue of (8.1) by (16.24) is amply satisfied. Consequently,
each interval (16.25) gives rise to not more than

5000
1+ ——56tloe E
+ 999 0" log

subspaces. Introducing a factor m — 1 for the number of intervals we get the assertion in
(16.22).
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17 Approximating the Minima

Lemma 17.1 Let I1(Q, ¢) be the parallelepiped given by (6.10), (6.11) with forms (Liv))
and tuples (cy) satisfying (6.1) - (6.8). Let \(Q) be the first minimum of I1(Q, c).
Suppose n > 0 and

(17.1) Q" > n**H.
Then we have

(17.2) M(Q) > Q7

Proof. Let Hy .(x) be the twisted height associated with II(Q, ¢). By Corollary 7.4 the
minima of Hg () and of II(Q, ¢) coincide. Therefore in order to prove (17.2), by (17.1)
it suffices to show that for any x € Q" z # 0

(17.3) Hoe(x) >nPH1Q7

Given & € Q", z # 0 let F be a finite extension of K with x € F™.
Writing @ = (z1,...,x,) we have for w € M(F) andi=1,...,n

(17.4) zi =) L (@) + .+ L) ().

Here the %(]w )_s are the entries of the matrix which is inverse to the coefficient matrix of

L L.
Lemma 11.6 says that

weIM(F) —

We infer from (17.4) and (17.5) that

@ < o T] e b0 )( TT e 120@1 )
wEM(F) wEM(F)

< w2 ] max L ().

1<1<n
weM(F
Since H(x) > 1 this implies
~3/2.9/-1
(17.6) max I (@) = 2 1
weM(F)

On the other hand, by (2.12), (6.4), (6.5)

L (@) ]
Hoolw) = TT max 2@l S om0 T max 129 @)]1.



Together with (17.6) this gives
HQ,c(w) Z n73/2 Hfl Q*l

and (17.3) is verified.

Lemma 17.2 Let B be a natural number. Let P be the set of Q > 1 such that
n(n—1)

(17.7) QY > max {n3/2 H, 2"z }.

For Q € P write \(Q), ..., \(Q) for the successive minima of 11(Q, ¢).
Then there ezists a finite set IC of tuples of real numbers (71, ...,v,) of cardinality

(17.8) cardC < (n(B+1)+1)"

with the following property:
The elements v € IC satisfy

(17.9) —1§%§n—1+% (i=1,...,n).

Moreover, for any Q € P and for any permutation ¢ of {1,...,n} there exists v € K
with

(17.10) Q" F <A@ <Q¥ (i=1,...,n).

Proof. By Corollary 7.6 we have

(17.11) "% < M(Q) .. A (Q) < 2"

Notice that in view of (17.7), hypothesis (17.1) of Lemma 17.1 is satisfied with n = .
Consequently

(17.12) M@ >QE,

and thus by (17.11), (17.7)
(17.13) M(Q) < QU s,

Taking for 4 the points with components ~; of the shape % with [; € Z and such that
l; € [-B, (n—1)B + nl, in view of (17.12), (17.13) we clearly can find for any pair @, ¢
under consideration a suitable - satisfying (17.9), (17.10). The number of such points
equals (n(B + 1) + 1)" and so (17.8) is true as well.
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18 Two Adjacent Minima

We go back to the situation studied in section 16.

So we have the parallelepiped II(Q,c) with forms LZ(-U) and a tuple ¢ = (¢)
(veMK),i=1,...,n)asin (6.1) - (6.8). \(Q),...,\,(Q) are the successive minima
of TI(Q@, ¢) and gl(Q), ...,9,(Q) are linearly independent points in Q" with

(18.1) g/(Q) € (1+2)N(Q) < 1I(Q.e) (i=1,...,m)

We suppose that ¢ is a small positive parameter with e < 1 and such that (9.14) is satisfied.
Then we may apply Lemma 9.2. Consequently for each @) we can find a permutation m
of {1,...,n} and points hy(Q), ..., h,(Q) such that (9.18) and (9.19) are true, i.e., such
that

(182)  span{gy(Q),..-.g;(Q)} = span{hi(Q). ... hy(Q)} (i =1,....n)
and
I (hy (@)l < Q% (u € M(E
(18:3) ¢ LG (R (@Dl = My (@) < (14 2)™H 27 min{A(Q), A,(Q)}) "™
(ue

M(E), ulvo, 1 < i,5 <n).

) u'f”o,lgl]gn)

Now let 1 < k <n — 1. We apply Lemma 10.1 with

(18.4) i =1(Q) = (14" 2" \(Q) (i=1,...,n).

Foro = {1 <i; < ... < i < n} € C(n,k) we define p, = 1,(Q) as in (10.6), i.e

Ho = iy == [y
With N = (}) we let 7,...,7y be the enumeration of C(n, k) in the lexicographical
ordering. Notice that by (18.4) we have

Therefore,
(18.5) Por; < oy < fpy forj=1,...N —2

(however, in general we do not get pir, < pir, < ..o < firy_,)-
We combine (18.2), (18.3) and Lemma 10.1 to obtain:
There exist a finite extension F' of F and an element § € F™* such that

hi(Q),...,h,(Q) € F"

and such that moreover
(18.6) span{g(Q),....g;(Q)} =span{h:(Q),..., h;(Q)} (i =1,...,n)
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LY (Bher (Q))]| < Q7 (w € sm( ), wive, 1<i,j < N)
(187) 1285 (B ey (@) = 18y (@) < (K minf ar, 1)
(w e im(F) w|vg, 1 <i,5 < N).

(Here we have written h., = (hr, r, ..., hey 7y ).)

We now derive for the points h,,, ..., h inequalities which avoid the minimum we have

TN—-1
in (18.7) and which again are related to parallelepipeds. For o = {i; < ... < iy} € C(n, k)
we write

Ao (@) = A (@) -+ A (Q).
Notice that for the \,(Q)-s we have inequalities similar to (18.5).

Lemma 18.1 Suppose 1 < k < n. Let B > n be an integer. We can cover the set of
numbers () with

(18.8) QYPE > 22" H

by subsets Ay, ..., Ag with

(18.9) G < (2n B)™
For each g (1 < g < Q) there exist real numbers ey, ..., en, with
(18.10) eg+...+eng=0 and ey <2kn (i=1,...,N)

such that the following assertion is true.
Let 1y,...,7n be the lexicographical ordering of C(n,k). Then for each Q in A, the points

h: (Q),... ey (Q) satisfy
(18.11) HL‘(F:U)(/BhTJ<Q))Hw < Qv (weMF),wtvy, 1 <i< N, 1<j<N-1)

(18.12) [ L&) (Bhey @)l < (QFF Py, (Q)/ Ary (QFY)
(weM(F), wlvy, 1<i< N, 1<j<N-1).

Proof. We first notice that (18.11) is an immediate consequence of the first part of (18.7).
As for (18.12), for a permutation 7 of {1,...,n} we write ¢ for the inverse permutation.
Then from the second part of (18.7) we get by (18.5), ignoring the inequality for j = N,

1L (Bhey @l < (K min{prgry iry 1)

(we M), w|v, 1 <i<N,1<j<N-1).

(18.13)

We now cover the set of pairs (¢, Q) (¢ € &, @ satistying (18.8)) by subsets as follows.
Two pairs (¢1,@1) and (s, Q2) will belong to the same subset if they give rise to the
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same n-tuple v = (71,...,7,) in Lemma 17.2. By (17.8) and since B > 2 the number of
subsets is

(18.14) < (2nB)".
Fix such a subset 9B, say. Then for any pair (¢, Q) € B we have

(18.15) Q"5 < A(Q) < Q¥ (i=1,...,n)

where v = (71,...,7,) is fixed and satisfies
(18.16) —1§%§n—1+% (i=1,....n).
Foro={1<i; <...<i, <n} e C(n, k) we define

Yo =Yir T T Vi

and

Then (18.15) implies

(18.17) Q75 < Ao(Q) < Q" (6 €C(nk)).
Let 01, ...,0n be an enumeration of C'(n, k) such that
(18.18) Yor oot < Yoy

In analogy with (18.5) we have

(18.19) A (@) € Ary 1 (Q) S Ay (Q) forj=1,...N—2.

We may conclude that
(18.20) QN1 < A (Q) < QN

For suppose (18.20) was wrong. If A\, (Q) > Q7°~-1 then by (18.17), (18.18) we get
Tn—1 = @on and so Ty = po; for some j < N. Hence A\, ,(Q) > Q"5 > A\, (Q). This
contradicts (18.19). If however A\, (Q) < Q°v-1"7 then in view of (18.17), (18.18)
we have 7y_; = poy, for some k < N — 1. It follows that there exists a pair (j,7) with
J<N-—-1,i> N —1and 7; = go;. Consequently A\, ,(Q) < Q%i_% < A (Q). Again
this contradicts (18.19).

Combining (18.13), (18.4), (18.17), (18.20) we may infer that

1L (Bhe @)l < (R +)" 127 min{Aur, (Q), Ary_, (Q)}) ™
(1821) < ((k’(l + g)n—i-l 2n2)k min {Q'}’Ti’ Q'ygN_l })d(w/vg)

(weMF), w|v, 1 <i< N, 1<j<N-=1).
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Notice that given « the exponents v,, (¢ =1,...,N) and 7,,_, are uniquely determined.
Write

(1822) fl = min{%-i,')/a]\z_l} (7/ == 1,,N)

We observe that by (18.18) the exponents fi,..., fy are equal t0 Yo, ..« s Yon_1» Yon_y i1
a suitable order which depends only on «. Moreover we obtain in view of (18.17), (18.20)

(18.23) QITHINNE <AL A A

*OMTN—1

N < Qf1+---+fN

(where we have written A, for A,(Q)). On the other hand

Arp o Ay Ary = Ao /Ay ) (A Any)

and

So by Corollary 7.6

_nn? n?(n—1)
(18'24) n N ()\TN—l/ATN) < )‘7'1 T ATNfl >\7'N71 < 2N 2k (ATN—I/)\TN)'
We define exponents ey, ..., ey by
1 .
(18.25) ei:f,-—ﬁ(ﬁ—i--..—i—f]v) (t=1,...,N).

Combination of (18.23) and (18.24) yields

Q< QW By Ay Ay )Y <
(18.26) L e o
< Qrh 2 (A, A )Y,
Moreover, by (18.8) and since € < 1

nz(nfl)

QY > (k (14 27y 25—
Altogether (18.21) and (18.26) in view of £ < n — 1 imply

w e+ d(w/v
1L Bhr (@)l < (QFH (hry /An) M)
(weMF),w|lvg;i=1,...,N; j=1,...,N —1)
and this is the desired (18.12) for pairs (p, ) in the particular set B. Clearly the covering

of the set of pairs (¢, Q) induces a covering of the set of Q with (18.8). The number of

sets B needed is bounded by (18.14) and so we get (18.9).
We still have to verify (18.10). (18.25) implies at once e; + ...+ ey = 0. Moreover by
(18.16) and since B > n

k
| < k(n—1)+§n < kn.
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Together with (18.22), (18.25) this gives
‘€i| S 2kn7

and the Lemma follows.

We fix g (1 < g < G) and we study parameters () € A,. Our goal is to apply the material
from section 16 to inequalities (18.11), (18.12), more precisely to the parallelepiped defined
by the inequalities

|12 @)l < Q7 (w € M(F), wivg, 1 <i < N)

(18.27)
|L67 () | < Qo) (w € M(F), w|wo, 1 <i < N)

where ¢ is fixed and where x € @N.

The parallelepiped II(Q, ¢) studied in section 16 has ¢1,, = ... = ¢py, = 0 (cf. (6.7),
(6.12)). The analogue of this for (18.27) would be e, = ... = ey, = 0. However in
general this will not be true.

Lemma 18.2 Let A, be one of the sets in Lemma 18.1. Let ¢ > 0. Fiz a place
v1 € My~A{uvo}. Then for any Q € A, there exists a finite extension F' of K and an
element v € F* with the following properties:

The points h, (Q), ..., hy (Q) from Lemma 18.1 lie in FN and satisfy the inequalities

(L8 (rhey (@) < Q7
(weMF), wtvy, wtv, 1<i< N, 1<j<N-1)

L5 (vhey (@) < Qeote/)

(18.28)
(weM(F),w|vy, 1 <i< N, 1<j<N-1)
w (w/v1)
125 (e, (@)l = 7, (@) < { (1 Aryoo [Ary )V
\ (w e M(F ),w|vl,1§z§N,1§]§N—1).

Proof. We apply Lemma 6.3 with F' replaced by K. We put

A, = 1 forveME)~{vg, v}
(18'29) Avo = Q__( TN— 1/)‘71\1) N
Av1 = (1+€) QE( TN—l/ATN)l/N

Then obviously the hypotheses of Lemma 6.3 are satisfied. Accordingly there exists a
finite extension F' of K and an element a € F* satisfying

(18.30) a]lw < AN for w € M(F), w|v, v e M(K).
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We may assume without loss of generality that the field F' in Lemma 18.1 we start with
is large enough to deal with (18.30). (F' naturally depends upon the particular ¢ under
consideration).

Notice that by (6.7) ¢1p, = ... = ¢n,, = 0, so that ¢, = ... = ¢ryp, = 0. Assertion
(18.28) now follows directly from (18.11), (18.12) with v = af.

For Q > 1 we define the parallelepiped II*)(Q, f) as follows:
f=(frw) WeEMK),i=1,...,N) is the tuple given by

rCry forv € M(K), v # vy, i=1,...,n
(18.31) fm—{ 2n (K) ’

1 _
526ig  for v =ug.

If x € @N and if F' is a finite extension of K such that & € F", then x will belong to
*)(Q, f) if and only if it satisfies the inequalities

(18.32) ILE (@) < @7 (w € M(F), i =1,...,N),

where fr.,, = d(w/v) fr,, for w|v, v € M(K) and for i =1,..., N.
For A > 0 we define A x II*)(Q, f) as follows:

Suppose x € @N, indeed assume that & € F, where F is as above. Then x lies in
A+ IIF(Q, f) if and only if it satisfies the inequalities

(18.33) 1LY @) < Qv (weM(F), wivy,i=1,...,N)

(18.34) ||L7(—:U)(w)||w _ ”xin < foiw A\d(w/v) _ yd(w/vr)
(we M), w|v,i=1,...,N).

The main difference between our definition (6.13), (6.14) and (18.33), (18.34) is that we
have now “concentrated” the factor A to the places w lying above v; (instead of vy as in
section 6).

We write My = My ~{vp}. Then by (6.7) we may infer that for v € My

(18.35) LW =X, .., LY =Xn; fro=...= fryo=0.
Moreover since
(18.36) det(LY), ..., L®)) = det(L1, ..., LW)n ¥,

(6.4) implies that

(18.37) det(LY, ..., L") =1 for each v € M(K).
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Combination of (6.5), (18.10) and (18.31) implies

(18.38) > me =

vEM(K) 1=1

Moreover, again by (6.5), (18.10)

N
max cTU—i-Zelg < k+ 2kn < 2n°.

vEM(K) — i=1

v#£vg

In conjunction with (18.31) this gives

(18.39) > max fr <1

vEM(K)
Therefore, if we replace the family of forms {L,...,L,} we start with in section 6 by
the family of forms {L,} = {L;; A ... A L;, } where 0 = {i; < ... <4} runs through the
k-element subsets of {1,...,r}, we get a setting that is completely analogous to the one

at the beginning of section 6.
The differences are as follows:

r s replaced by (})
n  is replaced by N = (Z)

(18.40)
I, is replaced by 9,

[ vo is replaced by wv.

However, if at the beginning we have R different systems {Lﬁ”), - L,(f)}, then in the
definition of II®)(Q, f) again we have R different systems {L(qu), e ,L(TZ)}.

Assertion (18.28) may now be reinterpreted in terms of the parallelepiped H(k)(Q%Q, f):
For each @ in A, the points v h, (Q),...,7 hsy_,(Q) satisfy the relations

(18.41) hey(Q) € {(142)QF Ay ,(Q)/ Ay (@)} xTI® Q> )

(i=1,...,N—1).
Let 11(Q), ..., vn(Q) be the successive minima of II®*)(Q, ). Then (18.41) implies

(18.42) v (@) < (14 €) QF (Ary , (Q)/Ary (@)

We are now ready to prove

Lemma 18.3 Let LEU), c= () (veEMK),i=1,...,n) be as in (6.1) - (6.8). Suppose
e = ¢(Q) is a small positive number and let g, = g,(Q),...,g,, = g,(Q) be linearly

84



independent points in Q" satisfying (18.1).
Suppose 1 < p < n—1, and let T, = T,(Q) be the linear subspace of Q" generated by

91,19,
Suppose

(18.43) 0<d<l.

Let my be given by

(18.44) my = [100 - 278 7 52 1og 2r].
Then there exist p-dimensional subspaces Ty, ..., T, of Q" with
(18.45) t < Qnt6)%3(ntd) g-n—4 log 2r log log 2r,

having the following property:
For every Q with

(1846) Q(S > <2H)n22”+3Rm§m1
and
(18.47) M(Q) < Q7" M\pia(Q)

the subspace T,(Q) is among Ty, ..., T;.

Proof. We first remark that although the points g,(Q),...,g,(Q) are not uniquely
determined, the space T,(Q) in view of (18.47) and by Corollary 7.5 will be unique,
provided ¢ is small enough.

We start with the points g,(Q), ..., g,(Q). We then apply Lemma 9.2, to obtain points
hi(Q),..., h,(Q) satisfying (9.18) and (9.19). In particular these points will satisfy

(18.48) span {h,(Q), ..., h,(Q)} = span{g,(Q),...,9,(Q)} = T,(Q).
We then apply Lemma 10.1 with
(18.49) k=n—p.

The conclusion is that for each @ under consideration there is a permutation 7 = 7(Q)
such that the points h., ..., h,, constructed from hy,..., h, satisfy (18.7) with (18.4).

) TN

We now put

(18.50) B = [3n%2" 6]
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and we apply Lemma 18.1.
Notice that by (18.44) and (18.46) we have (18.8). Hence by Lemma 18.1 the set of @
with (18.46) may be covered by

(18.51) G < (2nB)" < (6n*2" 51"

subsets Ay, ..., Ag.

From now on we fix such a subset .4, and for simplicity we call it A. Then for () € A we
have by Lemma 18.1 assertions (18.10), (18.11), (18.12).

We then see that the points h,, ..., k., _, also satisfy (18.28) of Lemma 18.2.

Defining the tuple (f;,) (v € M(K), i =1,...,N) as in (18.31), we finally may conclude
with (18.42) that for ) € A the parallelepiped H(k)(QQ”Z, f) has penultimate minimum

vn_1(Q*) satisfying
(18.52) va(Q7) < (14 QF (A 1 (Q)/A(Q))

With k = n—p asin (18.50) we have 7y_1 = {p,p+2,...,n}, tn={p+1,p+2,...,n}.
Therefore An_1/An = (ApApi2 - An)/(Aps1Api2 - - An) = A\p/Apia-
Thus by (18.47)

1/N

)\N—I/AN < Q_(S/n.
Combining this with (18.50), (18.52) we get
(18.53) Un_1(Q¥) < (14 2) QBN < Q wawet

provided ¢ is small enough.

We want to apply Lemma 16.2 with the points vh, (Q),...,vh.y_,(Q) instead of
9,(Q),....9, ,(Q) and with II"™(Q*"”, f) instead of II(Q, ). By (18.53) the analogue
of (16.23), with Q2" in place of Q, is satisfied with § replaced by

J

 p39ont2”

(18.54) 01

On the other hand in the definition of II®)(Q2**| f), by (18.40) the parameters r and n
are replaced by (2) and (Z) respectively.
Writing m; for the parameter which corresponds to m in (16.20), we now have to require

4
n _ T
my > 1600<k) 572 log (2(k>>
Similarly £ in (16.21) has to be replaced by
n 2 n 2
(18.55) E, = 41m] (k) 6t =41m] (p) 5t

With §; from (18.54) we may choose

(18.56) my = [100 - 278 7 572 1og 2r].
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This is the value in (18.44).
We still have to guarantee the analogue of (16.24). As seen in the discussion preceding
Lemma 18.3 the parameter R remains unchanged and therefore we have

(18.57) R< (r>

n

On the other hand, in view of (18.36), H has to be replaced by

(18.58) ().
Thus the analogue of (16.24) is satisfied provided

B 3Rm?m1
(18.59) (@) > (2m+ )

With §; from (18.54) we obtain (18.59) as an easy consequence of (18.46).

So, all hypotheses of Lemma 16.2 are satisfied.

The conclusion is as follows:

For @ in A satisfying (18.46) and (18.47) let T™®)(Q) be the subspace of @N generated

by h., (Q),...,h.y_,(Q). Then there exist proper linear subspaces Tl(k)7 . ,Ték) of @(2)
with

5000
18.60 < 1+ ——6;"'logE
( ) a m1(+99910g 1>
such that for each @ under consideration T®)(Q) coincides with one of Tl(k), LT,

We now apply Lemma 10.3. Consequently there is a collection of p-dimensional subspaces
Ty, ..., T, of Q" such that for each Q under consideration the subspace T,(Q) generated
by g,(Q), ..., g,(Q) coincides with one of Ty,...,T,.

Introducing a factor (6n32"§~1)" for the number of possible sets A from (18.51), we
finally see that

(18.61) t< (6027571 my <1 + %cﬁlmg E1>
subspaces 11, ..., T; will suffice.
Using (18.54), (18.55), (18.56) we get

log By < log4l +2logmy + 2nlog2 + 3logn + (n + 2)log2 + logd—*

logm; < log100 + (6n + 8)log2 + Tlogn + 2log d ! + loglog 2r.
Since we may assume that r > 1, we have 4loglog 2r > 1. Therefore

log By < 6loglog2r(log (410000) + (15n + 18)log2 + 17logn + 55 ).
Altogether we see that the right hand side in (18.61) does not exceed

9(n+6)* p3(n+d) s=n—4 145 9 1og log 2r-.

This is the bound in (18.45) and Lemma 18.3 follows.
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19 Proof of Proposition 6.1, and hence of Theorem
2.1

With the notation from (6.1) - (6.8), (6.10) - (6.15) we have to deal with the points € Q"
lying in

(19.1) Q7+ T1(Q, ¢)
for parameters () satisfying
(19.2) Q > max {HY () nt/o),

We distinguish large and small parameters ). We call ) small if

2 3mq

. - 671n22n+4 s my
(19.3) max {Hl/(n),nl/‘;} <Q< (max {Hl/(n),nl/5}> )
where m, is as in (18.44), i.e.,
(19.4) my = [100 - 258 n7 52 log 271

Parameters with () with

(19.5) Q> (max {Hu(;),nl/a})5‘1”22"*4<2>

are called large.

2 3mq
my

To treat the small values of @) we apply Lemma 8.1. To cover the range (19.3), by (8.2)
we do not need more than
1450 (logd* +logn + (2n + 4)log 2 + 2log (") + 3my log my)

(19.6)
< 3157 tmy logmy

subspaces.

We now treat the values @ satisfying (19.5). For these () we want to apply Lemma
18.3. We first notice that the parameter R in (18.46) satisfies R < (7). Moreover, since
0 <0 <1andn > 2, we have max {Hl/(fl),nl/‘s} > (27'()1/(2(*:)). Thus (19.5) implies
(18.46).

We next show that we have only to consider such values ) for which (18.47) is satisfied
for a suitable p with 1 <p <n —1.

If () is such that there exists @ € Q" z # 0 with
(19.7) xcQxI(Q,c),
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then

(19.8) Q) Q™

On the other hand by Corollary 7.6

and so by (19.5), (19.8)
(19.9) An(Q) > n 2D QY1) 5 d/n,

Comparing (19.8) and (19.9) we may conclude that there exists ¢ with 1 < ¢ < n—1 such
that

(19.10) M(Q) < Q"X (Q).
Let p = p(Q) be largest with this property. Then by (19.9) and (19.10) we have
M\sr(Q) > QO/n=(n=p=13/n _ mip2in - =5
Now let g,(Q),...,9,(Q),9,:1(Q),...,9,(Q) be linearly independent points in Q" with
9:(Q) € (1 +2) \(Q) xI(Q, ¢),

where ¢ = £(Q) is small enough such that 1 + & < Q%™ The definition of successive
minima implies that then any point & with (19.7) lies in the p-dimensional subspace
T,(Q) generated by g,(Q),...,9,(Q). We partition the set of @ satisfying (19.5) into
n — 1 subsets corresponding to the n — 1 possibilities for p.

For each p, by (19.10) and (19.5) we may apply Lemma 18.3. So for each p, by (18.45)

(19.11) t < 20400 p3(nt) 5=n—4 14091 Jog log 2

subspaces will suffice.

The bound (19.11), i.e., (18.45) exceeds the bound (18.61), which in turn exceeds the
bound (19.6) for small parameters. Introducing in (19.11) a factor n for the n — 1 possi-
bilities of p and to take care of the small values of ), we finitely see that altogether

ti(n, 7, 0) < n20H0’ 30t o= 160(2r) log log(2r)

< 400 5416021 log log (2r)

subspaces suffice, and this is the assertion of Proposition 6.1.

89



20 Simultaneous Inequalities

In order to prove Theorem 3.1 we will derive from Theorem 2.1 an auxiliary result which
however may be of some independent interest and which we therefore formulate as a
theorem. As in section 3 we start with a number field F and a finite subset S of M(E) of
cardinality s. For v € S we write || ||, for the normalized absolute value corresponding
to v (cf. (1.7), (1.8)) and we suppose that || ||, is extended to Q as described in (3.7).

Let {Ly,...,L,} be a family of linear forms in X = (X;,...,X,,) with coefficients in Q
satisfying

(20.1) rank (Lq,...,L,) =n
and
(20.2) L; has some coefficient equal to 1 (i =1,...,r).

Suppose that for each v € S we are given a set {L{", ... L} of forms with

(20.3) (L, LY c{Ly,..., L}, rank{L" ... LW} =n.
Write
(20.4) A, = | det(L”,..., L)

For (i,v) (ve S,i=1,...,n) let E(LE”)) be the extension of E generated by the coeffi-
cients of LZ(-U) and let D be a natural number satisfying

(20.5) [E(LY):E|<D (weS i=1,...n).
Suppose moreover that H is a quantity with
(20.6) HLYY<H (weS i=1,...,n).

We prove

Theorem 20.1 Assume (20.1) - (20.6). Suppose 0 < 6 < 1 and let e = (e;,,) (v € S,

i=1,...,n) be a tuple of real numbers satisfying
(207) Z Z €iv S —-n — 57
veS i=1

(20.8) Z max{eiy, ..., eny} < M.

veS
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Then there are proper linear subspaces T, ..., T}, of @n, all defined over E, where
(20.9) ts = ts(n,r, D, 8) < 220485774 1og(4r D) log log(4r D)

with the following property:
The set of solutions x € Q" of the simultaneous inequalities

L .
(20.10) max WM < H(x) (vesS, i=1,...,n)
oeGal(Q/E) A" ||o(x)]|y

(20.11) H(x) > max{H,n*"/°}

18 contained in the union
TYU...UT,.

We emphasize that the bound in (20.9) for the number of subspaces does not depend
upon the field E, nor does it depend upon the set S.

To prove Theorem 20.1 we will construct a twisted height Hg .(x) such that for any

solution « of (20.10) the quantity —max Hgc(o(x)) will be small. We will then apply
c€Gal(Q/E)

Corollary 2.2 and thereby deduce the assertion.

We begin with the construction of the height Hg .(x). For a linear form
L = a1 X1 + ... + a, X, with coefficients a4,...,a, € Q and for an automorphism
o € Gal(Q/E) we write oL = o(a1)X; + ... + o(a,)X,. We fix a finite normal ex-
tension I of E containing the coefficients of the forms oL; (o € Gal(Q/E), i =1,...,r).
Write T for the set of places w € 9 (F') lying above the places v € S. For each place

weT, w|v, veS, there is an automorphism o, € Gal(F/E) such that

(20.12) 2]l = [|ow(@)]|2/)  for each 2 € F.
For each w € T we fix such a o, and we define the forms Li(w), L by
(20.13) L™ =g L™,

Let F be the family of linear forms
{oL|o € Gal(Q/E), Le{Li,...,L,, X1,...,X,}}.
By (20.5) F has cardinality
cardF <rD+n <2rD.

Clearly all the forms (20.13) lie in F. By repeating some of the forms in F, if necessary,
we get a family of forms F; containing F such that

(20.14) card F; = 2rD.

91



Now let F’ be a finite extension of F' such that moreover F'/E is normal. Write T" for
the set of places w’ € M(F’) lying above the places in S (and hence also above the places
in 7). If w € T" lies above w € T and w in turn lies above v € S we can find an element
ow € Gal(F'/E) with 0/p = 0, such that for each x € F”

s = llorw () 15772,

Moreover putting L;‘(wl) = L:(w), we get L;‘(w/) = a;lLZ(”) = a;,lLZ(»U). In other words,
relations (20.12), (20.13) remain valid with F,T,w replaced by F’, T’ w’" respectively,
independently of the particular choice of o,,. For F’ and w’ € T" as above we put

(20.15) Ay = [ det(L3™, L) .

Lemma 20.2 Let x € Q" be a solution of (20.10). Let F' be a finite extension of F' such
that F'/E is normal and such that x € F'™. Then we have
| (o (=)

(20.16) max .y o < H(x)e W'/ (W' eT' i=1,...,n).
ocGal@/E) A7 0(2)||w

In (20.16) v € S is the place lying below w'.

Remark We are concentrating on normal extensions F” of F to guarantee that for each
o € Gal(Q/E) the point o(x) lies in F'™.

Proof. Using (20.12), (20.13) we get

12" @) _ [ L) (o (@) s
o (@) [ o (@)l

d(w’ /v d(w’ /v
| (o () [[5 ) oo (2)[|5 )

_ v d(w' /v v w' /v
_low (0 L) (@) [ LY (gwo (@) [

Moreover, we infer from (20.15) that

AL = | det(ZX™) . LX)y = [ det(o LY, o DO o

? T w n

= low(det(oy 11", ..o LON[6™/) = | det(Ly”, ..., L) |3/

» Y’

A f0)
Thus for o € Gal(Q/E) we obtain

w(w' v d(w' /v)
12" (o (@) _ <||L§ ’(aw/a<w>>||v>

*1/n 1/n :
A Mle@) e\ A lowo(@)]),

The assertion now follows from (20.10).
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Lemma 20.2 enables us to define the desired twisted height.
Let F and T' C M(F) be as above. For w € M(F) and for ¢ = 1,...,n we define the
linear forms M ™ by

)

(20.17) M®™ =
X; forw ¢ T.

1

{ L' forweT

By (20.3) and (20.13) we have
rank {M{"), ..., M} =n  for each w € M(F).

Moreover in view of our construction and in view of (20.3), each form M belongs to
the family F; in (20.14).
In (20.7), (20.8) we may suppose without loss of generality that

(20.18) Z zn:eiv =-n—0 and Zmax{elv, N 3

veS i=1 vES

For assume that initially we do not have (20.18). For v € S let i(v) be an index with

€i(v), = Max{eiy, ..., Eny}.
We may choose elements e’i( Jo = Civ such that > e , is maximal with
" veES
Z 62(”)7” sn and Z 6; + Z Z Eip < —N —
veS vES vES i#i(v)
Now either > €}y, + > > €w=—-n—29.
vES veS 1#£i(v)

Then in Theorem 20.1 we may replace the elements e;,, by e () and the analogue of

(20.18) will be true.

Or we have } €}y, + > Z eiw < —n—0dand ) € =n. Then clearly we can find
veS veS i#i(v) ves

for i # i(v) elements e;, with e;, < €;, < €}y, such that > >~ €;, = —n —d. Again with
’ vesS i=1
eiy replaced by e}, the analogue of (20.18) will be true. Moreover the analogue of (20.10)

with e;, replaced by e}, obviously will be satisfied as well.
We define the tuple ¢ = (¢;) (w € M(F), i =1,...,n) by

:{ dw/v)(ew+2(1+6/n)) (weT, wlv,ve S, i=1,....n)
0

(20.19)  ci
(weMEF)\NT,i=1,...,n).

Combination of (20.18) and (20.19) yields

(20200 Y Zcm ZZ@U 1—|—5/n)>:—n—5—|— (1+6/n) = 0.

weM(F) =1 veS i=1
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Moreover we get
1
(20.21) Z max{Ciy, ..., Cpw} = Z (max{elv, R ;(1 + 5/n)>
weEM(F) veS
< n4+14+5/n<n+2.
For a finite extension F’ of F' and for w’ € 9M(F’) lying above w € 9M(F') we define for

1=1,...,n
M) =M™ = d(w'/w)ciw

and we write
Ay = || det(M™) . ME)|| o

Finally, for € Q" we define the height H .(x) as follows. If F” is a finite extension of
F such that & € F'™ then we put

M ()|
(20.22) Hool@) = max ”UA
1<i<n Aw/chiw/

Lemma 20.3 Let & € Q" ~{0} be a solution of (20.10). Then, writing

(20.23) Q = H(x)

we have

(20.24) max Hge(o(x)) < Q%™
o€Gal(Q/E)

Proof. We choose a finite extension F’ of F' such that & € F™ and such that F'/E
is normal. Then by Lemma 20.2, @ satisfies (20.16). Combination of (20.16), (20.17),
(20.19) and (20.23) implies for w’ € T" and for o € Gal(Q/E)

(20.25) M (o (@) [l 1M (o(@)r

< o (@) || H (ap) =400 040/ m)
(w'|v,ve S;i=1,...,n).

Moreover, for w’' € 9M(F')\T" we have A,, = 1 and so by (20.17) and (20.19) we get for

1=1,...,n

1M (o(2))]|r

20.26
( ) Aqll)//chiw’

= llo(z)]w’ < llo(@)]u-
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In view of (20.25), (20.26) we obtain

1M (o()]|r

Hch(O(w)) = H max 1
wemrry =" Ul (@)
< ( IT lo= Hw) II #(=) d(w' /v) L (1+8/n)
w' EM(F) w' €T’

However
1 le@)lw =H(o(x) = H(=).
w'€M(F)
On the other hand

3 d(w’/v)%(l—kc?/n) Lasom) S dw!/v) = (1+5/n) s—1+6/n.

w' €T’ w' €T’
Therefore by (20.23)
Hqo(o(z)) < H(z) " = Q"

The Lemma follows.

The proof of Theorem 20.1 now is easily finished. We apply Corollary 2.2 to inequality
(20.24). To do so we still have to ensure that its hypotheses are satisfied.

The role of the field K containing the coefficients of the forms in Corollary 2.2 now is
played by the field F'. The field E in Corollary 2.2 also in our application will be E.

In Corollary 2.2 we have hypothesis (2.14), i.e., > max{ciy,...,cn} < 1.
vEM(K)
Instead of this we now have (20.21), i.e

Z max{Ciy, -, Cow} < N+ 2.

weM(F)
Write .
C;w:n+20iw (wEm(F),Z:L,n)
and
(2027) Ql — Qn+2'

We may then define the height Hy, ~(x) in an obvious way in analogy with (20.22).
For the new tuple ¢’ we get

Z max{c,,- -t <1,

weM(F)

i.e., we get the analogue of (2.14). By Lemma 20.3, any solution & # 0 of (20.10) satisfies

__ 6
(20.28) max Hg, «(o(x)) < Q; ""™.
c€Gal(Q/E)
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So in the application of Corollary 2.2 we have to replace § by 6/(n(n + 2)). The role
played by the family {L;,..., L,} now is played by the family F; in (20.14). This means
in particular that the parameter r in Corollary 2.2 in our current context has to be
replaced by 2rD. Let Fy = {Mj,..., My.p}. We write H = H(My, ..., Ms,p).

Now Corollary 2.2 implies the following: As @); runs through values satisfying

(20.29) Q1 > max {H'/(W), ™5 ]

the set of solutions of (20.28) will be contained in the union of not more than

(20.30) t1(n,2rD,d/(n(n+2)))

proper linear subspaces of Q. All these subspaces are defined over E. By (2.19)

t1(n,2rD, 5/ (n(n+2))) < 4 (n(n +2))"* 6" *log(4rD) log log(4rD)

< 287 54160 (4r D) log log(4r D).
This is our bound given for ¢5(n,r, D,d) in (20.9).

We still have to verify that (20.11) implies (20.29). Now clearly by (20.27) and (20.23)
H(x) > n*/? implies Q, > n G

As for the requirement Q1 > Hl/(2;D), we remark that the forms M, ..., Ms,.p with which
H is defined are just the forms Xi,..., X, and oL; (¢ € Gal(Q/E),i =1,...,7). Now
H(oL;) = H(L;). On the other hand by (20.2) each of the forms defining H has some
coefficient equal to 1.

Thus by Lemma 11.8 we get
H(M,,. .., Maoyp) < H(M,)... H(Map).
However (20.6) implies
H(M;,))<H for i=1,...,2rD.

Therefore we may conclude that
H S HQT‘D.

On the other hand by (20.1), r > n and therefore (*"”) > 2rD, so that

2rD

HY () < go/(Y) < .

Combining this with (20.11) and (20.23) we may infer that @ > HY("). But then a
fortiori @y given by (20.27) satisfies the first part of (20.29). This finishes the proof of
Theorem 20.1.
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21 Proof of Theorem 3.1

We will derive Theorem 3.1 from Theorem 20.1. Indeed we will prove that the factors in
the product of the left hand side of (3.11) satisfy suitable simultaneous inequalities of the
type studied in Theorem 20.1.

So our main purpose will be to derive such simultaneous inequalities.

We will use

Lemma 21.1 Suppose % <~ <1 andlet g € N. Consider the set
(21.1) J={T,....T) eRI 1 +.. 4T, =7,T1,>00G=1,...,9)}.

There exists a finite subset J' of J of cardinality

(21.2) < (1i7>q

with the following property:
For each point (xy,...,2,) € R? having z; > 0 (i = 1,...,q9) we can find
I'=Ty,...,Ty) € J satisfying

A proof of Lemma 21.1 may be found e.g. in [2] (Lemma 4).

We proceed to deduce Theorem 3.1.
We partition the set of solutions € Q" of (3.11) into two subsets M; and M,.
M, consists of those & such that
(21.4) max |L;"(o(x))], = 0
c€Gal(Q/E)
for some pair (i,v) (v € S, 1<i<n).
M> consists of those solutions & which do not belong to M;. Thus the elements & € M,
will satisfy
(21.5) max |L;"(o(x))], # 0
o€Gal(Q/E)
for each pair (i,v) (v € S, 1 <i<n).
We first treat the set M;. Given a pair (i,v) (v € S, 1 <i < n), let T}, be the subspace
of Q" consisting of the vectors y € Q" with LE”) (y) = 0. In view of (3.6), T, is a proper
linear subspace of @n. Write M;, for the subset of points & € T;, such that we have

o(x) € Ty, for all 0 € Gal(Q/E), and let T}, be the subspace of Q" generated by T, N E™.
Now Lemma 4.2 says that 77, is defined over E and that

M, C T;/U.

97



Moreover by (21.4), any point & € M; satisfies for a suitable pair (7, v)

(21.6) L(o(x)) =0 forall oc Gal(Q/E).
Thus M, C U U T}, and so M; may be covered by

veS i=1
(21.7) <ns

proper linear subspaces of Q", all of which are defined over E.

We now deal with the set M,. Write

(21.8) LX) =YX +... +aVXx,

7

(ve S, i=1,...,n).
Given (i,v) (v e S, 1 <i<n) pick j = j(i,v) with 1 < j(i,v) < n such that

(21.9) o], = max {[|al (|, - .., [lad]l, )
Define the forms L;(U) (X) by

(21.10) LX) = (o) 'L (X).

By homogeneity we are allowed to replace the forms L(”) in Theorem 3.1 by the forms
L/(U) Therefore we may suppose without loss of generality that for each pair (i, v)
(vesS,i=1,...,n)

(21.11) the form L( *) has a (Z n =1
and

(21.12) 1< LY, < nzs®
where

o(0) = [E,:R]/[E:Q] forve M (F)
o for v € My(E).

We now partition the set My into two subsets My, and Mas.
M, consists of those & € M, for which we can find an index ¢ with 1 < ¢ < n such that

(21.13) H max —”Lgv)(g(m))””<H(m)—”—5.

socGa@p)  lo(@)]le T

My will be the complement of My in My, We first treat Ms;. The number of possibilities
for 7 is

(21.14) n.

98



We fix ¢ and study the points « satisfying (21.13).
In view of (21.12) we have for each v € S

L v L lullo(@)]],
(115) ms IETC@ Nl @)y
oeGal(@/) 12 |lo(2)]], nt/2e0lo (@),

Given x with H(x) > 1 we define the tuple (y,),es by

(21.16) o @)l

H(x) .
ocGal(@/E) N2 o (x)]], (®)

This is possible since & ¢ M;. Then by (21.13) and (21.15)

(21.17) Yo > 0 for each v e S, Zyvzn+5.

vES

We apply Lemma 21.1 with ¢ = s and with v =1 — ﬁ.
Accordingly we can cover the set of & under consideration by

(21.18) (dend 1)

subsets with the following property:
For each subset there is a fixed tuple I' = (I',),es of nonnegative numbers with

)
(21.19) r,=1-——
4n

vES

such that the tuple (y,) in (21.16), (21.17) satisfies

Yo =T Yy = Tul(n+9).

weS
We may conclude that for the points @ in the subset corresponding to (I',) we have
I W

(21.20) max M < pt/2s) H(w)ffv(n+5).
oeGal@/E)  ||o(x)]]s

Notice that (3.12) implies n2°®) < H(x)&*®).
Combining this with (21.20) we obtain for each v € S

(v)
(21.21) max M < H(w)*Fv(n+5)+gs(v).
oeGal@/E)  ||o(x)]]y

Recall the definition of j(i,v) in (21.9). For v € S we now consider the system

LX), X, (k=1,...,n; k # j(i,v)).

7
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We denote this system by

MY(X) = (X)), M{(X),..., M (X).
By (21.11) we get
(21.22) | det (M, ..., M), = 1.

Define the tuple e = (e;,) (v € S, i=1,...,n) by

—Tyn+086)+2s(v) fori=1
(21.23) Cip = ( )+ §s(0)
0 fori=2,...,n
Since for ¢ = 2,...,n the forms Mi(v)(X) are among the coordinate forms X7, ...
obtain
M y
oeGa@/p)  llo(@)ll

forve Sandfori=2,...,n
Combination of (21.21) - (21.24) yields

(U)
(21.25) max (|)| ot ))”1/ < Hz)™
0eGal(Q/E) || det( M ) o ()],

for each pair (i,v) (ve€ S, i=1,...,n).
(21.19) and (21.23) imply

S S = ) S+
(1

(2126) veS i=1 veS

— —(n+96) _4i>+g < —n—5/2
and
(21.27) Z max{eyy,...,en} = Z —s(v) < 9/8.

veS vGS

Notice that the forms Mi(v) all have a coefficient equal to 1. By (21.25) - (21.27), with

d replaced by §/2 and with {Lq,..., L,} replaced by {Mi(v) cve S i=1,...
hypotheses of Theorem 20.1 are satisfied. Notice that {Mi(v) cve S i=1,...

cardinality < ns. Therefore the set of solutions & of (21.25) with
(21.28) H(x) > max{H,n*"°}
is contained in the union of not more than

ts = ts(n,ns, D,§/2) < 28048’ 54100 (4nsD) log log(4nsD)

100

,n}, the
,n} has



proper linear subspaces of Q", all of which are defined over E. This was for elements
x € Moy satisfying (21.13) with a fixed ¢ and a fixed tuple (I',),es in (21.18), (21.9).
Allowing the factors from (21.14) and (21.18) for the number of possible choices of these
tuples we see that

(21.29) n(4dend 1) 2308574100 (4ns D) log log(4nsD)

subspaces will suffice to cover the set Ms;.
We now deal with the set Ms,.
By definition the points & € M, satisfy for each ¢

(21.30) I max W>H<w>m_
gocca@/m)  lo(@)l

For v € S we write
A, = | det(L, ..., LOY,.

Combination of (3.11) with (21.30) yields

(21.31) [[A" < H ),

veES

On the other hand by (21.12) we get

Ay Ny - IES | < 035
and therefore
(21.32) n2*@ AL >1 foreachv € S.
By (3.12) we have n™/2 < H(x)%/®. So (21.31) implies

(21.33) Hn%S(v) ASY < H(g)mDoto)+/8,

veES

In view of (21.32) there exists a number A > 1 such that

[[n3® a;t = A-Deeoors,

vES

Moreover there exists a tuple of nonnegative numbers (¢, )yes with

ch =1 and n3® ATl = A ((-D(n+o)+3/8)
vES

(21.33) implies that A < H(x). Write

b, = lcv((n —1)(n+40) +0/8).

n
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We then have

(21.34) Y b= (n—1)(n+0)+5/8
veS =1

and

(21.35) n2 @AY [H(x) ™ <1 for each v € S.

Combination of (3.11) and (21.34) yields

(21.36) HH max < 35(v) AV H ()7 w) < H(z) mn+0)-0/8,

veS i=1 c€Gal(Q/E) nES(U) ||O-(m)||1) a

By (21.15) and (21.35) the ns factors in the double product in (21.36) are all < 1. In a
similar way as in the discussion of the set My, we may apply Lemma 21.1, now with

g=mns and y=1-0/4n?
consequently we obtain not more than
(21.37) (4n*e 1)
subsets of Mss, whose union equals to Ms,. For each subset we have a tuple of nonnegative

numbers I' = (I';,) (v e S, i=1,...,n) with

(21.38) > ir =~ =1-—0§/4n?,

veS =1

such that any solution x in the subset satisfies

L(v) v
(21.39)  max H(x)™™ M < H(g) Do) H/8) (4, ¢ § 4 =1,...,n).
0€Gal(Q/E) AY™|o (@),

We define the tuple e = (e;,) (v € S,i=1,...,n) by

By (21.39) our solutions @ under consideration satisfy

L' )
(21.40) max % < H® (weS, i=1,...,n).
0€Gal(Q/E) Ay, ||g(g;)||,u

We want to apply Theorem 20.1 with  replaced by §/2. So we have to check its hypothe-
ses. By (21.34) and (21.38)

DD ew = —(n(n+5)+5/2)<22fiv) +3 >0,

veS i=1 veS i=1 veS i=1

_ —(n2—|-(n+%)(5>(1—6/4n2)+(n—1)(n+5)—|—§/8 < —n—5/2.
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So the analogue of (20.7) is satisfied.
Moreover max e;, < b, = L ¢,((n—1)(n+ ) +§/8).

1<i<v
Thus
1 1
z;lrgaélew < - (n—=1)(n+0)+4/8) z;cv = (n=1)(n+46)+8/8) <n.
ve S

This means that (20.8) is satisfied as well.

For the family {L,..., L,} we take {LZ(»”) v €S, i=1,...,n}. Therefore the parameter
r has to be replaced by ns. Notice that by our normalization (21.11) also hypothesis
(20.2) is satisfied. The analogue of (20.11) with § replaced by §/2 is

H(x) > max {H, n4”/5},

but this is our assumption in (3.12). We may conclude that to cover the solutions with
the fixed tuple (e;,,) we do not need more than

ts(n,ns, D,§/2) < 28048754 91+ 100 (4n s D) log log(4nsD)

proper linear subspaces. Introducing the factor (4n®ed~1)"* from (21.37) we see that for
the set My,

(21.41) (4n2e 51y 238 4ntd g4 140 (4ns D) log log(4nsD)

subspaces will suffice. By Theorem 20.1 all these subspaces may be taken such as to be
defined over F.

Adding the bounds from (21.7), (21.29), (21.41) we may conclude that altogether we do
not need more than

ns + n(dend=1)s 2308)° 5-n=4 100 (4ns D) log log(4nsD)+

+(4n%e §=1)ns 23 +8) 0+ -n—4 160 (4ns D) log log(4nsD)
< 2. (4n2e§1)ns 2348 4ntd son—d 60 (4ns D) log log(4nsD)
< (3n)2ns 23(n+9)* g=ns—n—4 1904 D) log log(4D)

subspaces, and this is the bound given for t5(n, s, D,0) in (3.10).
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