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We start with:

Theorem. (E., 1984)

Let a, b ∈ Q∗, let p1, . . . , pr be distinct prime

numbers, and let Γ = {±pz1
1 · · · p

zr
r : zi ∈ Z} be

the multiplicative group generated by p1, . . . , pr.

Then the equation

ax+ by = 1 in x, y ∈ Γ

has at most 3×72r+3 solutions.

This can be generalized to equations with un-

knowns x, y in the group of S-units of a num-

ber field.

We consider a more general situation.
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Notation.

K is any field of characteristic 0.

K∗ is the multiplicative group of K.

Γ is a subgroup of K∗ of rank r, i.e.

there are multiplicatively independent elements

u1, . . . , ur ∈ Γ such that

∀x ∈ Γ ∃m ∈ N, zi ∈ Z with xm = u
z1
1 · · ·u

zr
r .

Theorem (Beukers, Schlickewei, 1996)

Let a, b ∈ K∗. Suppose Γ has rank r. Then

the equation

ax+ by = 1 in x, y ∈ Γ

has at most 216(r+1) solutions.

Remark: Earlier Schlickewei proved a similar

result with the upper bound cr
2
.

3



Now let a1, . . . , aN ∈ K∗ and consider the

equation in N variables:

a1x1 + · · ·+ aNxN = 1(1)

in x1, . . . , xN ∈ Γ.

To prevent easy constructions of infinite sets

of solutions we consider only non-degenerate

solutions, i.e., with∑
i∈I

aixi 6= 0 for each subset I of {1, . . . , N}.

History:

1980’s van der Poorten&Schlickewei, E.,

Laurent: (1) has finitely many

non-degenerate solutions.

1990’s Schlickewei: explicit upper bounds in

special cases depending on N , r =rank Γ and

other parameters.

Later improvements by E. and

Schlickewei&Schmidt.
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Theorem (Schlickewei, Schmidt, E.)

Suppose Γ has rank r. Then the equation

a1x1 + · · ·+ aNxN = 1 in x1, . . . , xN ∈ Γ

has at most 226N(r+1) non-degenerate solu-

tions.

Ingredients in proof of Theorem:

1. A specialization argument, to reduce equa-

tions over arbitrary fields of characteristic 0

to equations over number fields.

2. Estimates for the number of solutions of

small height (Schmidt 1994, David&Philippon

2000).

3. A quantitative version of the Subspace

Theorem (Schmidt 1989 −− → Schlickewei&

E. 2000), to treat solutions with large height.
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Polynomial equations.

K is again an arbitrary field of char. 0.

f is an inhomogeneous polynomial in

K[X1, . . . , XN ].

Γ is a subgroup of K∗ of finite rank r.

We consider the equation

f(x1, . . . , xN) = 0 in x1, . . . , xN ∈ Γ.(2)

We must again exclude degenerate solutions

to prevent easy constructions of infinite sets

of solutions.

Definition: x = (x1, . . . , xN) is called a de-

generate solution of f(x) = 0 if there are

integers t1, . . . , tN , not all zero, such that

f(x1λ
t1, . . . , xNλ

tN) = 0 identically in λ.

Otherwise x is called non-degenerate.
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Another formulation of degeneracy.

Write xa = x
a1
1 · · ·x

aN
N and let

f =
∑
a∈A

c(a)xa

where

c(a) 6= 0 for a ∈ A, A ⊂ (Z≥0)N finite.

For a partition P = {P1, . . . , Pk} of A into
pairwise disjoint sets, let HP denote the abelian
group generated by all vectors

a− b (a,b ∈ Pi, i = 1, . . . , k).

Lemma. x is a degenerate solution of
f(x) = 0 if and only if there is a partition
P = {P1, . . . , Pk} of A such that∑

a∈Pi c(a)xa = 0 for i = 1, . . . , k,

HP 6= (0).
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Theorem. (Laurent, 1984)
Let f ∈ K[X1, . . . , XN ] be an inhomogeneous
polynomial and let Γ be a subgroup of K∗ of
finite rank. Then the equation

f(x1, . . . , xN) = 0 in x1, . . . , xN ∈ Γ

has only finitely many non-degenerate solu-
tions.

Quantitative results:
1993, Győry: K number field, Γ group of
S-units in K
1994, Schmidt: K arbitrary, Γ group of
roots of unity in K

Theorem. (Schlickewei, E.)
Let rank Γ = r. Suppose that f has total de-
gree D. Then the number of non-degenerate
solutions of

f(x1, . . . , xN) = 0 in x1, . . . , xN ∈ Γ

is at most

c(N,D)r+1 with c(N,D) = 226(N+D
D )

.
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Back to linear equations.

Let again K be a field of characteristic 0,

a1, . . . , aN ∈ K∗, Γ a subgroup of K∗ of rank

r and consider again

a1x1 + · · ·+ aNxN = 1 in x1, . . . , xN ∈ Γ.

Two tuples of coefficients a = (a1, . . . , aN),

b = (b1, . . . , bN) are called Γ-equivalent if

bi = aiui with ui ∈ Γ for i = 1, . . . , N .

Equations with Γ-equivalent tuples of coeffi-

cients have the same number of non-degenerate

solutions.
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Theorem. (Győry, Stewart, Tijdeman, E.,

1986)

There are finitely many Γ-equivalence classes

of pairs in K∗×K∗ such that for every pair

(a, b) outside the union of these classes, the

equation

ax+ by = 1 in x, y ∈ Γ

has at most two solutions.

Remark 1. The upper bound 2 is best pos-

sible.

Remark 2. The exceptional equivalence classes

can not be determined effectively from the

method of proof.

Remark 3. The situation for equations in

N ≥ 3 variables is much more complicated.
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Denote by H(α) the height (the maximum of

the absolute values of the coefficients of the

minimal polynomial in Z[X]) of an algebraic

number α.

Theorem. (Győry, Stewart, Tijdeman, E.,

1986)

Let a, b ∈ Q∗, let p1, . . . , pr be distinct prime

numbers, and let Γ = {±pz1
1 · · · p

zr
r : zi ∈ Z}.

If the equation

ax+ by = 1 in x, y ∈ Γ

has more than r + 2 solutions, then (a, b) is

Γ-equivalent to a pair (a′, b′) with

max(H(a′), H(b′)) ≤ Ceff(p1, . . . , pr).

The proof uses estimates for linear forms in

(ordinary and p-adic) logarithms.
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This can be extended as follows:

Theorem. (E.) Let a, b ∈ Q∗ and let Γ be a

subgroup of Q∗ of rank r. Let u1, . . . , ur be

multiplicatively independent elements of Γ. If

ax+ by = 1 in x, y ∈ Γ

has more than 2r + 2 solutions, then (a, b) is

Γ-equivalent to a pair (a′, b′) with

max(H(a′), H(b′)) ≤ Ceff(u1, . . . , ur),

max(deg a′,deg b′) ≤ Ceff(u1, . . . , ur).
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Fact: Let N ≥ 3. Then for every h > 0

there are Γ and infinitely many Γ- equivalence

classes of tuples (a1, . . . , aN) such that the

equation

a1x1 + · · ·+ aNxN = 1 in x1, . . . , xN ∈ Γ

has more than h non-degenerate solutions.

Example. Consider the equation

x1 + · · ·+ xN−1 = 1.

Choose Γ sufficiently large such that this equa-

tion has more than h non-degenerate solu-

tions x1, . . . , xN−1 ∈ Γ.

Then for all but finitely many λ ∈ K∗, the

equation

λx1 + · · ·+ λxN−1 + (1− λ)xN = 1

has more than h non-degenerate solutions

x1, . . . , xN ∈ Γ, with xN = 1.
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Let A(a,Γ) denote the smallest integer t such
that the set of x = (x1, . . . , xN) with

a1x1 + · · ·+ aNxN = 1, x1, . . . , xN ∈ Γ

is contained in the union of not more than t

proper linear subspaces of KN .

Theorem. (Győry, E., 1989)
There are finitely many Γ-equivalence classes
of tuples in (K∗)N , such that for every tuple
a = (a1, . . . , aN) outside the union of these
classes we have A(a,Γ) ≤ 2(N+1)!.

In 1993 I improved this to (N !)2N+2 ≈ e2N2 logN .
By a simple argument this can be improved
somewhat further:

Theorem. (E.) There are finitely many Γ-
equivalence classes of tuples in (K∗)N , such
that for every tuple a = (a1, . . . , aN) outside
the union of these classes we have

A(a,Γ) ≤ 2N
2
.
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Sketch of proof.

Take a = (a1, . . . , aN) ∈ (K∗)N and consider

a1x1 + · · ·+ aNxN = 1 in x1, . . . , xN ∈ Γ.

By replacing a by a Γ-equivalent tuple we may

assume that (1,1, . . . ,1) is a solution.

Take N other solutions

x1 = (x11, . . . , x1N), . . . ,xN = (xN1, . . . , xNN).

Then ∣∣∣∣∣∣∣∣∣
1 1 · · · 1
1 x11 · · · x1N
... ... ...
1 xN1 · · · xNN

∣∣∣∣∣∣∣∣∣ = 0.

We apply the general result on polynomial

equations.
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We distinguish two cases:

a) (x11, . . . , xNN) is non-degenerate.

Then (x11, . . . , xNN) belongs to a finite set

which is independent of the coefficients a1, . . . , aN .

Now we can solve a1, . . . , aN from

a1x11 + · · ·+ aNx1N = 1
...

a1xN1 + · · ·+ aNxNN = 1

and we get finitely many possibilities for

a1, . . . , aN .
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b) (x11, . . . , xNN) is degenerate.

This means that there are integers t11, . . . , tNN ,
not all zero, such that∣∣∣∣∣∣∣∣∣

1 1 · · · 1
1 λt11x11 · · · λt1Nx1N
... ... ...
1 λtN1xN1 · · · λtNNxNN

∣∣∣∣∣∣∣∣∣ = 0 for every λ.

Choosing λ = −1 we get∣∣∣∣∣∣∣∣∣
1 1 · · · 1
1 ±x11 · · · ±x1N
... ... ...
1 ±xN1 · · · ±xNN

∣∣∣∣∣∣∣∣∣ = 0.(3)

Now fix x1 = (x11, . . . , x1N), . . . ,xN−1 and let
xN = (xN1, . . . , xNN) run through the solu-
tions of a1x1 + · · ·+ aNxN = 1 in Γ.

Then xN satisfies one of at most 2N
2

linear
equations determined by the signs in (3) and
each equation determines a linear subspace
of (K∗)N . QED.

17



A lower bound for A(a,Γ).

Take arbitrary u1, . . . , uN ∈ Γ such that
b := u1 + · · ·+ uN 6= 0. Let SN be the set of
of permutations of {1, . . . , N}.
For σ ∈ SN define uσ = (uσ(1), . . . , uσ(N)).
Then uσ is a solution of

1

b
x1 + · · ·+

1

b
xN = 1.

The vectors uσ with σ(N) = i lie in the proper
subspace given by the equation

ui(x1 + · · ·+ xN−1)− (b− ui)xN = 0.

Hence the set {uσ : σ ∈ SN} can be covered
by N proper linear subspaces of KN .

Fact: If u1, . . . , uN are “sufficiently general”
then the set {uσ : σ ∈ SN} can not be covered
by fewer than N proper linear subspaces of
KN .

So for a = (1
b , . . . ,

1
b) we have A(a,Γ) ≥ N .
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