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We start with:

Theorem. (E., 1984)

Let a,b € QF, let p1,...,pr be distinct prime
numbers, and let T = {£p]}---pZr : z; € Z} be
the multiplicative group generated by pq, ..., pr.
Then the equation

ar+by=1 inx,yel

has at most 3 x 72713 solutions.

This can be generalized to equations with un-
knowns x,y in the group of S-units of a num-
ber field.

We consider a more general situation.



Notation.

K is any field of characteristic O.

K* is the multiplicative group of K.

[ is a subgroup of K* of rank r, i.e.

there are multiplicatively independent elements
ui,...,ur € [ such that

Veel dm e N,z € Z with xmzuil---ufﬂ“.
Theorem (Beukers, Schlickewei, 1996)

Let a,b € K*. Suppose I' has rank r. Then
the equation

ar+by=1 inx,yel

has at most 216(r+1) sojutions.

Remark: Earlier Schlickewei proved a similar
result with the upper bound c7”2.



Now let aq,...,any € K* and consider the
equation in N variables:

(1) ajz14---Fanyzy=1
inx1,..., ey €.

To prevent easy constructions of infinite sets
of solutions we consider only non-degenerate
solutions, i.e., with

Y a;z; 70 for each subset I of {1,...,N}.
il

History:

1980’s van der Poorten&Schlickewei, E.,
Laurent: (1) has finitely many
non-degenerate solutions.

1990’s Schlickewei: explicit upper bounds in
special cases depending on N, r =rank[ and
other parameters.

Later improvements by E. and
Schlickewei&Schmidt.



Theorem (Schlickewei, Schmidt, E.)
Suppose [T has rank r. Then the equation

aix1+- - -+ayzxy=1 Iinxzq,....,xxy €

has at most 22°V (*+1) non-degenerate solu-
tions.

Ingredients in proof of Theorem:

1. A specialization argument, to reduce equa-
tions over arbitrary fields of characteristic O
to equations over number fields.

2. Estimates for the number of solutions of
small height (Schmidt 1994, David&Philippon
2000).

3. A quantitative version of the Subspace
Theorem (Schmidt 1989 —— — Schlickewei&
E. 2000), to treat solutions with large height.



Polynomial equations.

K is again an arbitrary field of char. O.
f is an inhomogeneous polynomial in
K[X1,...,Xp].

[ is a subgroup of K™ of finite rank r.
We consider the equation

(2) f(x1,...,zny) =0 inxq,...,zx5 €T.

We must again exclude degenerate solutions
to prevent easy constructions of infinite sets
of solutions.

Definition: x = (z1,...,xy) is called a de-
generate solution of f(x) = 0 if there are
integers tq,...,ty, not all zero, such that

FlzgNtt, ..., zyAIN) =0 identically in .

Otherwise x is called non-degenerate.



Another formulation of degeneracy.
Write x2 = 271+ 2 and let

f= cla)x?

acA
where

c(a) 0 forac A, AC (Zsg)" finite.

For a partition P = {Py,...,P,} of A into
pairwise disjoint sets, let Hp denote the abelian
group generated by all vectors

a—b (abeP,i=1,...,k).

Lemma. x is a degenerate solution of
f(x) = 0 if and only if there is a partition
P={Py,...,P.} of A such that

Yacpc(a)x*=0 fori=1,...k,

Hp # (0).



Theorem. (Laurent, 1984)

Let f e K[Xq,...,Xy] be an inhomogeneous
polynomial and let T be a subgroup of K* of
finite rank. Then the equation

f(x1,...,2ny) =0 inxzq,...,zx €

has only finitely many non-degenerate solu-
tions.

Quantitative results:

1993, Gyory: K number field, ' group of
S-units in K

1994, Schmidt: K arbitrary, I group of
roots of unity in K

Theorem. (Schlickewei, E.)

Let rankl = r. Suppose that f has total de-
gree D. Then the number of non-degenerate
solutions of

f(x1,...,2ny) =0 inxzq,...,zx €
is at most
L 6" H7)
c(N, D)1 with ¢(N, D) = 2



Back to linear equations.

Let again K be a field of characteristic O,
ai,...,an € K*, ' a subgroup of K* of rank
r and consider again

a1x1+ - -+anyry=1 inzxzq,...,ex€l.
Two tuples of coefficients a = (a1,...,ay),
b = (b1,...,by) are called M-equivalent if

b, = a;u; with u; €l for:=1,..., N.

Equations with [-equivalent tuples of coeffi-
cients have the same number of non-degenerate
solutions.



Theorem. (Gy6ry, Stewart, Tijdeman, E.,
1986)

There are finitely many I -equivalence classes
of pairs in K*x K* such that for every pair
(a,b) outside the union of these classes, the
equation

ar+by=1 inx,yel

has at most two solutions.

Remark 1. The upper bound 2 is best pos-
sible.

Remark 2. The exceptional equivalence classes
can not be determined effectively from the
method of proof.

Remark 3. The situation for equations in
N > 3 variables is much more complicated.
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Denote by H(«) the height (the maximum of
the absolute values of the coefficients of the
minimal polynomial in Z[X]) of an algebraic
number «.

Theorem. (Gy6ry, Stewart, Tijdeman, E.,
1986)
Let a,b € Q*, let p1,...,pr be distinct prime
numbers, and let I = {xpit---pZ : 2z; € Z}.
If the equation

ar+by=1 Iinxz,yel
has more than r + 2 solutions, then (a,b) is
[-equivalent to a pair (a’,b") with

max(H (a"), H(¥')) < C*(p1,...,pr).

The proof uses estimates for linear forms in
(ordinary and p-adic) logarithms.
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This can be extended as follows:

Theorem. (E.) Let a,b € Q* and let " be a
subgroup of Q* of rank r. Let uq,...,u, be
multiplicatively independent elements of . If

ar+by=1 inx,yel

has more than 2r + 2 solutions, then (a,b) is
[-equivalent to a pair (a’,b") with

max(H(a'), H(')) < CM(uy, ..., up),

max(dega’,deg ') < CM(uq, ..., ur).
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Fact: Let N > 3. Then for every h > 0O
there are I and infinitely many I - equivalence

classes of tuples (aq,...,ay) such that the
equation
a1x1+ - -+anycy=1 Iinzq,...,zxy €

has more than h non-degenerate solutions.

Example. Consider the equation

xl_l_..._'_xN_l:]__

Choose I sufficiently large such that this equa-
tion has more than A non-degenerate solu-
tions zq,...,zny_1 €.

Then for all but finitely many A € K*, the
equation

A1+ -+ deny_ 1+ 1 —Naxy=1

has more than h non-degenerate solutions
x1,...,eny €, with )y = 1.
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Let A(a, ) denote the smallest integer ¢ such
that the set of x = (z1,...,2) with

ajx1+ - ---+anyzy=1, x1,...,x5y€ET

iIs contained in the union of not more than ¢
proper linear subspaces of K.

Theorem. (Gybry, E., 1989)

T here are finitely many I -equivalence classes
of tuples in (K*), such that for every tuple
a = (a1,...,ay) outside the union of these
classes we have A(a, ) < 2(N+1!

In 1993 I improved this to (N1)2N+2 r ¢2N?log N
By a simple argument this can be improved
somewhat further:

Theorem. (E.) There are finitely many I -
equivalence classes of tuples in (K*), such
that for every tuple a = (aq,...,ay) outside
the union of these classes we have

Aa, ) < 22,

14



Sketch of proof.

Take a = (a1,...,an) € (K*)Y and consider
a1x1+ - -+anyzy =1 inzxzq,...,ex €.
By replacing a by a [ -equivalent tuple we may

assume that (1,1,...,1) is a solution.
Take N other solutions
x1 = (Z11,-- > TIN)s -+ XN = (TN, - - -, TNN).
Then
1 1 1
]:_ x::l_l o o o x];N — O‘
1 zy1 -+ NN

We apply the general result on polynomial
equations.
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We distinguish two cases:

a) (z11,...,xNypN) IS non-degenerate.

Then (x11,...,zny) belongs to a finite set
which is independent of the coefficientsaq,...,ay.
Now we can solve aq,...,an from

air1l +---+ayziy = 1
a1rxny1 + - F+ayzyy = 1

and we get finitely many possibilities for
al,...,an.
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b) (z11,...,xxpn) iS degenerate.

This means that there are integersti1,...,tNN,
not all zero, such that

L Alpgy o NNz — 0 for every M.

1 ANigpng - AMNNgapn

Choosing A = —1 we get

(3) 1 iﬂ?ll iw:lN —0

1 :|:le :tZBNN
Now fix x1 = (:1311, e ,:BlN), ..., Xny_1 and let
XN = (ZCNl,...,mNN) run through the solu-

tionsof ajx1+---+anyxy=1inT.

Then x,y satisfies one of at most >N? Jinear
equations determined by the signs in (3) and
each equation determines a linear subspace
of (K*)V. QED.
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A lower bound for A(a,IN).

Take arbitrary uy,...,uny € I' such that
b:=uy1+ -+ uy #+0. Let S be the set of
of permutations of {1,...,N}.

For o € Sy define uy = (ug(l),...,uU(N)).
Then us is a solution of

1 1
- e T = 1.
bel-l- ‘|‘be

The vectors us with o(IN) =i lie in the proper
subspace given by the equation

ui(ry+---+zy_1)— (b—u;)zy = 0.
Hence the set {u, : 0 € Sy} can be covered
by N proper linear subspaces of KN,

Fact: If uq,...,uy are “sufficiently general”
then the set {us : 0 € Sy} can not be covered
by fewer than N proper linear subspaces of
KN

So for a = (3,...,7) we have A(a,") > N.
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