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1. Introduction.

Denote by GN
m the N -dimensional torus. Let K be any algebraically closed field of

characteristic 0. Further, let Γ be a finitely generated subgroup of GN
m(K) = (K∗)N

and Γ its division group. We give a survey on results about the structure of sets

X ∩ Γ ,

where X is an algebraic subvariety of GN
m defined over K.

We recall that GN
m consists of points (x1, . . . , xN ) with x1 · · ·xN 6= 0. For x =

(x1, . . . , xN ), y = (y1, . . . , yN ) ∈ GN
m and m ∈ Z we define coordinatewise multi-

plication x ∗ y = (x1y1, . . . , xNyN ) and exponentiation xm = (xm1 , . . . , x
m
N ). By a

subvariety of GN
m defined over a field K we mean an irreducible Zariski-closed sub-

set of GN
m, that is a set {x ∈ GN

m : f1(x) = 0, . . . , fM (x) = 0} where f1, . . . , fM
are polynomials in K[x1, . . . , xN ] generating a prime ideal. By a subtorus of GN

m we
mean a subvariety which is a subgroup of GN

m, i.e., which is closed under coordinate-
wise multiplication. Thus, a subtorus is the set of solutions of a system of equations
Xa1

1 · · ·X
aN
N = Xb1

1 · · ·X
bN
N where the ai, bi are non-negative integers, and a subtorus is

isomorphic to GN ′

m for some N ′ ≤ N . By a torus coset over K we mean a translate of
a subtorus, i.e. u∗H = {u ∗ x : x ∈ H} where u ∈ GN

m(K) and where H is a subtorus.
For more basic facts about subtori and torus cosets we refer to [37], Section 2.

As before, let K be an algebraically closed field of characteristic 0, X a subvariety of
GN

m defined over K, Γ a finitely generated subgroup of GN
m(K) = (K∗)N and Γ its
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division group, i.e., the group of x ∈ GN
m(K) for which there is a positive integer m

with xm ∈ Γ. We define the rank of Γ to be the rank of Γ/Γtors. In 1938, Chabauty [3]
proved the following result about the set X ∩ Γ (i.e. not with the division group):

Theorem A. Suppose that K = Q and that rank Γ < N − dimX. Then if X ∩ Γ is
infinite, there is a torus coset u∗H ⊂ X such that (u∗H) ∩ Γ is infinite.

In his proof, Chabauty used a method based on p-adic power series which was introduced
by Skolem.

Chabauty’s work inspired Lang to formulate a general conjecture (cf. [23], p. 221) the
following special case of which was proved by Laurent in 1984 [24]:

Theorem B. X ∩ Γ is contained in a finite union of torus cosets u1∗H1 ∪ · · · ∪ ut∗Ht

with ui∗Hi ⊂ X for i = 1, . . . , t.

Laurent deduced his theorem from a result on linear equations. Let a1, . . . , aN ∈ K∗

and consider the equation

a1x1 + · · ·+ aNxN = 1 in x = (x1, . . . , xN ) ∈ Γ. (1.1)

To avoid easy constructions of infinite sets of solutions, we consider only non-degenerate
solutions of (1.1), these are solutions with∑

i∈I
aixi 6= 0 for each non-empty subset I of {1, . . . , N}. (1.2)

It follows from work of the author [7], van der Poorten and Schlickewei [28], and Laurent
[24] that equation (1.1) has at most finitely many non-degenerate solutions.

The ingredients going into the proof of this result were W.M. Schmidt’s Subspace The-
orem, cf. Section 2.3 (with which one can handle equations (1.1) with solutions x ∈ Γ
where Γ ⊂ GN

m(Q)), a specialization argument (with which one can extend the result to
equations with solutions x ∈ Γ where Γ ⊂ GN

m(K) for some arbitrary field K of charac-
teristic 0) and some Kummer theory (to pass from Γ to Γ). Laurent proved his Theorem
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B by taking polynomials a1M1 + · · · + asMs vanishing identically on X, where the ai
are constants and the Mi are monomials, and applying the result on linear equations to
a1M1 + · · ·+ asMs = 0 where the Mi are considered to be the unknowns.

We now discuss quantitative versions of Theorem B, i.e., explicit upper bounds for
the number of torus cosets t. This is joint work of Schlickewei and the author. We
keep our conventions that K is an algebraically closed field of characteristic 0, Γ a
finitely generated subgroup of GN

m(K), Γ its division group, and X a subvariety of
GN

m defined over K. A linear subvariety of GN
m is defined by a set of polynomials of

degree 1, which may have constant terms. The degree degX of X is the number of
points in the intersection of X with a general linear subvariety of GN

m of dimension
N −dimX. (In other words, if we embed GN

m into projective space PN by means of the
map ι : (x1, . . . , xN ) 7→ (1 : x1 : · · · : xN ) and Y is the Zariski closure of ι(X) in PN ,
then we define degX := deg Y , with the usual definition for the latter, cf. [20], p. 52.)

The main tool is the following result of Schlickewei, Schmidt and the author [12], which
gives an explicit upper bound for the number of non-degenerate solutions of the linear
equation (1.1):

Theorem 1.1. Suppose Γ has rank r ≥ 0. Then equation (1.1) has at most e(6N)3N (r+1)

non-degenerate solutions.

For a historical survey on equation (1.1) we refer to [9].

By making explicit the arguments in Laurent’s proof, Schlickewei and the author [11]
proved the following quantitative version of Theorem B:

Theorem 1.2. Suppose rank Γ = r ≥ 0, dimX = n, degX = d. Then X ∩ Γ is
contained in some union of torus cosets u1 ∗H1 ∪ · · · ∪ ut ∗Ht where ui ∗Hi ⊂ X for
i = 1, . . . , t and where

t ≤ c(n, d)r+1 with c(n, d) = exp
((

6d
(
n+d
d

))5d(n+d
d )). (1.3)
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The main features of this upper bound are its good dependence on r and its uniform
dependence on n and d. It should be noted that the bound depends on n = dimX and
not on N . However, if L is the smallest linear subvariety of GN

m containing X and X

has codimension δ in L then d ≥ δ+1 (cf. [18], p. 173); hence the upper bound depends
implicitly on δ.

Theorem 1.2 is the first result giving an explicit upper bound for the number of torus
cosets in the most general case, but such explicit bounds have been given before in
certain special cases. Let S be a finite set of places in some number field F . Denote by
US the group of S-units and by UNS the N -fold direct product. From a result of Győry
([19], Thm. 9) it follows that if X is defined over F then X ∩ (US)N is contained in the
union of at most c1(N, d,#S, [F : Q]) torus cosets contained in X, with some explicit
expression for c1. From a result of Schmidt ([37], Thm. 2) it follows that if rank Γ = 0,
i.e. if Γ = UN where U is the group of roots of unity in some algebraically closed field
K of characteristic 0, then X ∩ Γ is contained in the union of at most c2(N, d) torus
cosets contained in X, with some explicit expression for c2.

We deduce some corollaries of Theorem 1.2. We keep the notation of Theorem 1.2. Let
Xexc be the union of all torus cosets u∗H of dimension ≥ 1 which are contained in
X and let X0 = X\Xexc. For instance, if X is the variety given by equation (1.1),
then X0 consists precisely of the non-degenerate points of X, i.e., with (1.2). Since
zero-dimensional torus cosets are simply points, we obtain at once from Theorem 1.2:

Corollary 1.3. Let Γ, X be as in Theorem 1.2. Then X0 ∩ Γ has cardinality at most
c(n, d)r+1.

A special case of this is:

Corollary 1.4. Let Γ be as in Theorem 1.2 and let X be an irreducible curve of degree
d in GN

m defined over K. Suppose X is not a torus coset. Then X ∩ Γ has cardinality
at most e(6d(d+1))5d(d+1)(r+1).

A qualitative version of this result (giving only the finiteness) follows from work of Lang
[22] and Liardet [25].
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We now consider points that “lie almost in Γ.” To make this precise we need heights.
Therefore we have to restrict ourselves to the case that X is defined over Q and that
Γ ⊂ GN

m(Q) = (Q
∗
)N .

Denote by h the usual logarithmic Weil height on PN (Q) (cf. section 2.1) and for
x = (x1, . . . , xN ) ∈ GN

m(Q) put h(x) := h(1 : x1 : · · · : xN ). Let Γ be a finitely
generated subgroup of GN

m(Q) and Γ its division group. For ε > 0, we define the
following sets:

T (Γ, ε) = {x ∈ GN
m(Q) : ∃y, z with x = y ∗ z,

y ∈ Γ, z ∈ GN
m(Q), h(z) ≤ ε} , (1.4)

C(Γ, ε) = {x ∈ GN
m(Q) : ∃y, z with x = y ∗ z,

y ∈ Γ, z ∈ GN
m(Q), h(z) ≤ ε · (1 + h(y))} . (1.5)

We may view T (Γ, ε) as a thickening of Γ and C(Γ, ε) as a truncated cone centered
around Γ. It is obvious that T (Γ, ε) ⊂ C(Γ, ε). For instance, if rank Γ = 0 then
T (Γ, ε) = C(Γ, ε) is the set of points of height ≤ ε.

We mention the following result of Schlickewei, Schmidt and the author [12]:

Theorem 1.5. Let 0 < ε < N−1e−(4N)3N
. Suppose Γ has rank r ≥ 0. Then the set of

vectors x = (x1, . . . , xN ) satisfying

x1 + · · ·+ xN = 1 , x ∈ C(Γ, ε) (1.6)

is contained in the union of at most e(5N)3N (r+1) proper linear subspaces of Q
N

.

One may wonder whether it is possible to deduce a quantitative result similar to The-
orem 1.2 for sets

X ∩ C(Γ, ε)

if in the proof of Theorem 1.2 one uses Theorem 1.5 instead of Theorem 1.1. This
approach does not work. A problem is that Theorem 1.5 deals only with equations all
of whose coefficients are equal to 1, whereas by going through the proof of Theorem 1.2
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one arrives at equations of the shape

a1x1 + · · ·+ aNxN = 1 in x ∈ C(Γ, ε) (1.7)

with coefficients a1, . . . , aN over which one has no control.

One may try to reduce (1.7) to (1.6) by working with the tuple of variables w =
(w1, . . . , wN ) where w1 = a1x1, . . . , wN = aNxN , and with the group Γ′ generated by Γ
and a = (a1, . . . , aN ). Then Γ′ has rank ≤ r+1. We clearly have w1 +· · ·+wN = 1. But
then the problem remains that in general x ∈ C(Γ, ε) does not imply that w ∈ C(Γ′, ε).
At this point our argument breaks down.

The situation is quite different if we restrict ourselves to points x belonging to the
smaller set T (Γ, ε). Notice that for such x we do have w ∈ T (Γ′, ε). Thus, by applying
Theorem 1.5 but restricted to solutions in T (Γ, ε), it is possible to obtain an analogue of
Theorem 1.2 for sets X ∩ T (Γ, ε). Schlickewei and the author [11] proved the following
result:

Theorem 1.6. Let Γ be a finitely generated subgroup of GN
m(Q) of rank r ≥ 0. Further,

let X be a subvariety of GN
m defined over Q of dimension n and degree d. Let c(n, d) be

the quantity from Theorem 1.2. Suppose that 0 < ε < c(n, d)−1.
Then X ∩ T (Γ, ε) is contained in a union of torus cosets u1∗H1 ∪ · · · ∪ ut∗Ht where
ui∗Hi ⊂ X for i = 1, . . . , t and where t ≤ c(n, d)r+1.

Theorem 1.6 implies that in particular, X0 ∩ T (Γ, ε) has cardinality at most c(n, d)r+1.
Previously, Bombieri and Zannier [1] (Thm. 1) and in a more precise form Schmidt
[37] (Thm. 4) and David and Philippon [5] (Thm. 1.3) obtained a similar result in the
special case that r = 0, i.e., that T (Γ, ε) is just the set of points with small height in
GN

m(Q). The result of David and Philippon was one of the ingredients in the proofs of
the results mentioned above.

The best one can obtain at present for the set X ∩ C(Γ, ε) is the following result of
Schlickewei and the author [11]. By h(X) we denote the logarithmic height of X (see
section 2.1). Given a subtorus H of GN

m, let XH denote the union of all torus cosets
u∗H contained in X. The set XH is Zariski-closed in X.
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Theorem 1.7. (i). Let Γ, X be as in Theorem 1.6. There are an ineffective constant
α = α(N, d,Γ) > 0, depending only on N, d and Γ, and an effective constant β =
β(N, d) > 0 depending only on N and d, such that for every ε with 0 < ε < 1

α+βh(X) ,
the set X0 ∩ C(Γ, ε) is finite.
(ii). Let H be a positive-dimensional subtorus such that XH 6= ∅ and such that H ∩ Γ
is not a torsion group. Then for every ε > 0, XH ∩ C(Γ, ε) is Zariski-dense in XH .

The proof of part (ii) is straightforward. Part (i) is a consequence of a “semi-effective”
version of Theorem B proved by Laurent [24]. The dependence on h(X) of the upper
bound for ε is necessary. It is an interesting open problem to prove a version of part (i)
such that both constants α, β are effective and depend only on N and d.

A semi-abelian variety is a commutative group variety A which has a subgroup variety
T such that T ∼= GN

m for some N ≥ 0 and such that the factor group variety A/T is
an abelian variety. Thus, a semi-abelian variety is a common generalization of a torus
and an abelian variety. Lang (cf. [23], p. 221) posed the following conjecture, which
includes Theorem B as a special case: If A is a semi-abelian variety defined over an
algebraically closed field K of characteristic 0, X is a subvariety of A defined over K, Γ
is a finitely generated subgroup of A(K) and Γ its division group, then X∩Γ is contained
in the union of finitely many translates of semi-abelian subvarieties of A which are all
contained in X.

As is well-known, in 1983 Faltings [13] was the first to give a proof of Mordell’s con-
jecture, which may be viewed as Lang’s conjecture in the case that X is a curve of
genus ≥ 2 and A is the Jacobian of X. Vojta [40] gave a very different proof of this,
thereby introducing new and powerful techniques from Diophantine approximation. By
extending Vojta’s ideas, Faltings [14], [15] proved Lang’s conjecture in the case that
A is an abelian variety and with ‘X ∩ Γ’ replaced by ‘X ∩ Γ’ . For a more detailed
treatment of Faltings’ proof, cf. [6]. Vojta [41] generalized Faltings’ result to arbitrary
semi-abelian varieties, but still only for sets X ∩ Γ. Finally, McQuillan [26] extended
this to sets X ∩ Γ and thereby completed the proof of Lang’s conjecture. McQuillan
combined Vojta’s result with ideas of Hindry [21].
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A subject for future research is of course to obtain quantitative analogues of Theorems
1.2–1.7 for (semi-)abelian varieties. Recently, Rémond [29], [30] proved the following
quantitative analogue of Theorem 1.2 for abelian varieties. Let A be an abelian variety
of dimension N defined over Q. Fix be a symmetric, ample line bundle L on A. Let
X be a subvariety of A of dimension n. Suppose that the degree of X with respect
to L (i.e., the intersection number Ln · X) is equal to d. Further, let Γ be a finitely
generated subgroup of A(Q) of rank r and Γ the division group of Γ. Then X(Q) ∩ Γ
is contained in some union ∪ti=1(xi + Bi) where xi + Bi (i = 1, . . . , t) is a translate of

an abelian subvariety of A with xi + Bi ⊂ X and where t ≤
(
cA,Ld

)N5(n+1)2 (r+1) with
cA,L an effectively computable number depending on A and L.

In order to give an overview of the main ingredients going into the proofs of the above
mentioned results, we will sketch in the next section a proof of a weaker version of
Corollary 1.3. We will deduce this weaker version directly from the basic results from
Diophantine approximation, and not follow the route via the linear equation (1.1).

2. Proof of a weaker version of Corollary 1.3.

We consider the special case that X is a subvariety of GN
m defined over Q and that Γ is

a finitely generated subgroup of GN
m(Q). We will sketch a proof of the following result:

Theorem 2.1. Suppose degX = d, rank Γ = r. Then the set X0 ∩Γ has cardinality at
most c1(N, d)r+1, where c1(N, d) is an effectively computable constant depending only
on N and d.

We first show that it suffices to prove the result for the set X0 ∩ Γ instead of X0 ∩ Γ.
Notice that in order to prove Theorem 2.1 it suffices to prove that every finite subset
M of X0 ∩ Γ has cardinality at most c1(N, d)r+1. Let Γ′ be the multiplicative group
generated by M . Then Γ′ is finitely generated and has rank ≤ r. Now assuming
Theorem 2.1 to be true for the set X0 ∩ Γ′ we get the required upper bound for the
cardinality of M . Notice that to pass from Γ to Γ no Kummer theory is needed.

By means of a specialization argument we may extend Theorem 2.1 to the case that X

8



is defined over any field K of characteristic 0 and that Γ ⊂ GN
m(K). We shall not work

this out.

Theorem 2.1 is deduced from the following result:

Theorem 2.2. Let X be a subvariety of GN
m defined over Q and let Γ be a finitely

generated subgroup of GN
m(Q). Suppose degX = d, rank Γ = r. Then X0 ∩ Γ is

contained in the union of at most c2(N, d)r+1 proper subvarieties of X, each of degree
at most c3(N, d), where c2(N, d), c3(N, d) are explicitly computable constants depending
only on N and d.

Noticing that for each subvariety Y of X we have X0 ∩ Y ⊂ Y 0, we easily obtain by
induction on dimX that X0 ∩Γ has cardinality at most c1(N, d)r+1. Together with the
reduction argument explained above this gives Theorem 2.1. ut

2.1. Absolute values and heights.

We give some basic facts about absolute values and heights. Let K be an algebraic
number field and denote its ring of integers by OK . Denote byM(K) the set of places of
K. Every archimedean place v ∈M(K) corresponds either to an isomorphic embedding
σ : K ↪→ R or to a pair of complex conjugate embeddings {σ, σ : K ↪→ C}. The non-
archimedean places of K correspond to the prime ideals of OK . We define normalized
absolute values | · |v (v ∈M(K)) on K by

|x|v = |σ(x)|1/[K:Q] if v corresponds to σ : K ↪→ R;

|x|v = |σ(x)|2/[K:Q] = |σ(x)|2/[K:Q] if v corresponds to {σ, σ : K ↪→ C};
|x|v = (N℘)−w℘(x)/[K:Q] if v corresponds to the prime ideal ℘,

where N℘ = #OK/℘ denotes the norm of ℘ and w℘(x) the exponent of ℘ in the prime
ideal decomposition of x. These absolute values satisfy the product formula∏

v∈M(K)

|x|v = 1 for x ∈ K∗.
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For x = (x0, . . . , xN ) ∈ KN+1, v ∈M(K) we define

||x||v = ||x0, . . . , xN ||v := max(|x0|v, . . . , |xN |v) .

Finally we define the logarithmic Weil height h(x) = h(x0, . . . , xN ) of x ∈ Q
N+1

by
picking a number field K with x ∈ KN+1 and putting

h(x) :=
∑

v∈M(K)

log ||x||v .

This is independent of the choice of K. Further by the product formula it defines a
height on PN (Q).

For a polynomial P with coefficients in Q we define h(P ) := h(p), where p is the vector
consisting of all coefficients of P .

We define the height of x = (x1, . . . , xN ) ∈ GN
m(Q) by h(x) = h(1 : x1 : · · · : xN ).

We introduce also another height ĥ(x) :=
∑N
i=1 h(1 : xi). This latter height has the

convenient properties

ĥ(x) = 0⇐⇒ x is torsion, ĥ(xm) = |m|ĥ(x), ĥ(x∗y) ≤ ĥ(x) + ĥ(y) (2.1.1)

for x,y ∈ GN
m(Q), m ∈ Z. Further we have

h(x) ≤ ĥ(x) ≤ N · h(x) for x ∈ GN
m(Q). (2.1.2)

Let Y be a projective subvariety (i.e., irreducible and Zariski closed) of PN defined over
Q. Let dimY = n, deg Y = d. Denote by FY the Chow form of Y (cf. [38], pp. 65–69).
We define the height of Y by h(Y ) := h(FY ). In particular, if Y is linear then we have

h(Y ) = h(a0 ∧ · · · ∧ an) , (2.1.3)

where a0, . . . ,an is a basis of Y (Q) considered as a vector space and where a0∧ · · ·∧an
denotes the usual exterior product.
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There is a more advanced height hF for varieties, introduced by Faltings in [14], which
is defined by means of arithmetic intersection theory. We need only (cf. [2], Thm. 4.3.8)
that there is a constant C1(N) depending only on N such that

|hF (Y )− h(Y )| ≤ C1(N)deg Y . (2.1.4)

Let ι be the map of GN
m into PN given by (x1, . . . , xN ) 7→ (1 : x1 : . . . : xN ). Let

X be a subvariety of GN
m of dimension n and degree d defined over Q. Let Y denote

the Zariski closure of ι(X) in PN . We define h(X) := h(Y ), hF (X) := hF (Y ). David
and Philippon introduced in [5] another, more natural height hDP (X), which has the
property that hDP (X) = 0 if and only if X is the translate of a subtorus by a torsion
point of GN

m. By (2.1.4) and [5], Prop. 2.1.(v) there is a constant C2(N) depending
only on N such that

|hDP (X)− h(X)| ≤ C2(N)degX . (2.1.5)

A much more involved result of David and Philippon (cf. [5], Thm. 1.2) states, that if
X is not a torus coset, then

hDP (X) ≥ 1
241(degX)2{log(degX + 1)}2

. (2.1.6)

2.2. Points of small height.

Let Y be an n-dimensional linear subvariety of PN defined over Q. Take a basis
a0, . . . ,an of Y (Q) considered as vector space. Then from (2.1.3) and elementary height
computations it follows that

h(Y ) ≤ c(n) + h(a0) + · · ·+ h(an)

where c(n) is some constant depending only on n. This implies that if λ < 1
n+1 and

h(Y ) is sufficiently large, then the set of y ∈ Y (Q) with h(y) < λ · h(Y ) is contained in
a proper linear subspace of Y .

11



The following generalization is due to Zhang ([42], Theorem 5.8):

Theorem 2.2.1. Let Y be a projective subvariety of PN defined over Q with dimY = n,
deg Y = d. Then for every λ < 1

(n+1)d the set of y ∈ Y (Q) with h(y) < λ · hF (Y ) is
not Zariski-dense in Y .

David and Philippon ([5], Prop. 5.4) proved the following result for subvarieties of GN
m,

which is basically a quantitative version of Theorem 2.2.1 for small λ:

Theorem 2.2.2. Let X be a subvariety of GN
m defined over Q which is not a torus

coset. Suppose dimX = n, degX = d. Put

α(n, d) = 2(4e)n+1d , β(N,n, d) = 24N+90(4e)2n+2(n+ 1)2 · d7 log(d+ 1)4 .

Then the set of x ∈ X(Q) with h(x) ≤ α(n, d)−1hDP (X) is contained in a proper
Zariski-closed subset of X, the sum of the degrees of the irreducible components of which
is at most β(N,n, d).

We apply Theorem 2.2.2 to the set X0∩Γ, where X, Γ are as in Theorem 2.2, i.e., with
dimX = n, degX = d, rank Γ = r. We observe that for any translate u∗X = {u∗x :
x ∈ X} we have deg (u∗X) = degX. This implies that the statement of Theorem 2.2
does not change if we replace X by a translate u∗X with u ∈ Γ. We replace X by such
a translate of minimal height. Thus, we may assume without loss of generality that

hDP (u∗X) ≥ hDP (X) for every u ∈ Γ. (2.2.1)

The following lemma is more or less routine:

Lemma 2.2.3. Assume (2.2.1). Then for every C ≥ 1, the set of points x ∈ X0 ∩ Γ
with

h(x) ≤ C · hDP (X)

is contained in the union of at most c4(N, d)
(
c4(N, d) · C

)r proper subvarieties of X,
each of degree at most c5(N, d), where c4(N, d) and c5(N, d) are constants depending
only on N and d.
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Proof. We may assume that X is not a torus coset since otherwise X0 is empty. It is
slightly more convenient to work with the height ĥ(x) introduced in Section 2.1. Define
the distance function δ(u1,u2) := ĥ(u1∗u−1

2 ). Let α(n, d), β(N,n, d) have the meaning
of Theorem 2.2.2.

In view of (2.1.2), we have to consider the set of points x ∈ X0 ∩Γ with ĥ(x) ≤ B with
B = NC ·hDP (X). Let S be a maximal subset of this set, with the property that any two
distinct points u1,u2 ∈ S satisfy δ(u1,u2) ≥ ε where ε = α(n, d)−1hDP (X). According
to, e.g., Lemma 4 of [36] (which is valid for any function with properties (2.1.1) defined
on an abelian group of rank r) the set S has cardinality at most (1 + (2B/ε))r ≤
(3Nα(n, d) · C)r.

Our choice of S implies that for every x ∈ X0 ∩ Γ with ĥ(x) ≤ B, there is a u ∈ S
with δ(x,u) < ε. Consider the points x corresponding to a fixed u ∈ S. By (2.1.2) and
(2.2.1) we have h(u−1∗x) ≤ α(n, d)−1hDP (u−1∗X). By applying Theorem 2.2.2 with
u−1∗X and the points u−1∗x and then passing from u−1∗x to x we infer that the set
of vectors x under consideration lies in a finite union of proper subvarieties of X, the
sum of the degrees of which is at most β(N,n, d). Together with our estimate for the
cardinality of S this implies Lemma 2.2.3. ut

2.3. The Subspace Theorem.

Let K be an algebraic number field. Let S be a finite set of places of K. For v ∈ S, let
L

(v)
0 , . . . , L

(v)
n be linearly independent linear forms in K[x0, . . . , xn]. The Subspace The-

orem, first proved by Schmidt for archimedean absolute values [33] and later extended
by Schlickewei [32] to arbitrary sets of absolute values, reads as follows:

For every κ > n+ 1 the set of points x = (x0 : · · · : xn) ∈ Pn(K) satisfying

log

(
n∏
i=0

∏
v∈S

|L(v)
i (x)|v
||x||v

)
≤ −κh(x) (2.3.1)

is contained in the union of finitely many proper linear subspaces of PN .
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Instead of (2.3.1) we deal with systems of inequalities

log
( |L(v)

i (x)|v
||x||v

)
≤ −civh(x) (v ∈ S, i = 0, . . . , n) in x ∈ Pn(K). (2.3.2)

Clearly, the solutions of (2.3.2) lie in only finitely many proper linear subspaces if

n∑
i=0

∑
v∈S

civ > n+ 1 . (2.3.3)

Let {L0, . . . , LN} be the union of the sets of linear forms {L(v)
1 , . . . , L

(v)
n } (v ∈ S). Define

the map x 7→ y = (y0 : · · · : yN ) by yi = Li(x) for i = 0, . . . , N and let Y be the image
of Pn under this map. Then Y is an n-dimensional linear projective subvariety of PN

defined over K. For x ∈ Pn, we have that y ∈ Y (K) and that L(v)
i (x) is a coordinate

of y. This leads us to consider systems of inequalities

log
( |yi|v
||y||v

)
≤ −civh(y) (i = 0, . . . , N, v ∈ S) in y ∈ Y (K). (2.3.4)

Let I(Y ) be the set of (n+ 1)-tuples i = {i0, . . . , in} such that the variables yi0 , . . . , yin
are linearly independent on Y , i.e., there is no non-trivial linear combination

∑n
k=0 ckyik

vanishing identically on Y . Notice that condition (2.3.3) translates into

1
n+ 1

(∑
v∈S

max
i∈I(Y )

∑
i∈i

civ

)
= 1 + δ with δ > 0. (2.3.5)

Schmidt [35] was the first to prove a quantitative version of his Subspace Theorem,
giving an explicit upper bound of the number of subspaces. For an overview of further
history we refer to the survey paper [9]. Below we state a consequence of a result of
Schlickewei and the author ([10], Theorem 2.1).

Theorem 2.3.1. Let Y be a linear projective subvariety of PN of dimension n defined
over the number field K. Assume (2.3.5). Then the set of solutions y ∈ Y (K) of (2.3.4)
with

h(y) > (1 + δ−1)(N + 1)n · (1 + h(Y )) (2.3.6)

14



lies in some finite union T1 ∪ · · · ∪ Tt of proper linear subspaces of Y where

t ≤ 4(n+9)2
(1 + δ−1)n+4 log 4N log log 4N . (2.3.7)

We would like to emphasize that for applications it is very crucial that the quantities
in (2.3.6) and (2.3.7) are independent of K and S and that the quantity in (2.3.7) is
independent of Y .

The method of proof of Theorem 2.3.1 is basically Schmidt’s (cf. [34]), but with some
technical innovations. Instead of Roth’s lemma (a non-vanishing result for polynomials)
used by Schmidt, the proof of Theorem 2.3.1 uses a very special case of an explicit
version of Faltings’ Product Theorem ([14], Thms. 3.1,3.3). This led to a considerable
improvement upon the upper bound for the number of subspaces given by Schmidt [35].
Further, the basic geometry of numbers used by Schmidt was replaced by the ”geometry
of numbers over Q” developed independently by Roy and Thunder [31] (Thm. 6.3) and
Zhang [42] (Thm. 5.8). This was of crucial importance to remove the dependence on
the number field K which was still present in earlier versions of Theorem 2.3.1. For
further comments we refer to [9].

In their fundamental paper [16], Faltings and Wüstholz gave a proof of the Subspace
Theorem very different from Schmidt’s. Their argument does not use geometry of
numbers, but instead the full power of Faltings’ Product Theorem. Moreover, Faltings
and Wüstholz treated systems of inequalities (2.3.4) where the solutions y may be taken
from an arbitrary projective subvariety Y of PN , not just a linear subvariety.

Ferretti [17] obtained a quantitative version of the result of Faltings and Wüstholz.
Among others, Ferretti considered systems (2.3.4) for arbitrary projective varieties
Y . Under suitable conditions imposed on the exponents civ he gave explicit constants
C1, C2, C3 such that the set of solutions y of (2.3.4) with h(y) ≥ C1 lies in the union
of at most C2 proper subvarieties of Y , each of degree ≤ C3. Unfortunately, Ferretti’s
constants C1, C2, C3 depend on K and S which is an obstacle for applications. It seems
to be within reach to prove a version of Ferretti’s result with constants C1, C2, C3 inde-
pendent of K and S but this still requires some work.

We have to apply Theorem 2.3.1 to the set X0∩Γ. Recall that for a number field K and

15



a finite set of places S ⊂M(K) containing the archimedean places, the group of S-units
is given by US = {x ∈ K∗ : |x|v = 1 for v 6∈ S}. Let X, Γ be as in Theorem 2.2 but
assume that X is linear. Choose the number field K and the set of places S ⊂ M(K)
such that X is defined over K and Γ ⊂ UNS . Let Y be the Zariski closure of ι(X) in PN

(where as before ι : (x1, . . . , xN ) 7→ (1 : x1 : · · · : xN )) so that Y is also linear. Given
x = (x1, . . . , xN ) ∈ X0 ∩ Γ with h(x) > 0 put y0 := 1, yi := xi for i = 1, . . . , N and
y = (y0, . . . , yN ). Then by definition, h(y) = h(x). Define reals civ by

log
( |yi|v
||y||v

)
= −civh(y) for v ∈ S, i = 0, . . . , N . (2.3.8)

The following result is a consequence of [8], Lemma 15. Its proof involves only elemen-
tary combinatorics.

Lemma 2.3.2. Assume that X is linear and that Stab(X) := {u ∈ GN
m : u∗X = X} is

trivial. Then there are constants c6(N), c7(N) ≥ 1 depending only on N such that for
every x ∈ X0 ∩Γ with h(x) ≥ c6(N) · (1 + h(X)), the reals civ defined by (2.3.8) satisfy
(2.3.5) with δ ≥ c7(N)−1.

2.4. Proof of Theorem 2.2.

Let K be the number field and S the finite set of places introduced in Section 2.3.
For the moment we assume that X is linear, i.e., d = 1. Further we may assume that
Stab(X) is trivial (and in particular that X is not a torus coset) since otherwise X0 = ∅.
Lastly, we assume (2.2.1) which is no loss of generality. Let c8(N), c9(N), . . . denote
explicitly computable constants, depending only on N .

In view of (2.1.5) and (2.1.6) there is a constant c8(N) such that c8(N)hDP (X) exceeds
the lower bounds for h(x) required in Theorem 2.3.1 and Lemma 2.3.2. Take x =
(x1, . . . , xN ) ∈ X0 ∩Γ with h(x) ≥ c8(N)hDP (X). Let y0 = 1, yi = xi for i = 1, . . . , N ,
y = (y0, . . . , yN ). By Lemma 2.3.2 the reals civ (v ∈ S, i = 0, . . . , N) defined by (2.3.8)
satisfy (2.3.5) with δ ≥ c7(N)−1. A problem is that the civ depend on x. But we
may approximate the civ by reals c′iv from a finite set independent of x which still
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satisfy (2.3.5) with a slightly smaller lower bound for δ. By means of an elementary
combinatorial argument which we do not work out one can show that there is a set C ⊂
R(N+1)#S of cardinality at most c9(N)r independent of x with the following property:
there is a tuple (c′iv : v ∈ S, i = 0, . . . , N) ∈ C such that c′iv ≤ civ for v ∈ S, i =
0, . . . , N , and which satisfies (2.3.5) with δ ≥ c10(N)−1. (One has to use that the tuple
(civ : v ∈ S, i = 0, . . . , N) belongs to a translate of an r-dimensional linear subspace
of R(N+1)#S .) This means that for every x ∈ X0 ∩ Γ with h(x) ≥ c8(N)hDP (X) the
corresponding vector y satisfies one of at most c9(N)r systems of inequalities (2.3.4),
with δ ≥ c10(N)−1.

By applying Theorem 2.3.1 to the systems just mentioned, we obtain that the set of
x ∈ X0 ∩ Γ with h(x) ≥ c8(N) · hDP (X) lies in the union of at most c11(N) · c9(N)r

proper linear subvarieties of X. Further, Lemma 2.2.3 implies that the set of x ∈ X0∩Γ
with h(x) < c8(N) · hDP (X) lies in the union of at most c12(N)r+1 proper subvarieties
of X of degree at most c13(N). By combining these two estimates we get Theorem 2.2
in the case that X is linear.

Now assume that X has degree d > 1. E.g., by [14], Prop. 2.1, X is the set of zeros
of a set of polynomials in K[x1, . . . , xN ] of degree at most d. Let ϕd be the Veronese
embedding from GN

m into GN ′

m with N ′ =
(
N+d
d

)
, mapping x to the vector consisting of

all monomials of degree ≤ d. Then ϕd(X0∩Γ) ⊂ X̃0∩ Γ̃, where X̃ is a linear subvariety
defined over K of GN ′

m and where Γ̃ is a finitely generated subgroup of GN ′

m (K) of rank
r. We know already that Theorem 2.2 holds for the set X̃0 ∩ Γ̃. By applying ϕ−1

d we
get Theorem 2.2 for X0 ∩ Γ. ut
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[30] —, Décompte dans une conjecture de Lang, preprint, Math. Inst. Jussieu, 2000.

[31] D. Roy, J.L. Thunder, An absolute Siegel’s Lemma, J. reine angew. Math. 476
(1996), 1–26.

[32] H.P. Schlickewei, The ℘-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math.
(Basel) 29 (1977), 267–270.

[33] W.M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526–551.

[34] —, Diophantine approximation, Lecture Notes in Math. 785, Springer Verlag, 1980.

[35] —, The Subspace Theorem in Diophantine approximations, Compos. Math. 69

19



(1989), 121–173.

[36] —, Heights of algebraic points lying on curves or hypersurfaces, Proc. Amer. Math.
Soc. 124 (1996), 3003–3013.

[37] —, Heights of points on subvarieties of Gn
m, in: Number Theory, Papers from the
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