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1. INTRODUCTION

In many Diophantine approximation proofs, a major step is to construct a polyno-
mial, a global section of a given line bundle, or some other type of auxiliary function
with certain prescribed properties. In general this can be translated into the prob-
lem to find a non-zero n-dimensional vector of small height with coordinates in some
algebraic number field K lying in some prescribed linear subspace of K™. There are
various results implying the existence of such a vector, see for instance Bombieri and
Vaaler [1, Thm. 9]. These results are extensions of the so-called Siegel’s Lemma,
which states that a given system of m homogeneous linear equations with integer
coefficients in n > m unknowns has a non-zero solution in integers of small absolute
value. Siegel was the first to state this formally ([11, Band I, p. 213]), but it was
already implicitly proved by Thue ([12, pp. 288-289]).

In this note we will deduce the version of Siegel’s lemma used by Ferretti in |7,
Section 6]. Roughly speaking, the problem encountered by Ferretti is the following.
Denote by Og the ring of integers of K and define the size of x € O to be
the maximum of the absolute values of the conjugates of x. Let I be a non-zero
ideal of the polynomial ring K[Xy, ..., Xn] and let {fia,..., fin} C K[Xo,..., Xn]
(¢ =1,...,s) be given sets of polynomials. Find numbers z;; € Ok of small size,
not all equal to 0, such that

Zﬂﬂljflj == szjfsj (mod[).
i=1 i=1

This can be translated into the following problem. Suppose we are given a linear

subspace W of K" and linearly independent sets of vectors {bj,...,b;,,} (i =
1
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1,...,s) in the quotient space K"/W. Show that there are numbers z;; € Ox of
small size, not all equal to 0, such that > 7% z1;by; = - =37 v;b,;.

We show that under some natural hypotheses there exist such numbers z;; with
sizes below some explicit bound depending on K, n = dim K"/W, the height of
W and the norms of the vectors b;; (cf. Theorem 2.2). It is essential for Ferretti’s
purposes, that in the special case of our result needed by him, our bound has a
polynomial dependence on n. The precise statement of our result is given in the
next section.

Our main tool is the result of Bombieri and Vaaler mentioned above. Our upper
bound will have a dependence on the number field K. We will also prove an “abso-
lute” result in which the upper bound for the sizes of the numbers z;; is independent
of K but in which the numbers z;; may lie in some unspecified algebraic extension
of K. To deduce the absolute result we replace the Bombieri-Vaaler theorem by a
result of Zhang [15, Thm. 5.2] (see also Roy and Thunder [9, Thm. 2.2], [10, Thm.
1] for a weaker result).

We mention that our proof is not completely straightforward. By a more obvious
application of the result of Bombieri and Vaaler we would have obtained a “basis-
independent” result, giving upper bounds for the sizes of the coordinates of the
vectors Z;L:l x;;bi;, rather than for the numbers z;; themselves. Then subsequently
we could have deduced upper bounds for the sizes of the numbers z;; by invoking
Cramer’s rule, but due to the various determinant estimates the resulting bounds
would have had a dependence on n of the order n!. This would have been useless for
Ferretti’s application mentioned above, which required upper bounds for the sizes
of the z;; depending at most polynomially on n. Therefore we had to use a more

subtle argument which avoids the use of Cramer’s rule.

2. THE MAIN RESULT

2.1. We introduce some notation. The transpose of a matrix A is denoted by A?.
Given any ring R, we denote by R™ the module of n-dimensional column vectors with
coordinates in R. Let k,n be integers with 1 < k < n and put 7" := (Z) Denote by
I, ..., Iy the subsets of {1,...,n} of cardinality k, in some given order. Then we
define the exterior product of a; = (a1, ...,a1,)% ..., a5 = (a1, .- ., axn)" € R™ by

aiAN---Nag = (Al,...,AT)t,
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where A; is defined such that if I, = {iy,... i} with 94 < iy < .-+ < i then
Ay = det (ap;,) .- Thus, if b; = 3% &a; fori=1,... k with &; € R, then

p,g=1,...,

ij=1,..k

Let K be an algebraic number field. Denote by Ok the ring of integers, by Ag
the discriminant, and by My the set of places of K. We have Mg = M U MY,
where M® is the set of infinite places and MY the set of finite places of K. For
v € M we denote by K, the completion of K at v. The infinite places are divided
into real places (i.e., with K, = R) and complex places (with K, = C).

Put d := [K : Q] and d, := [K, : Q] for v € Mk, where p is the place of Q lying
below v and Q,, is the completion of Q at p. In particular, d, = 1 if v is a real place
while d, = 2 if v is a complex place. Denote by r; the number of real places and by
ro the number of complex places of K; then rq + 2ry = ZUGM? d, = d.

For v € Mk we choose the absolute value |- |, on K, representing v such that if v
is infinite then |- |, extends the standard absolute value, while if v is finite and lies
above the prime number p, then |- |, extends the standard p-adic absolute value, i.e.
with [p|, = p~'. These absolute values satisfy the product formula [T, |z[&" =
for x € K*. For x € K we have

max |z|, = max(|zW],.. ., [z
veMge
where (... z(? are the conjugates of z.

We now define norms and heights. Put

n 1/2
x| := (Z |x2|3> forve M, x e K
i=1
x|, := max(|z1]y, ..., [zals) forve My, x € K

where x = (x1,...,x,)". Then the absolute height of x € K™ is given by
H(x):= [ Ixlg.
veEMK

By the product formula we have H(Ax) = H(x) for A € K*.
More generally, we define the height of a linear subspace V of K™ by H(V) =1
if V= (0) and
H(V):=H(a; A---Aay)
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if V' # (0) where {ay,...,ax} is any basis of V. By (2.1) and the product formula,
this is well-defined, i.e., independent of the choice of the basis.

An Mp-constant is a tuple of constants C' = {C, : v € Mk} with C, > 0 for
v € M and with C, = 1 for all but finitely many v.

For a linear subspace V of K™ and a field extension L of K we denote by V @ L
the L-linear subspace of L™ generated by V. Given any finite extension L of K we
define Op, My, M3, MY, |+ |w, || - llw (w € ML) completely similarly as for K.

Lastly, for v € Mk and for any proper linear subspace W of K", we denote by
pw. the canonical map from K" to K" /(W ®x K,). Further, for x € K"/(W &k K,)
we put

[l = inf{[|x*[], : x* € K}, pwo(x") = x}.
Then the precise statement of the result mentioned in the introduction reads as
follows.

Theorem 2.2. Let h be a positive integer, let W be a proper linear subspace of K"
and let C = {C, : v € Mg} be an My-constant. Further, let Vy,..., Vs (s = 2) be
linear subspaces of K" /W such that

(2.2) dim(Vi +---4+ V) =n>0,

(2.3) dim(Vin---NVy) =m>0

and such that fori=1,...,s, V; has a basis {b;1, ..., b, } with
(2.4) byl <C, forj=1,...,n; v € M.

Lastly, let U be the inverse image of Vi + - - -+ Vi under the canonical map from K"
to K"/W.
Then there are z;; € Ok (i =1,...,s,j=1,...,n;), not all 0, such that

ni Ns
(25) Z xljblj == Z msjbsﬁ
i=1 j=1

. g 2ra/d 1/d n/2 dy/d\™ M (= t)/m
(2.6) UIQJ\%EOMMU < <7r> |Ak] {(ns) ( H Cy ) H(U)}

veEMK

fori=1,...,s,7=1,....n,;.
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Moreover, there are a finite extension L of K and numbers x;; € Or, (1 =1,...,s,
j=1,...,n;), not all 0, satisfying (2.5) (viewed as indentities in L"/(W @ L))
and

=

\ ayn H(W) (=1/m
(2.7) wrg]%o |45 < mb/? . {(ns) /2( H Cg /d) . W}

vEME

foro=1,....s,7=1,...,n,.

Remark. This result is applied by Ferretti for n, m satisfying n/m < 4/3. In this
case, the upper bounds in (2.6), (2.7) depend polynomially on n.

3. AN AUXILIARY RESULT

3.1. We state an auxiliary result dealing with vectors in K" (i.e., not in a quotient
space) but with modified norms. From this result we will deduce Theorem 2.2. We
keep the notation introduced before. In addition, an Mg-matriz of order n is a
tuple of matrices D = {D, : v € Mk} with D, € GL,(K,) for v € Mg and with
| det D, |, = 1 for all but finitely many v.

Theorem 3.2. Let n be a positive integer. Let D = {D, : v € Mg} be an M-
matriz of order n. Assume that K™ has a basis {by,...,b,} with

(3.1) |IDybill, <1 fori=1,...,n,veE Mg.
Further, let Vi, ..., Vs (s = 2) be linear subspaces of K™ such that
(3.2) dim(Vin---NnVy) =m>0

and such that fori=1,...,s, V; has a basis {b, ..., b, } with

(3.3) |Dybijlle <1 forj=1,...,n; ve M.
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Then there are z;; € Og (i=1,...,s,j=1,...,n;), not all 0, such that
ni Ns

(3.4) Y ayby ==Y zby,
j=1 j=1

2\ 2r2/d (s—1)/m
(3.5) max |z;], < <;> Ak {(ns)n/Q 11 IdetDvlgd“/d}

veMge

vEME
fori=1,...,s,7=1,...,n;.
Moreover, there are a finite extension L of K and numbers x;; € O, (1 =1,...,s,
j=1,...,n;), not all 0, satisfying (3.4) and
(s—1)/m
(36) wrg]a\/[}éo |x1]|w < m1/2 : {(ns)n/Q H |det D,U|;dv/d}

’UEMK

fori=1,...,s,7=1,...,n;.

Remark. (3.1) is a technical condition needed in the proof. In all applications we
know of, this condition can be satisfied.

4. PREPARATIONS

4.1. Let K be a number field and v € Mg. Let B be a (n — m) X n-matrix with
entries in K, where 0 < m < n and let by, ...,b,_,, denote the rows of B. Put

H,(B) :=|bi A+ Aby_mllv,

where the exterior product is defined similarly as for column vectors. Then by (2.1)

we have
(4.1) H,(CB) =|detC|, - Hy,(B) for C € GL,_,(K,).

Further, by applying Hadamard’s inequality if v € M7° and the ultrametric inequal-
ity if v € MY we obtain

(4.2) Hy(B) < |[bullo - Dol -
If B has its entries in K then we define the height of B by
H(B) == [] H.BY"",

vEME
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where as before, d, = [K, : Q,] and d = [K : Q]. Thus H(B) > 1 if rank B = n—m.
We recall some versions of Siegel’s Lemma. Let again m,n be integers with
n >m > 0 and let B be an (n —m) X n-matrix with entries in K, satisfying

(4.3) rank B =n —m.
Consider the system of linear equations
(4.4) Bx=0

to be solved in either x € K™ or x € L™ where L is a finite extension of K.

Lemma 4.2. Equation (4.4) has a non-zero solution x = (1, ...,x,)" € O% with
45) |zl < (%)mmmml/d CHBY™  fori=1,...,n,ve M.
Proof. For x = (x1,...,1,)" € K™ we put
1%Xlv.00 := max(|z1y, ..., |Tnls) forve M2,
Hoo(x):= T Il TT Il
veEMg? ve MY,

By the version of Siegel’s Lemma due to Bombieri and Vaaler [1, Theorem 9],
there is a non-zero solution y € K™ of (4.4) with

2\ r2/d
(4.6) Haoly) < (2) 7 1Ak H(B)".

By [1, Theorem 3] with L = 1 (the one-dimensional version of the adelic Minkowski’s

theorem) there is a non-zero A € K with

| AL

N

2\ r2/d B
(3)™" | axl Hofy) - Iyllcke for v e MR,
Ao < lyll,t for v e MY

(Let Ka denote the ring of adeles of K and let S be the set of A € K4 satisfying
these inequalities. It can be checked that S has Haar measure V(S) = 2¢, and this
guarantees the existence of a non-zero A € SN K.)

Write x = (z1,...,2,)" = Ay. Then x is a non-zero solution of (4.4). We
have [|x|, < 1 for v € M}y, hence x € O%. Further, max; |z;l, = [|X[[y00 <
(2/7r)r2/d|AK|1/2dHOO(y) for v € M7?, which together with (4.6) implies (4.5). O
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Lemma 4.3. There is a finite extension L of K such that (4.4) has a non-zero
solution x = (xq,...,2,)" € OF with

(4.7) Zilw <mY2-H(BYY™ fori=1,....n, we M.

Proof. For x € K", put h(x) := log H(x). As is well-known, this height is absolute,
i.e. independent of K, and invariant under scalar multiplication so that it gives rise
to a height on P"71(Q). Let X C P"! be the linear projective space given by (4.4).
Denote by hp(X) the absolute Faltings height of X (cf. [8, p. 435, Definition 5.1]).
A very special case of Zhang [15, Theorem 5.2] gives that for every € > 0 there is a

point y € X(Q) with

1+e¢
m

(4.8) h(y) < ~hp(X).

For instance by [8, p. 437, Prop. 5.5] we have
he(X) =log H(X) + ith ! Y !
= O, Wwith o, == = —
F g 9 2

where we have used X also to denote the linear subspace of K™ defined by (4.4).
Lastly, by [1, p. 28] we have H(X) = H(B). By combining these facts with (4.8)
we obtain that for every e > 0 there is a non-zero solution y € Q" of (4.4) such that

(14¢)/m
(4.9) Hiy) < {explon) - H(B)}
We mention that Roy and Thunder [10, Theorem 1] proved a similar result with
m(m — 1)/4 instead of o,,.

By e.g., [4, Lemma 6.3] there are a finite extension L of K and a non-zero A € L
such that y € L™ and such that

H 1+e
A < (H (‘T)> for w € M, Mo < |yl for w e M.
Yllw
Let x = (z1,...,2,)" = Ay. Then x is a non-zero solution of (4.4). Further,

x|l < 1 for w € MY which implies x € O}. Lastly, in view of (4.9) we have

(142)*/m
max; [ < Xl < { exp(on) - H(B)}

%mlogm and letting ¢ | 0 we obtain that there are a finite extension L of K and a

for w € My°. Using that o, <

non-zero solution x € O} of (4.4) satisfying (4.7). O
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5. PROOF OF THEOREM 3.2

5.1. We keep the notation and assumptions from Theorem 3.2. From elementary
linear algebra we know that n —dim(V; N---NV;) = >0 (n —dimV;). We want
to reduce this to the case that

(5.1) n—dim(VinN---NV) :i(n—dimvi).

=1

This is provided by the following lemma.

Lemma 5.2. There are integers ny > ny,...,n, > ng and vectors b;; € K™ for
i=1,...,8, j=mn;+1,...,n} such that the following conditions are satisfied:
(i) fori=1,...,s the vectors b, ... , bins are linearly independent and if V! is the

vector space generated by these vectors then V/ N --- NV =ViN-- NV

(i) n — dim(V{ (-0 V2) = S0, (n — dim V7);

(111) ||Dybijllo <1 fori=1,...,s,j=1,...,n}, v € Mg;

() If for some extension L of K we have Z;il r1;byy = = Z?lzl xsbg; with
xi; € L, thenwz;j =0 fori=1,...,s, j=n;+1,...,n;.

Proof. We choose nj = ny so that V/ =Vi. Let i € {2,...,s}. Put t; :=
dim((ViN---NV;_1)+V;) and n; = n;4+n—t;. We start with the basis {b;,...,b;,,} of
V; given by (3.3). We extend this to a basis {c1,...,¢t,_n, } U{bi1,..., b, } of (V1N
-+NVi_1)+V;. We extend this further to a basis {cy,...,¢y_pn, } U{bi1, ..., bin, } U
{bin;+1,- -, bin } of K" where by; (j = n; +1,...,n;) are chosen from the basis
{b1,...,b,} of K" satisfying (3.1). Thus, {bj, ..., b, } is linearly independent
and (iii) is satisfied. Let V/ be the vector space generated by bji, ..., by,

In order to prove (i) and (ii), we prove by induction on ¢ that VN ---NV; =
vin---nV/and n —dim(V/n---NV/) = Z;Zl(n—dim\/}’) fori=1,...,s. For
1 =1 this is clear. Assume this has been proved for 7 — 1 in place of i, where 7 > 2.
Thus V/N---NV/ =WVin---NnV,_y)NV/. Suppose x € V/N---NV/. Then on
the one hand, x € V; N ---NV,;_1, on the other hand x =y + z where y € V; and z
is a linear combination of the vectors b; p,11,...,b;,;. But then z = x —y is also
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a linear combination of the vectors cy,..., ¢4y, bi1,...,bi,,. Hence z = 0, and
therefore, x € Vi N ---NV;. It follows that V/N---NV/ =V, N---NV,. Further,
noting that dim((V/N---NV/ )+ V) =dim((ViN---NV;_1) +V)) = n, we obtain

n—dlm(V ~NVHY=n—dm(V/Nn---NV/ ;) —dimV/ +n
-1 i
Z (n —dimV}) +n —dimV; = Z(n —dimV}).
=1 j=1
This completes the induction step, hence completes the proof of (i) and (ii).

Let L be an extension of K. For a linear subspace V of K", put VX :=V @y L.
Let x = > 7L zyjbyj = -+ = Z?I; msjbsj with x;; € L. Then x € V/*n---NV/E,
By (i) we have V/n---nN V2 = Vil n-..nVE Hence there are y;; € L such
that x = > 71 yi;byy; = -+ = Y07, ys;bsj. Since by (i) each set {bj, ..., b} is
linearly independent over L, this implies z;; = y;; for j = 1,...,n; and x;; = 0 for
j=mn;+1,...,n. This proves (iv). O

5.3. Proof of Theorem 3.2.
According to Lemma 5.2, in order to prove Theorem 3.2 it suffices to prove this
result for the sets {b;; : j =1,...,n} in place of {b;; : j =1,...,n;}. Therefore,

there is no loss of generality to assume (5.1) and we shall do so in the sequel.

Let B; be the n x n;-matrix with columns by, ..., b;,,, respectively and let x; =
(i1, .., @ipn,) for i = 1,...,s. Then we may rewrite (3.4) as Bix; = - -+ = ByX; or
as
Bl —BQ 0 e 0 X1
B 0 —Bs - 0 X

(5.2) T T =
B, 0 0 - =By X

We denote the matrix by B and the vector by x, so that we have to solve Bx = 0.
Note that B is an n(s — 1) x (n1 + --- 4+ ny)-matrix. Since the solution space of
(5.2) has dimension dim(V; N---NV;) = m, the rank of B is ny + -+ + ng — m.
Our assumption (5.1) says that n —m = >°°_ (n — n;), which implies n; + --- +
ns —m = n(s — 1). Therefore, B satisfies (4.3) with n; + --- 4+ n, in place of
n. Hence Lemma 4.2 and Lemma 4.3 are applicable. Recall that if we write x =
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(T11, o, Xipyy e oy L1y oo Tspy)', then x is a solution of (5.2) if and only if the
numbers ;; satisfy (3.4). Thus, by applying Lemma 4.2 to (5.2) we obtain that
there are numbers z;; € O, not all 0 satisfying (3.4) and

2N 2r2/d
(5.3) il < (2) 1Akl HB)T
forio=1,...,s,5=1,...,n;, veE M.

Moreover, by applying Lemma 4.3 to (5.2) we obtain that there are a finite extension
L of K, and numbers z;; € Op, not all 0, satisfying (3.4) and

(5.4) 2ijle < m'?-H(B)Y™

fore=1,...,s,5=1,...,n;, we M.

[t remains to estimate from above the height H(B). Let v € M. We express the
matrix B in (5.2) as a product

D;! 0 DBy -D,B, 0 - 0
D! DBy 0  —DyBy -+~ 0
0 D;! DB, 0 0 - —D,B,

where the left matrix has s — 1 blocks D;! on the diagonal and is zero at the
other places. We denote the left matrix by £, and the right matrix by F,. Then
det E, = (det D,)'~%. By (3.3), the entries of F, all have v-adic absolute value < 1.
So by (4.2), Hy(F,) < (ny+---4n,)"=D/2 L (ns)"=V/2if v € M2 and H,(F,) < 1
if v € MY. Now (4.1) implies H,(B) = |det E,|, - H,(F,) < (ns)"*~Y/2|det D, |}~
if v e M2, H,(B) < |det D,|}7* if v € M%. On raising these inequalities to the
power d,/d and taking the product over v € My we obtain

1-—s
H(B) < (ns)"(s_l)/2< I1 |detDv\g“/d> .

veEMK

By inserting this into (5.3), (5.4), respectively we obtain (3.5) and (3.6). This proves
Theorem 3.2. U
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6. PROOF OF THEOREM 2.2

6.1. We recall some facts about orthonormal sets of vectors. Let v € Myx. We call

a set of vectors {ey,...,e,} in K" orthonormal if for every y = (y1,...,uyr)" € KF
we have
k
: (k)™ wve g
B B vil2 if v e My,
(6.1) szz’eiﬂv = |yl = —
max([galr - [psl) if v € MY

For v € M this coincides with the usual notion of orthonormality of a set of vectors
in R" or C", while for v € MY this is inspired by Weil [14, p. 26]. Obviously,
orthonormal sets of vectors are linearly independent. An orthonormal basis of a
subspace of K' is a basis which is an orthonormal set of vectors.

Most of the material in this section can be deduced from the theory of orthogonal
projections in K" developed by Vaaler [13] and Burger and Vaaler [3]. Instead of
using their results, we have given direct proofs since this turned out to be more

convenient.
Lemma 6.2. Let a;,...,a; be linearly independent vectors in K,'. Then there is
an orthonormal set of vectors {ey,...,ex} in K]’ such that

i
a; = E Vi €5 fOT’izl,...7k3,
J=1

with v;; € Ky, fori=1,...)k, 5=1,...;iand v; #0 fori=1,... k.

Proof. For v € My this is simply the Gram-Schmidt orthogonalization procedure,

while for v € MY this is a consequence of [14, p. 26, Prop. 3]. O
Lemma 6.3. Let {eq,...,e} be an orthonormal set of vectors in K. Then
(6.2) les A ANegll, =1.

Proof. For v € My this follows from a well-known fact for orthonormal sets of
vectors in R™ or C". Assume v € MY. Let O, = {z € K, : |z|, < 1},
M, ={z € K, : |z|, < 1}, k, = O,/M, denote the ring of v-adic integers, the
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maximal ideal of O, and the residue field of v, respectively. (6.1) implies that
e, € O] fori=1,...,n. Denote by e} the reduction of €, modulo M,. Assume that
(6.2) is incorrect, i.e., |[e; A--- Aegll, < 1. Then ef A--- A e} = 0, which implies
that ej,...,e; are linearly dependent in k. Hence there are y; € k,, not all 0,
such that Zle y;e; = 0. By lifting this to O,, we see that there are y; € O, with
max(|yile, . - ., |yklo) = 1 such that || 2F | ysei]|, < 1. But this contradicts (6.1). O

6.4. Proof of Theorem 2.2.
We keep the notation and assumptions from Theorem 2.2. We assume that for
v € MY, C, belongs to the value group G, = {|z|, : = € K}}. This is no loss of
generality. For suppose that for some v € MY, C, € G, and let C! be the largest
number in G, which is smaller than C,. Then if we replace C, by C,, condition
(2.4) is unaltered while the right-hand sides of (2.6), (2.7) decrease.

Let r := dimW. Then dimU = r 4+ n. Choose a basis {ai,...,a,,} of U such
that {a;,...,a,}isabasisof W. Let v € M. Put W, :=W®RgK,, U, = URkK,.

According to Lemma 6.2, U, has an orthonormal basis {ey,...,e.,} such that
(63) ai:Z%-jej forizl,...,r—i—n,
j=1

with 7, € K, fori =1,...,r+mn,j=1,...;iand v; #Oforv =1,...,r +n.
Since ay, ..., a, are linear combinations of ey, ..., e, and vice-versa, {ej,...,e.} is
an orthonormal basis of W,,.

Let x € V) +-- -+ V,. Choose any x* € U mapping to x under the canonical map
from K" to K"/W. Write x* = > 771" x;a; with 2; € K. Then the vector

0(X) == (Tr41, .., Tpyn)' € K"

is independent of the choice of x*. Notice that ¢ is a linear isomorphism from
Vi+ -+ V, to K*. We may express X* otherwise as x* = Z:;” y;e; with y; € K.

Then
wv(x) = (yr-i-la s >yr+n)t € K’Z;L

is also independent of the choice of x*. Clearly, Z:;n 1 Y€ maps to x under the
canonical map from K" to K"/W,. Further, from (6.1) it is clear that |x*|, >
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13232 vieillo = 1o (x) o Therefore,
(6.4) ¢l = 112 (36)lo-
Moreover, from (6.3) it follows that

Vr+1,r+1 e e Vr+n,r+1

(6.5)  y(x) = Eyp(x) with B, = ezt ,

0 Vr4nr4n
where the elements of F, below the diagonal are zero. By our assumption on C,,
there is an «,, € K with |a,|, = C,. Now define the matrix D, := a;'E,. Then
from (6.4) and (6.5) it follows that for x € Vj + -+ 4V,

(6.6) Ix[l;” < Co <= [ Dup(x)]|s < 1.
From (6.3), (2.1), Lemma 6.3 we obtain,

Hal ARRRNA ar—&-nHv = |711 o "7r+n,r+n|v : ”el ARRRNA er+n||’u = ’711 e '7r+n,r+n|v7

Hal JASRRIAN a’f‘H’U = |711 e "Vrr‘v : Hel JAERIAN er”v = h/ll e "yrr’v .
Together with (6.5) this implies

\al VAN /\ar+nHy
lag A= Aa,

-n fn’
(67) | det Dv‘v = ‘Oév Vr4+1r,4+1 7r+n,r+n’v = CU

We have a matrix D, for every v € M. The quantities in the right-hand side of
(6.7) are equal to 1 for all but finitely many v. Therefore, | det D,|, = 1 for all but
finitely many v. That is, D := {D, : v € Mg} is an Mg-matrix of order n. By
(6.7) we have

(6.8) I] IdetD,

’UEMK ’UEMK

= (I cor) " mwy - mowy .

vEME

nH(ag A+ Aapiy)
dv/d — ( Cdv/d> 1 r4+n
: 1) o nay

From the bases of V,...,V; with (2.4) we select a basis {by,...,b,} of
Vi+---+V,. Now we apply Theorem 3.2 with the My-matrix D constructed above,
with the vectors ¢(b;), ¢(b;;) in place of b;, b;; and with the spaces ¢(V;) in place
of V;. Then the assumptions (2.2)-(2.4) of Theorem 2.2 in conjunction with (6.6)
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and the fact that ¢ is a linear isomorphism from Vj + --- + V; to K", imply that
the conditions (3.1)-(3.3) of Theorem 3.2 are satisfied. It follows that there are
z;; € Ok, not all 0, satisfying (3.4) (with ¢(b;;) instead of b,;) and (3.5). Since
¢ is an isomorphism, these z;; satisfy (2.5), and by substituting (6.8) into (3.5) it
follows that they also satisfy (2.6). Furthermore, there are a finite extension L of
K and numbers z;; € Oy, not all 0, satisfying (3.4) (with again ¢(b;;) instead of
b;;) and (3.6), and similarly as above it follows that these numbers satisfy (2.5) and
(2.7). This completes the proof of Theorem 2.2. O
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