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1. Introduction

Originally, Diophantine approximation is the branch of number theory dealing with

problems such as whether a given real number is rational or irrational, or whether

it is algebraic or transcendental. More generally, for a given irrational number

one may ask how well it is approximable by a rational number, and for a given

transcendental number one may ask how well it can be approximated by algebraic

numbers. The basic techniques from Diophantine approximation have been vastly

generalized and today, there are some very powerful results with many applications,

in particular to Diophantine equations. In this note we will discuss linear equations

whose unknowns are taken from a multiplicative group of finite rank. The results

we will mention about these equations are consequences of a central theorem in

Diophantine approximation, the so-called Subspace Theorem of W.M. Schmidt. We

will also give some results on linear recurrence sequences. In the last section we will

mention some recent developments in Diophantine geometry.

2. Linear equations with unknowns from a multiplicative group

We introduce some terminology. Let C∗ be the multiplicative group of non-zero

complex numbers. Let Γ be a subgroup of C∗. Γ is said to be a torsion group if all

its elements have finite order, that is, are roots of unity. In that case we say that Γ

has rank 0. More generally, Γ is said to be of finite rank if there are a1, . . . , ar ∈ Γ

with the following property: for every x ∈ Γ there exist integers z1, . . . , zr and a

positive integer m such that xm = az1
1 · · · azr

r . If Γ is not a torsion group then the

smallest r for which such a1, . . . , ar exist is called the rank of Γ.
1
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For instance, the group

Γ = {x ∈ C∗ : ∃m ∈ N, z1, z2 ∈ Z : xm = 2z1 · 3z2}

= {ζ m
√

2z13z2 : ζ root of unity, m ∈ N, z1, z2 ∈ Z}

has rank 2. More generally, any subgroup of Γ containing 2, 3 has rank 2.

First let a, b be non-zero rational numbers and let Γ = {pz1
1 · · · pzr

r : zi ∈ Z} be the

multiplicative group generated by the prime numbers p1, . . . , pr. In 1933, Mahler

[17] showed that the equation

(2.1) ax + by = 1 in x, y ∈ Γ

has only finitely many solutions. In 1960, Lang [13] showed that for any a, b ∈ C∗

and any subgroup Γ of C∗ of finite rank, the number of solutions of equation (2.1)

is finite.

For subgroups Γ of Q∗ there are reasonably efficient algorithms to determine all

solutions of (2.1). For instance, consider the equation

x + y = 1 in x, y ∈ Γ = {2z13z25z37z411z513z6 : zi ∈ Z} with x 6 y.

We give some solutions: (1
2
, 1

2
), (3

7
, 4

7
), ( 2

13
, 11

13
), ( 3993

20800
, 16807

20800
)= ( 3·113

26·52·13 ,
75

26·52·13). In

his thesis, [30, Section 6.5], de Weger determined all solutions of this equation, and

showed that there are precisely 545 of them.

Our concern is not to determine the solutions of equations of the shape (2.1), but

to give uniform upper bounds for the number of their solutions, depending on as

few parameters as possible. In 1984, the author [4] showed that in Mahler’s case,

that is, with a, b ∈ Q∗ and with Γ the group generated by prime numbers p1, . . . , pr,

equation (2.1) has at most 3 × 72r+3 solutions. This bound is independent of the

primes p1, . . . , pr and of the coefficients a, b. Building further on work of Schlickewei,

in 1996 Beukers and Schlickewei [BS96] proved the following general result:

For any subgroup Γ of C∗ of finite rank r, and any a, b ∈ C∗, equation (2.1) has at

most 216(r+1) solutions.

We mention that in 1988, Erdős, Stewart and Tijdeman [3] proved a result in the

other direction:

Let a, b be non-zero rational numbers. Then for every ε > 0 and every suffi-

ciently large r, there is a subgroup Γ of Q∗ of rank r such that (2.1) has at least

e(4−ε)r1/2(log r)−1/2
solutions.
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We now turn to equations in n > 3 variables, namely

(2.2) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ,

where Γ is a subgroup of C∗ of finite rank, and a1, . . . , an ∈ C∗. Assume that Γ is

not finite. A solution of equation (2.2) is called non-degenerate, if each subsum of

the left-hand side is non-zero, i.e.,

ai1xi1 + · · ·+ aitxit 6= 0 for each subset {i1, . . . , it} of {1, . . . , n}.

This non-degeneracy condition is rather natural, since each degenerate solution gives

rise to an infinite family of solutions. For instance, if (x1, . . . , xn) is a solution of

(2.2) with a1x1 + · · ·+ amxm = 0, am+1xm+1 + · · ·+ anxn = 1, then for every x ∈ Γ,

(xx1, . . . , xxm, xm+1, . . . , xn) is also a solution of (2.2).

It follows from work of van der Poorten and Schlickewei, the author, and Laurent

from the 1980’s that (2.2) has only finitely many solutions. The major tool in the

proof of this result is W.M. Schmidt’s Subspace Theorem (see next section).

We mention that in contrast to the two-variable case, no algorithm is known which

allows in principle to determine all non-degenerate solutions of (2.2). On the other

hand, there are satisfactory explicit upper bounds for the number of non-degenerate

solutions of (2.2). In 1990, Schlickewei [24] was the first to give such an upper

bound, but only in the special case that Γ is contained in an algebraic number field.

Schlickewei’s bound depended, apart from the number of variables n and the rank of

Γ, on several other parameters and when his work appeared, it was an open problem

to deduce a uniform upper bound depending only on n and the rank of Γ. After

several intermediate results, Schlickewei, Schmidt and the author ([8], see also the

survey paper [6]) succeeded in proving the following theorem:

Theorem 1. Let Γ be a subgroup of C∗ of finite rank r, and let a1, . . . , an ∈ C∗.

Then equation (2.2) has at most e(6n)5n(r+1) non-degenerate solutions.

The basic tool was a new quantitative version of Schmidt’s Subspace Theorem,

obtained by Schlickewei and the author (see [7] or the survey paper [6]). The upper

bound in Theorem 1 is probably far from best possible, but one can show that the

theorem does not remain valid if the upper bound is replaced by a bound independent

of r or n.
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We mention that recently, Moree, Stewart, Tijdeman and the author [5] and

independently Granville (unpublished) proved the following generalization of the

result of Erdős, Stewart and Tijdeman mentioned above:

Theorem 2. Let a1 . . . , an be non-zero rationals. Then for every ε > 0 and every

sufficiently large r there is a subgroup Γ of Q∗ of rank r such that (2.2) has at least

exp
(
(1− ε) n2

n−1
r1−(1/n)(log r)−(1/n)

)
non-degenerate solutions.

The proof is not based on Diophantine approximation but uses instead some analytic

number theory.

3. Linear recurrence sequences

The by far best known example of a linear recurrence sequence is the Fibonacci

sequence {Fn}∞n=0 given by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n > 2. In

general a linear recurrence sequence is a sequence U = {Un}∞n=0 of complex numbers

given by initial values U0, . . . , Uk−1 and by a linear recurrence relation

(3.1) Un = c1Un−1 + c2Un−2 + · · ·+ ckUn−k (n > k)

where c1, . . . , ck are fixed complex numbers. One may show that there is only one

recurrence relation satisfied by U for which k is minimal. Assuming that in relation

(3.1), k is minimal, we call k the order, and FU := Xk − c1X
k−1 − · · · − ck the

companion polynomial of U . Write FU = (X −α1)
e1 · · · (X −αt)

et , where α1, . . . , αt

are the distinct roots of fU and where e1, . . . , et are positive integers. A basic fact

for linear recurrence relations states that there are polynomials fi ∈ C[X] of degree

< ei (i = 1, . . . , t) such that

(3.2) Un = f1(n)αn
1 + · · ·+ ft(n)αn

t for n ∈ Z>0.

The sequence U is called simple if all multiplicities ei are 1, and non-degenerate if

none of the quotients αi/αj (1 6 i < j 6 t) is a root of unity (non-degeneracy implies

that for any positive integer k, the number of zeros of the companion polynomial of

U (k) := {Unk}∞n=0 is equal to the number of zeros of the companion polynomial of

U).

We are interested in the Diophantine equation Un = 0, that is,

(3.3) f1(n)αn
1 + · · ·+ ft(n)αn

t = 0 in n ∈ Z>0.
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The classical Skolem-Mahler-Lech theorem (cf. [16]) states that the number of so-

lutions of (3.3) is finite if U is non-degenerate. The proof was by means of p-adic

analysis. Denote the number of solutions of (3.3) by NU . An old conjecture at-

tributed to Ward states that NU can be bounded above by a quantity depending

on the order of U only. Throughout the last decades several partial solutions to

this problem have been obtained (Beukers, Tijdeman, Schlickewei, Schmidt). We

will mention only the most recent result of Schmidt [27], which completely settles

Ward’s conjecture.

Theorem (Schmidt). Suppose U is a non-degenerate linear recurrence sequence

of order k. Then NU 6 exp exp exp(3k log k).

In his proof, Schmidt used the quantitative version of the Subspace Theorem

of Schlickewei and the author mentioned above. But apart from that there were

some formidable technical difficulties which Schmidt managed to deal with. We

mention that for simple linear recurrence sequences, the polynomials fi in (3.2) are

all constants. So in that case equation (3.3) is just a special case of equation (2.2)

and then Theorem 1 implies an upper bound for NU depending only on k. The case

that not all polynomials fi are constants turned out to be much harder.

4. The Subspace Theorem

We start with some history. Let α be a real irrational algebraic number of degree d

and let κ > 0. In 1909, Thue [28] proved that for any κ > 1
2
d + 1, the inequality

(4.1) |α− x1

x2

| 6 max(|x1|, |x2|)−κ

has only finitely many solutions in pairs of integers (x1, x2) with x2 > 0. After

improvements of Thue’s result by Siegel, Gel’fond and Dyson, in 1955 Roth [22]

proved that (4.1) has only finitely many solutions in pairs of integers (x1, x2) with

x2 > 0 already when κ > 2. This lower bound 2 for κ is best possible, since by a

result of Dirichlet from 1842, for any irrational real number α there are infinitely

many pairs of integers (x1, x2) with

|α− x1

x2

| 6 x−2
2 , x2 > 0 .
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In a sequence of papers from 1965-1972, W.M. Schmidt proved a far reaching

higher dimensional generalization of Roth’s theorem, now known as the Subspace

Theorem. For a full proof of the Subspace Theorem as well as of the other results

mentioned above we refer to Schmidt’s lecture notes [25]. Below we have stated the

version of the Subspace Theorem which is most convenient for us. We define the

norm of x = (x1, . . . , xn) ∈ Zn by ‖x‖ := max(|x1|, . . . , |xn|).

Subspace Theorem (Schmidt). Let

L1 = α11X1 + · · ·+ α1nXn, . . . , Ln = αn1X1 + · · ·+ αnnXn

be n linearly independent linear forms with real or complex algebraic coefficients αij.

Let c1, . . . , cn be reals with

c1 + · · ·+ cn < 0 .

Consider the system of inequalities

(4.2) |L1(x)| 6 ‖x‖c1 , . . . , |Ln(x)| 6 ‖x‖cn

to be solved simultaneously in integer vectors x ∈ Zn.

Then there are proper linear subspaces T1, . . . , Tt of Qn such that the set of solutions

of (4.2) is contained in T1 ∪ · · · ∪ Tt.

Roth’s Theorem follows by taking n = 2, L1 = X1 − αX2, L2 = X2, c1 = 1 − κ,

c2 = 1. Thus, if x = (x1, x2) is a solution of (4.1) with x2 6= 0 then x also satisfies

(4.2).

We give another example to illustrate the Subspace Theorem. Consider the system

(4.3)


|x1 +

√
2x2 +

√
3x3| 6 max(|x1|, |x2|, |x3|)3/2

|x1 −
√

2x2 +
√

3x3| 6 max(|x1|, |x2|, |x3|)−1

|x1 −
√

2x2 −
√

3x3| 6 max(|x1|, |x2|, |x3|)−1

The Pell equation x2
1 − 2x2

2 = 1 has infinitely many solutions in positive integers

x1, x2. It is easy to see that if (x1, x2) is a solution of the Pell equation with x2 > 2

and if x3 = 0, then (x1, x2, x3) is a solution of (4.3). Thus, the subspace x3 = 0

contains infinitely many solutions of (4.3). One can prove something more precise

than predicted by the Subspace Theorem, that is, that (4.3) has only finitely many

solutions with x3 6= 0.
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In 1977, Schlickewei [23] proved a so-called p-adic version of the Subspace The-

orem, involving, apart from the usual absolute value, a finite number of p-adic

absolute values. Given a rational number α ∈ Q and a prime number p, we define

|α|p := p−w where w is the exponent such that α = pw · a/b with a, b integers not

divisible by p. For instance, |9/8|2 = 8 and |9/8|3 = 1/9. The p-adic absolute value

|·|p defines a metric on Q. By taking the metric completion we obtain a field Qp. Let

Cp denote the algebraic closure of Qp. The p-adic absolute value can be extended

uniquely to Cp. To get a uniform notation, we write | · |∞ for the usual absolute

value | · |, and C∞ for C. We call ∞ the infinite prime of Q. We will use the index

p to indicate either ∞ or a prime number. Then we get:

p-adic Subspace Theorem (Schlickewei). Let S = {∞, p1, . . . , pt} consist of

the infinite prime and a finite number of primes numbers. For p ∈ S, let

L1p = α11pX1 + · · ·+ α1npXn, . . . , Lnp = αn1pX1 + · · ·+ αnnpXn

be linearly independent linear forms with coefficients αijp ∈ Cp which are algebraic

over Q. Further, let cip (i = 1, . . . , n, p ∈ S) be reals satisfying∑
p∈S

n∑
i=1

cip < 0 .

Consider the system of inequalities

(4.4) |Lip(x)|p 6 ‖x‖cip (p ∈ S, i = 1, . . . , n)

to be solved simultaneously in x ∈ Zn.

Then there are proper linear subspaces T1, . . . , Tt of Qn such that the set of solutions

of (4.4) is contained in T1 ∪ · · · ∪ Tt.

There is a further generalization of this result, which we shall not state, dealing with

systems of inequalities to be solved in vectors consisting of integers from a given

algebraic number field. This generalization has a wide range of applications, such as

finiteness results for Diophantine equations of the type considered in the previous

sections, finiteness results for all sorts of Diophantine inequalities, transcendence

results, finiteness results for integral points on surfaces, etc.

As an illustration, we consider the equation

(4.5) 2z1 + 2z2 − 11z3 = 1
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to be solved in z1, z2, z3 ∈ Z. It is easy to see that (4.5) has only solutions with

non-negative z1, z2, z3. Notice that (2z1 , 2z2 , 11z3) is a solution of x1 + x2 − x3 = 1

in x1, x2, x3 ∈ Γ = {2u11v : u, v ∈ Z}. Hence equation (4.5) may be viewed as a

special case of (2.2).

Put x1 = 2z1 , x2 = 2z2 , x3 = 11z3 , ξ = log x1/ log x3, η = log x2/ log x3, x =

(x1, x2, x3). Then ‖x‖ = x3 and 0 6 ξ, η 6 1. Hence there are k, l ∈ {0, 1, 2} such

that k
3

6 ξ 6 k+1
3

and l
3

6 η 6 l+1
3

. We consider those solutions with fixed values of

k, l. Notice that these solutions satisfy the inequalities

|x1 + x2 − x3|∞ 6 ‖x‖0, |x1|∞ 6 ‖x‖(k+1)/3, |x2|∞ 6 ‖x‖(l+1)/3

|x1|2 6 ‖x‖−k/3, |x2|2 6 ‖x‖−l/3, |x3|2 6 ‖x‖0

|x1|11 6 ‖x‖0, |x2|11 6 ‖x‖0, |x3|11 6 ‖x‖−1 .

This system is a special case of (4.4), and since the sum of the exponents is −1/3 < 0

we can apply the p-adic Subspace Theorem with n = 3.

Taking into consideration the possibilities for k, l, we see that x = (x1, x2, x3) =

(2z1 , 2z2 , 11z3) is contained in the union of finitely many proper linear subspaces of

Q3. Considering the solutions in a single subspace, we can eliminate one of the

variables x1, x2, x3 and obtain an equation of the same type as (4.5), but in only

two variables. Applying again the p-adic Subspace Theorem but now with n = 2,

we obtain that the solutions lie in finitely many one-dimensional subspaces, etc.

Eventually we obtain that (4.5) has only finitely many solutions.

In 1989, Schmidt [26] obtained a quantitative version of his Subspace Theorem,

giving an explicit upper bound for the number of subspaces t. Since then, his

result has been refined and improved in several directions. In particular Schlickewei

obtained quantitative versions of his p-adic Subspace Theorem which enabled him

to prove weaker versions of Theorem 1 with an upper bound depending on r, n and

other parameters and of Schmidt’s theorem on linear recurrences with an upper

bound depending on k and other parameters. Finally, Schlickewei and the author

[7] managed to prove a quantitative version of the p-adic Subspace Theorem with

unknowns taken from the ring of integers of a number field which was strong enough

to imply the upper bounds mentioned in the previous sections. We will not give the

rather complicated statement of this result.
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By using a suitable specialization argument from algebraic geometry one may

reduce Theorem 1 to the case that a1, . . . , an and the group Γ are contained in an

algebraic number field, and then subsequently one may reduce equation (2.2) to a

finite number of systems (4.4) by a similar argument as above. By applying the

quantitative p-adic Subspace Theorem to each of these systems and adding together

the upper bounds for the number of subspaces for each system, one obtains an ex-

plicit upper bound for the number of subspaces containing the solutions of (2.2).

Considering the solutions of (2.2) in one of these subspaces, then by eliminating

one of the variables one obtains an equation of the shape (2.2) in n− 1 variables to

which a similar argument can be applied. By repeating this, Theorem 1 follows.

The proof of Schmidt’s theorem on linear recurrence sequences has a similar struc-

ture, but there the argument is much more involved.

5. Diophantine geometry

We mention some recent developments in Diophantine geometry which are related

to the results from Section 2. This section is more specialized.

We write Gn
m(C) for the multiplicative group (C∗)n with coordinatewise multipli-

cation (x1, . . . , xn)(y1, . . . , yn) = (x1y1, . . . , xnyn). The group Gn
m(C) is the group of

complex points of a group variety Gn
m, called the n-dimensional linear torus. Lang

([14, p. 220]) proposed the following conjecture:

Let A be either Gn
m or an abelian variety defined over C. Let Γ be a subgroup of

A(C) of finite rank (i.e., Γ has a finitely generated subgroup Γ0 such that Γ/Γ0 is

a torsion group). Further, let X be an algebraic subvariety of A defined over C
and let Z(X) denote the exceptional set of X, that is the union of all translates of

positive dimensional algebraic subgroups of A which are contained in X. Then the

intersection (X\Z(X)) ∩ Γ is finite.

For instance, if A = Gn
m and X is a hyperplane given by a1x1 + · · ·+ anxn = 1 then

X(C)∩Γ is the set of solutions of a1x1+· · ·+anxn = 1 in (x1, . . . , xn) ∈ Γ, that is, we

have an equation of type (2.2). The non-degenerate solutions of this equation (i.e.,

with non-vanishing subsums) are precisely the points in (X\Z(X)) ∩ Γ. So Lang’s

conjecture implies that (2.2) has only finitely many non-degenerate solutions.

Let X be a projective curve of genus > 2 defined over an algebraic number field K,

let A be the Jacobian of X, and let Γ = A(K). We assume that X ⊂ A. We know
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that Z(X) = ∅ and that A(K) is finitely generated (the Mordell-Weil Theorem).

Thus Lang’s conjecture implies Mordell’s conjecture that X(K) is finite.

In the 1980’s, Laurent [15] proved Lang’s conjecture in the case that A = Gn
m.

Laurent’s proof was based on the p-adic Subspace Theorem. In 1983, Faltings [9]

proved Mordell’s conjecture. Unlike Laurent, Faltings did not use Diophantine ap-

proximation. In 1991, Vojta [29] gave a totally different proof of Mordell’s conjecture

based on Diophantine approximation. Then by extending Vojta’s ideas to higher

dimensions, Faltings [10],[11] achieved the following breakthrough, which almost set-

tled Lang’s conjecture for abelian varieties:

Let A be an abelian variety, and let X be a projective subvariety of A, both defined

over an algebraic number field K. Then (X\Z(X))(K) is finite.

Subsequently, the proof of Lang’s conjecture was completed by McQuillan [18]. We

refer to the books [12], [2] for an introduction.

Very recently, Rémond proved the following remarkable quantitative version of

Lang’s conjecture. Rémond used Faltings’ arguments, but he managed to simplify

them considerably.

If A = Gn
m we assume that A ⊂ Pn by identifying (x1, . . . , xn) ∈ Gn

m with the point

(1, x1, . . . , xn) ∈ Pn. if A is an abelian variety we assume that A is contained in

some projective space PN and that the line sheaf OA(1) is symmetric. Further we

assume that A is defined over the field of algebraic numbers. In both cases, A has

dimension n, X is an algebraic subvariety of A of dimension m and degree d (with

respect to the embeddings chosen above) defined over the algebraic numbers, and Γ

is a subgroup of A(Q) of finite rank r.

Theorem (Rémond). (i) Let A = Gn
m. Then (X\Z(X)) ∩ Γ has cardinality at

most (2d)n2(m+1)4m2
(r+1) ([21]).

(ii) Let A be an abelian variety. Then (X\Z(X)) ∩ Γ has cardinality at most(
cA · d)n5(m+1)2 (r+1), where cA is an effectively computable constant depending on A

([19], [20]).
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Urbanowicz (eds.), 121-142. Walter de Gruyter, 1999.

[7] J.-H. Evertse, H.P. Schlickewei, A quantitative version of the Absolute Subspace Theorem, J.
reine angew. Math. 548 (2002), 21-127.

[8] J.-H. Evertse, H.P. Schlickewei, W.M. Schmidt, Linear equations in variables which lie in a
multiplicative group, Ann. Math. 155 (2002), 1-30.

[9] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73
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