
APPROXIMATION OF COMPLEX ALGEBRAIC NUMBERS

BY ALGEBRAIC NUMBERS OF BOUNDED DEGREE

This note is a result of a discussion with Yann Bugeaud.

Denote by H(ξ) the naive height, that is the maximum of the absolute

values of the coefficients of the minimal polynomial of an algebraic number

ξ. Schmidt proved that for every real algebraic number α ∈ R and every

ε > 0 there are only finitely many algebraic numbers ξ of degree d such that

|α − ξ| < H(ξ)−d−1−ε. For algebraic numbers α ∈ C\R one expects a similar

result but with exponent −1
2
(d + 1) − ε. In this note we prove such a type of

result, but unfortunately we have to impose some technical condition on α.

We start with an auxiliary result. Given a linear form L(X) = α1X1 + · · · +
αnXn with algebraic coefficients in C, define the complex conjugate linear form

L(X) = α1X1 + · · ·+αnXn. Further, we define the norm of x = (x1, . . . , xn) ∈
Zn by ‖x‖ := max(|x1|, . . . , |xn|).

Theorem 1. Let n > 2. Let L(X) = α1X1 + · · ·+αnXn be a linear form with

algebraic coefficients in C satisfying the following technical hypothesis:

For any Q-linear subspace T of Qn of dimension > n/2,(0.1)

the restrictions of L, L to T are linearly independent.

Then for any ε > 0, the inequality

(0.2) 0 < |L(x)| < ‖x‖1−(n/2)−ε in x ∈ Zn

has only finitely many solutions.

Proof. Write L(x) = L1(x) + iL2(x), where L1 consists of the real parts of

the coefficients of L, and L2 of the imaginary parts. We apply Theorem 2A on

p. 157 of [W.M. Schmidt, Diophantine approximation, Springer Verlag LNM

785, 1980] to L1, L2. Thus in Schmidt’s notation, u = 2, v = n − 2. Our

assumption on L implies that for every d-dimensional Q-linear subspace T of

Qn, the restrictions of L1, L2 to T have rank > d · 2/n. This is precisely the

condition to be satisfied in Schmidt’s theorem. Thus, it follows that for every
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ε > 0, the system of inequalities

|L1(x)| < |x|−
n−2

2
−ε, |L2(x)| < |x|−

n−2
2
−ε

has only finitely many solutions in x ∈ Zn. It follows that (0.2) has only

finitely many solutions. �

Denote by Vd the vector space of polynomials in Q[X] of degree 6 d.

Theorem 2. Let ε > 0. Let α be an algebraic number in C\R satisfying the

following technical hypothesis:

if T is any Q-linear subspace of Vd with the property that(0.3)

h1(α)h2(α) ∈ R for each pair of polynomials h1, h2 ∈ T ,

then dim T 6 (d + 1)/2.

Then the inequality

(0.4) |α− ξ| < H(ξ)−
1
2
(d+1)−ε

has only finitely many solutions in algebraic numbers ξ of degree d.

Proof. Denote by f the minimal polynomial of ξ (with coefficients in Z having

gcd 1 and with positive leading coefficient). Let ξ be a solution of (0.4). Then

|f(α)| � H(ξ)|α− ξ| and so

(0.5) |f(α)| � H(f)1−((d+1)/2)−ε .

We may view f(α) as a linear form on Vd in d + 1 variables with algebraic

coefficients in C. We claim that if T is a Q-linear subspace of Vd of dimension

> (d + 1)/2, then the restrictions of f(α), f(α) to T are linearly independent.

Then by Theorem 1, inequality (0.5) has only finitely many solutions f , and

this gives only finitely many possibilities for ξ.

So it remains to prove our claim. Choose a basis {g1, . . . , gt} of T . We

have to show that the vectors (g1(α), . . . , gt(α)), (g1(α), . . . , gt(α)) are lin-

early independent. But if this is not the case, then each of the determinants

gi(α)gj(α) − gj(α)gi(α) = 0, i.e., gi(α)gj(α) ∈ R for each pair i, j. But then

by Q-linearity, h1(α)h2(α) ∈ R for each h1, h2 ∈ T . By assumption (0.3) this

is possible only if t 6 (d + 1)/2. This proves our claim, hence Theorem 2. �
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Corollary. Let α be an algebraic number in C\R such that either

(0.6) [Q(α) : Q(α) ∩ R] > d1
2
(d + 3)e

or

(0.7) [Q(α) ∩ R : Q] 6 [
1

2
(d + 1)] .

Then for any ε > 0, (0.4) has only finitely many solutions in algebraic numbers

ξ of degree d.

Proof. We first show that there is no loss of generality to assume [Q(α) :

Q] > d + 1. Suppose that α has degree r 6 d + 1, and let ξ be a non-real

algebraic number of degree d. Let h, f denote the minimal polynomials of h, f ,

respectively. Let α1 = α, α2 = α, α3, . . . , αr denote the conjugates of α and

ξ1 = ξ, ξ2, ξ3, . . . , ξd those of ξ. Suppose that ξ is not equal to a conjugate of

α. Then, using some basic facts about the resultant R(h, f) of h, f ,

1 6 |R(h, f)| = M(h)dM(f)r ·
r∏

i=1

d∏
j=1

|αi − ξj|
max(1, |αi|) max(1, |ξj|)

� H(α)dH(ξ)r|α− ξ| · |α− ξ| = H(α)dH(ξ)r|α− ξ|2,

where M(h), M(f) denote the Mahler measures of h, f , respectively. There-

fore,

|α− ξ| � H(ξ)−r/2

where the constant implied by � depends only on α. Since r 6 d + 1, this

trivially implies that (0.4) has only finitely many solutions in algebraic numbers

ξ of degree d.

Now assume that [Q(α) : Q] > d + 1 and that either (0.6), or (0.7) is

satisfied. We have to verify (0.3). Let T be a Q-linear subspace of Vd such

that h1(α)h2(α) ∈ R for each h1, h2 ∈ T . Suppose T has dimension t and

choose a basis {g1, . . . , gt} of T . Then gi(α)/g1(α) = gi(α)g1(α)/|g1(α)|2 ∈ R
for i = 1, . . . , t; we know that g1(α) 6= 0 since α has degree > d + 1. Further,

since α has degree > d + 1, the numbers 1, g2(α)/g1(α), . . . , gt(α)/g1(α) are

Q-linearly independent elements of Q(α) ∩ R. Therefore, t 6 [Q(α) ∩ R : Q].

So if (0.7) holds, then (0.3) is satisfied.
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After applying Gauss elimination or the like to a given basis of T , we obtain a

basis {g1, . . . , gt} with deg g1 < deg g2 < · · · < deg gt. Thus, deg gi 6 d− t + i

for i = 1, . . . , t. Then similarly as above, g2(α)/g1(α) ∈ R, i.e., there is a

λ ∈ Q(α) ∩ R such that g2(α) − λg1(α) = 0, i.e., h(α) = 0 where h is a non-

zero polynomial of degree 6 d − t + 2 with coefficients in Q(α) ∩ R. Now if

(0.6) holds, then d− t+2 > d1
2
(d+3)e, i.e., t 6 d+2−d1

2
(d+3)e = [1

2
(d+1)],

which again implies (0.3). Our Corollary follows. �


