APPROXIMATION OF COMPLEX ALGEBRAIC NUMBERS
BY ALGEBRAIC NUMBERS OF BOUNDED DEGREE

This note is a result of a discussion with Yann Bugeaud.

Denote by H(§) the naive height, that is the maximum of the absolute
values of the coefficients of the minimal polynomial of an algebraic number
&, Schmidt proved that for every real algebraic number @ € R and every
€ > 0 there are only finitely many algebraic numbers £ of degree d such that
la — €| < H(€)"4717¢. For algebraic numbers o € C\R one expects a similar
result but with exponent —%(d + 1) — €. In this note we prove such a type of
result, but unfortunately we have to impose some technical condition on «a.

We start with an auxiliary result. Given a linear form L(X) = oy X; + -+ +
a, X, with algebraic coefficients in C, define the complex conjugate linear form
L(X) = a1 X, +---+a,X,. Further, we define the norm of x = (x1,...,2,) €
Z" by ||x]| := max(|z1],...,|z.]).

Theorem 1. Letn > 2. Let L(X) = a1 X1+ - -+ a, X, be a linear form with
algebraic coefficients in C satisfying the following technical hypothesis:

(0.1) For any Q-linear subspace T' of Q™ of dimension > n/2,

the restrictions of L, L to T are linearly independent.
Then for any € > 0, the inequality
(0.2) 0 < |L(x)| < |Ix||'=™2~= inxez"

has only finitely many solutions.

Proof. Write L(x) = Li(x) + ¢L2(x), where L, consists of the real parts of
the coefficients of L, and Ly of the imaginary parts. We apply Theorem 2A on
p. 157 of [W.M. Schmidt, Diophantine approximation, Springer Verlag LNM
785, 1980] to Ly, L. Thus in Schmidt’s notation, u = 2, v = n — 2. Our
assumption on L implies that for every d-dimensional Q-linear subspace T' of
Q", the restrictions of Ly, Ly to T" have rank > d - 2/n. This is precisely the

condition to be satisfied in Schmidt’s theorem. Thus, it follows that for every
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€ > 0, the system of inequalities
n—2 n—2
[Lix)| < [x[7 275 [La(x)[ < [x|7727F

has only finitely many solutions in x € Z". It follows that (0.2) has only
finitely many solutions. 0J

Denote by V; the vector space of polynomials in Q[X] of degree < d.

Theorem 2. Let ¢ > 0. Let o be an algebraic number in C\R satisfying the
following technical hypothesis:

(0.3) if T is any Q-linear subspace of V; with the property that
hi(a)ha(@) € R for each pair of polynomials hy, hy € T,
then dimT < (d +1)/2.

Then the inequality
(0.4) o — €] < H(¢) 2
has only finitely many solutions in algebraic numbers & of degree d.

Proof. Denote by f the minimal polynomial of £ (with coefficients in Z having
ged 1 and with positive leading coefficient). Let & be a solution of (0.4). Then
|f ()] < H(§)|or — &] and s0

(0.5) [fa)] < H(f)r2me,

We may view f(«) as a linear form on Vj in d 4+ 1 variables with algebraic
coefficients in C. We claim that if 7" is a Q-linear subspace of V; of dimension
> (d+1)/2, then the restrictions of f(«), f(@) to T are linearly independent.
Then by Theorem 1, inequality (0.5) has only finitely many solutions f, and
this gives only finitely many possibilities for &.

So it remains to prove our claim. Choose a basis {¢g1,...,9;} of T. We
have to show that the vectors (gi(«),...,q(@)), (1(@),...,q(@)) are lin-
early independent. But if this is not the case, then each of the determinants
gi()g;(@) — gj(a)gi(@) = 0, i.e., gi(a)gj(@) € R for each pair i, j. But then
by Q-linearity, hq(a)hs(@) € R for each hy, hy € T. By assumption (0.3) this
is possible only if t < (d + 1)/2. This proves our claim, hence Theorem 2. [J



Corollary. Let a be an algebraic number in C\R such that either

(0.6 @) : Qa) MR > [5(d+3)]
(0.7 [Q(a) MR- Q] < [1(d+1)].

Then for any e > 0, (0.4) has only finitely many solutions in algebraic numbers
& of degree d.

Proof. We first show that there is no loss of generality to assume [Q(«) :
Q] > d + 1. Suppose that « has degree r < d + 1, and let ¢ be a non-real
algebraic number of degree d. Let h, f denote the minimal polynomials of h, f,
respectively. Let oy = a, a0 = @, a3, ..., a, denote the conjugates of o and
& =6,8&,&3,...,&; those of £&. Suppose that £ is not equal to a conjugate of
a. Then, using some basic facts about the resultant R(h, f) of h, f,

r d
1< R, f)| = M(RYM(f) - o — &
< |R(h, f)] = M(R)YM(S) ggmax(1,|ai|>max<1,|gj|>

< H(a)'H(E) |a— ¢ [a— &l = H(a)'H(E) |a — ¢,

where M (h), M(f) denote the Mahler measures of h, f, respectively. There-

fore,
o =& > H(&) "

where the constant implied by > depends only on «. Since r < d + 1, this
trivially implies that (0.4) has only finitely many solutions in algebraic numbers
¢ of degree d.

Now assume that [Q(a) : Q] > d + 1 and that either (0.6), or (0.7) is
satisfied. We have to verify (0.3). Let T" be a Q-linear subspace of V; such
that hy(a)he(@) € R for each hy,hy € T. Suppose T has dimension ¢ and
choose a basis {g1,...,9:} of T. Then g;(a)/g1(a) = gi(a)gi(@)/|g1(@)]? € R
for i = 1,...,t; we know that g;(a) # 0 since « has degree > d + 1. Further,
since a has degree > d + 1, the numbers 1, go()/g1(), ..., g:(a)/g1(a) are
Q-linearly independent elements of Q(a) N R. Therefore, ¢t < [Q(a) NR : Q.
So if (0.7) holds, then (0.3) is satisfied.



After applying Gauss elimination or the like to a given basis of T', we obtain a
basis {g1,...,9:} with degg; < deggs < --- < degg;. Thus, degg; < d—t+1i
for i = 1,...,t. Then similarly as above, gs(a)/g1() € R, i.e., there is a
A € Q(a) NR such that go(a) — Ag1(a) = 0, i.e., h(a) = 0 where h is a non-
zero polynomial of degree < d — t + 2 with coefficients in Q(«) N R. Now if
(0.6) holds, then d —t+2 > [1(d+3)], i.e., t < d+2—[5(d+3)] = [3(d+1)],
which again implies (0.3). Our Corollary follows. O



