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ABSTRACT. Let K be a field of characteristic 0 and let (K*)" denote the n-fold
cartesian product of K*, endowed with coordinatewise multiplication. Let I" be a
subgroup of (K™*)™ of finite rank. We consider equations (*) a1z1+- -+ anz, =1
inx = (x1,...,2,) €T, wherea = (ay,...,a,) € (K*)". Two tuplesa,b € (K*)"
are called I'-equivalent if there is a u € T such that b = u-a. Gyéry and the
author [4] showed that for all but finitely many I'-equivalence classes of tuples
a € (K*)™, the set of solutions of (*) is contained in the union of not more than
21! proper linear subspaces of K™. Later, this was improved by the author
[3] to (n!)?"*2. In the present paper we will show that for all but finitely many
I'-equivalence classes of tuples of coefficients, the set of non-degenerate solutions
of (*) (i.e., with non-vanishing subsums) is contained in the union of not more
than 2™ proper linear subspaces of K™. Further we give an example showing that

2™ cannot be replaced by a quantity smaller than n.

2000 Mathematics Subject Classification: 11D61.

Key words and phrases: FExponential equations, linear equations with unknowns

from a multiplicative group.

1. INTRODUCTION

Let K be a field of characteristic 0. Denote by (K*)" the n-fold direct product
of the multiplicative group K*. The group operation of (K*)" is coordinatewise
multiplication, i.e., if x = (z1,...,2,), ¥ = (y1,...,Yn) € (K*)", then x -y =
(1Y1, -, TnYn). A subgroup I' of (K*)™ is said to be of finite rank if there are
uy,...,u, € I' with the property that for every x € I' there are z € Z-y and

21,...,2 € Z such that x* = uj'---u?. The smallest r for which such uy, ..., u,
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exist is called the rank of I'; the rank of I' is equal to 0 if all elements of I" have
finite order.
For the moment, let n = 2. We consider the equation

(11) a1x1+asxrs =1 inx= (331,.232) el

where a = (a1, ay) € (K*)? and where T is a subgroup of (K*)? of finite rank r. In
1996, Beukers and Schlickewei [2] showed that (1.1) has at most 2802 solutions.

Two pairs a = (ag, az), b = (b1, by) are called I'-equivalent if there is an u € I' such
that b = u-a. Clearly, two equations (1.1) with I'-equivalent pairs of coefficients
a have the same number of solutions. In 1988, Gyory, Stewart, Tijdeman and the
author [5] showed that there is a finite number of I'-equivalence classes, such that for
all tuples a = (a1, az) outside the union of these classes, equation (1.1) has at most
two solutions. (In fact they considered only groups I' = Ug x Ug where Uy is the
group of S-units in a number field, but their argument works in precisely the same
way for the general case.) The upper bound 2 is best possible. We mention that
this result is ineffective in that the method of proof does not allow to determine the
exceptional equivalence classes. Bérczes [1, Lemma 3| calculated the upper bound
2e30”(r+2) for the number of exceptional equivalence classes.
Now let n > 3. We deal with equations

(1.2) axy+ - Fapr, =1 inx=(xq,...,2,) €T,

where a = (aq,...,a,) € (K*)" and where I' is a subgroup of (K*)™ of finite rank
r. A solution x of (1.2) is called non-degenerate if

(1.3) Z a;x; #0 for each non-empty subset I of {1,...,7}.

iel
It is easy to show that there are groups I' such that any degenerate solution of (1.2)
gives rise to an infinite set of solutions. Schlickewei, Schmidt and the author [6]

) (r+1) non-degenerate solutions. Their

showed that equation (1.2) has at most e(®”
proof was based on a version of the quantitative Subspace Theorem, i.e., on the
Thue-Siegel-Roth-Schmidt method. Recently, by a very different approach based on
a method of Vojta and Faltings, Rémond [8] proved a general quantitative result for
subvarieties of tori, which includes as a special case that for n > 3 equation (1.2)

2
has at most 27" (")) non-degenerate solutions.
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Two tuples a, b € (K*)" are called I'-equivalent if b = u-a for some u € I'. Gyéry,
Stewart, Tijdeman and the author [5] showed that for every sufficiently large r, there
are a subgroup I' of (Q*)" of rank r, and infinitely many I'-equivalence classes of
tuples a = (ay, ..., a,) € (Q*)", such that equation (1.2) has at least ¢2r/*(osr) ™'/
non-degenerate solutions. This shows that in contrast to the case n = 2, for n > 3
there is no uniform bound C' independent of I' such that for all tuples a outside
finitely many I'-equivalence classes the number of non-degenerate solutions of (1.2)
is at most C.

It turned out to be more natural to consider the minimal number m such that the
set of solutions of (1.2) can be contained in the union of m proper linear subspaces
of K™. Notice that this minimal number m does not change if a is replaced by a
[-equivalent tuple. In 1988 Gyéry and the author [4] showed that if K is a number
field and I" = Ug, i.e., the n-fold direct product of the group of S-units in K, then

there are finitely many ['-equivalence classes C,...,C; such that for every tuple
ac (K9)"\(Cy U---UC) the set of solutions of (1.2) is contained in the union
of not more than 2(*+1)!

proper linear subspaces of K". This was improved by the
author [3, Thm. 8] to (n!)*"*2. Both the proofs of Gyéry and the author and that
of the author can be extended easily to arbitrary fields K of characteristic 0 and
arbitrary subgroups I' of (K*)" of finite rank.

For certain special groups I', Schlickewei and Viola [9, Corollary 2] improved the
author’s bound to (2":1) —n? —n — 2. In fact, their result is valid for rank one
groups I' = {(of,...,0a?) : z € Z}, where oy, . .., «, are non-zero elements of a field
K of characteristic 0 such that neither a;,...,a,, nor any of the quotients «a;/a;
(0 < i< j<n)isaroot of unity.

In the present paper we deduce a further improvement for the general equation
(1.2).

Theorem. Let K be a field of characteristic 0, let n > 3, and let T' be a subgroup of
(K*)™ of finite rank. Then there are finitely many I'-equivalence classes C4,...,Cy
of tuples in (K*)", such that for every a = (ay,...,a,) € (K*)"\(C1U---UC}), the
set of non-degenerate solutions of

(1.2) ary+ -t agr, =1 inx=(r,...,2,) €L

1s contained in the union of not more than 2" proper linear subspaces of K™.
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We mention that the set of degenerate solutions of (1.2) is contained in the union
of at most 2" — n — 2 proper linear subspaces of K", each defined by a vanishing
subsum ),
for a € Cy U---UCY, the set of (either degenerate or non-degenerate) solutions of

a;x; = 0 where [ is a subset of {1,...,n} of cardinality # 0,1,n. So

(1.2) is contained in the union of at most 2" — n — 2 proper linear subspaces of
K™,

Our main tool is a qualitative finiteness result due to Laurent [7] for the number
of non-degenerate solutions in I of a system of polynomial equations (or rather for
the number of non-degenerate points in X N I" where X is an algebraic subvariety
of the n-dimensional linear torus). Recently, Rémond [8] established for K = Q an
explicit upper bound for the number of these non-degenerate solutions. Using the
latter, it is possible to compute a (very large) explicit upper bound for the number
t of exceptional equivalence classes, depending on n and the rank r of I'. We have
not worked this out.

In Section 2 we recall Laurent’s result. In Section 3 we prove our Theorem. In
Section 4 we give an example showing that our bound 2™ cannot be improved to a

quantity smaller than n.

2. POLYNOMIAL EQUATIONS

Let as before K be a field of characteristic 0, let n > 2, and let fi,...,fr €
K[Xy,...,X,] be non-zero polynomials. Further, let I be a subgroup of (K*)" of
finite rank. We consider the system of equations

(2.1) filxr,...,2,) =0 (i=1,...,R) Inx=(z,...,2,) €.

Let A be an auxiliary variable. A solution x = (xq,...,x,) of system (2.1) is called
degenerate if there are integers c1, ..., ¢, with ged(cq, ..., ¢,) = 1 such that

(2.2) filA @y, ... A x,) = 0 identically in A fori=1,... R

(meaning that by expanding the expressions, we get linear combinations of different
powers of A, all of whose coefficients are 0). Otherwise, the solution x is called

non-degenerate.

Proposition 2.1. System (2.1) has only finitely many non-degenerate solutions.
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Proof. Without loss of generality we may assume that K is algebraically closed.
Let X denote the set of points x € (K*)" with fi(x) =0 fori =1,...,R. By a
result of Laurent [7, Théoreme 2], the set of solutions x € I' of (2.1) is contained in
the union of finitely many “families” xH = {x-y : y € H}, where x € I" and where
H is an irreducible algebraic subgroup of (K*)" such that xH C X. !

Consider a family xH withx € I', xH C X, dim H > 0. Pick a one-dimensional ir-
reducible algebraic group Hy C H. There are integers ¢y, . . ., ¢, with ged(cy, ..., ¢,)
= 1 such that Hy = {(A*,...,A*) : A € K*}. Then xHy = {(2oA®,...,z,A) :
A€ K*} C xH C X, and the latter implies (2.2). Conversely, if x satisfies (2.2) then
xHy C X. Therefore, the solutions of (2.1) contained in families x4 with dim H > 0
are precisely the degenerate solutions of (2.1). Each of the remaining families xH,
i.e., with dim H = 0 consists of a single solution x since H = {(1,...,1)}. It follows

that system (2.1) has at most finitely many non-degenerate solutions. O

3. PROOF OF THE THEOREM

Let again K be a field of characteristic 0, let n > 3, and let I" a subgroup of (K*)"
of finite rank. Further, let a = (ay,...,a,) € (K*)". We deal with

(1.2) ary+ -+ apx, =1 inx=(x,...,2,) €.

Assume that (1.2) has a non-degenerate solution. By replacing a by a I'-equivalent
tuple we may assume that 1 = (1,...,1) is a non-degenerate solution of (1.2). This
means that

-1
51) {a1+ ta, =1,

> ies @i 7 0 for each non-empty subset I of {1,...,n}.

We will show that there is a finite set of tuples a with (3.1) such that for each
a € (K*)" outside this set, the set of non-degenerate solutions of (1.2) is contained
in the union of not more than 2" proper linear subspaces of K”. This clearly suffices

to prove our Theorem.

!For K = @, Rémond [8, Thm. 1] showed that the set of solutions of (2.1) is contained in the
3m?2

union of at most (nd)"3m3 (r+1) families xH, where 7 is the rank of I', X has dimension m, and

where each polynomial f; has total degree < d. Probably his result can be extended to arbitrary

fields K of characteristic 0 by means of a specialization argument.
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By the result of Schlickewei, Schmidt and the author or that of Rémond mentioned
in Section 1, there is a finite bound N independent of a such that equation (1.2)
has at most N non-degenerate solutions. (In fact, already Gyéry and the author [4]
proved the existence of such a bound but their method did not allow to compute it

explicitly).
For every tuple a with (3.1), we make a sequence x; = 1, x5 = (%1, ..., %2p), - . .,
xy = (zn1, - .., TNy) such that each term x; is a non-degenerate solution of (1.2) and

such that each non-degenerate solution of (1.2) occurs at least once in the sequence.
Then

1 1 1
T21 Top 1

(3.2) rank E D <n
TN1 TN 1

since the matrix has n + 1 linearly dependent columns. Relation (3.2) means that
the determinants of all (n+ 1) x (n + 1)-submatrices of the matrix on the left-hand
side are 0. Thus, we may view (3.2) as a system of polynomial equations of the
shape (2.1), to be solved in (xa,...,xy) € V7L It is important to notice that this
system is independent of a.

The tuples a with (3.1) are now divided into three classes:

Class I consists of those tuples a such that rank {1,xs,...,,xy} = n and such
that (xa,...,Xy) is a non-degenerate solution in T'V=! of system (3.2).

Class II consists of those tuples a such that rank {1,xa,...,,xy} < n.

Class 111 consists of those tuples a such that (xa,...,xy) is a degenerate solution
in TV=1 of system (3.2).

First let a be a tuple of Class I. By Proposition 2.1, (Xa,...,Xy) belongs to a
finite set which is independent of a. Now a = (ay, ..., a,) is a solution of the system
of linear equations a; + -+ +a, = 1, zja; + -+ xjpa, =1 (i =2,...,N). Since
by assumption, rank {1,xs,...,xy} = n, the tuple a is uniquely determined by

Xg,...,Xn. S0 Class I is finite.
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For tuples a from Class II, all non-degenerate solutions of (1.2) lie in a single
proper subspace of K™.

Now let a be from Class III. In view of (2.2) this means that there are integers c;;
(t=2,...,N,j=1,...,n),withged(¢;; : i=2,...,N, j=1,...,n) =1, such that

)\621;1:21 s )\62"1'2” 1
rank : : : <n
)\CN*IZENJ s )\CN’”ZEN’n 1

identically in A, meaning that the determinants of the (n+ 1) x (n + 1)-submatrices
of the left-hand side are identically zero in .

This implies that there are rational functions b;(A) € K(\) (j =0,...,n), not all
equal to 0, such that

(3.3) ij()\) = by(N), ij(x)wxij =b(\) (i=2,...,N).

By clearing denominators, we may assume that by(A),...,b,(\) are polynomials in
K[)\] without a common zero.

We substitute A = —1. Put b; := bj(—1) (j = 0,...,n) and g; := (—1)%
(t=2,...,N,j=1,...,n). Then (bo,...,b,) # (0,...,0), and the numbers ¢;; are
not all equal to 1 since the integers ¢;; are not all even. Further, by (3.3) we have
(3.4) {b1+~--+bn:b0, |

b18i1$i1 + -+ bnﬁml’m = bo for i = 2, ey N.

We claim that for each tuple (e1,...,¢,) € {—1,1}", the tuple (biey, ..., byen, by)
is not proportional to (ay,...,an,1). Assuming this to be true, it follows from (3.4)
that the set of non-degenerate solutions of (1.2) is contained in the union of at most
2™ proper linear subspaces of K", each given by

bo(z CLjZEj) - Z bijZEj =0
j=1

J=1

for certain ¢; € {—1,1} (j =1,...,n).
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We prove our claim. First suppose that the tuple (by, ..., b,, by) is proportional to
(ai,...,an,1). There arei € {2,...,N}, j € {1,...,n} such that ¢;; = —1. Now x;
satisfies both 3 7| a;z;; = 1 (since it is a solution of (1.2)) and 37, ajej;xy = 1

(by (3.4)). But then by subtracting we obtain ) ._;a;x;; = 0, where J is the set of

jeJ
indices j with €;; = —1. This is impossible since x; is a non-degenerate solution of
(1.2).
Now suppose that (bie1,...,byen,bo) is proportional to (ai,...,a,, 1) for certain

ej € {—1,1}, not all equal to 1. Then by (3.1) and (3.4) we have > " a; = 1,
Y- aje; = 1. Again by subtracting, we obtain ). ;a; = 0 where J is the set of
indices j with €; = —1 and this is contradictory to (3.1). This proves our claim.
Summarizing, we have proved that Class I is finite, that for every a in Class II,
all solutions of (1.2) lie in a single proper linear subspace of K", and that for every
a in Class III, the solutions of (1.2) lie in the union of 2" proper linear subspaces of

K™. Our Theorem follows. O

4. EQUATIONS WHOSE SOLUTIONS LIE IN MANY SUBSPACES

We give an example of a group I' with the property that there are infinitely
many [-equivalence classes of tuples a = (ay,...,a,) € (K*)" such that the set of
non-degenerate solutions of (1.2) cannot be covered by fewer than n proper linear
subspaces of K.

Let K be a field of characteristic 0, let n > 2, and let I'; be an infinite subgroup
of K* of finite rank. Take I' :=T" = {x = (x1,...,2,) : x; € [y fori =1,... n}.
Then I' is a subgroup of (K*)" of finite rank.

Pick u = (uy,...,u,) € I' with b := u; +--- 4+ u,, # 0 and with ., u; # 0 for
each non-empty subset I of {1,...,n}. Let S, denote the group of permutations
of {1,...,n}. For o € S, write u, := (Us(1),... Uo(n)). Then u, (o € S,) are
non-degenerate solutions of

(4.1) blog+--+ bz, =1 inxel.
For i =1,...,n, the points u, with o(n) = i lie in the subspace given by

ui(xy + -+ xp1) — (b —uy)z, = 0.
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Therefore, for fixed u, the set {u, : 0 € S,,} can be covered by n subspaces. We
show that for “sufficiently general” u, this set cannot be covered by fewer than n
subspaces.

We need some auxiliary results.

Lemma 4.1. Let n > 2 and let S be a subset of S, of cardinality > (n — 1)!. Then

there are oy, ...,0, € S such that the polynomial
Xcr1(1) e in(n)
XG Ce XU "
(4.2) Fopoon X1y X) = | 2 2
Xon(1) KXo (n)

1s not identically zero.

Proof. We proceed by induction on n. For n = 2 the lemma is trivial. Assume
that n > 3.

First assume there are 4,5 € {1,...,n} such that the set S;; = {oc € S: (i) = j}
has cardinality > (n — 2)!. Then after a suitable permutation of the columns of the
determinant of (4.2) and a permutation of the variables X, ..., X, we obtain that
Spn has cardinality > (n—2)!. The elements of S,,,, permute 1,...,n—1. Therefore,
by the induction hypothesis, there are o4, ...,0,_1 € S,, such that the polynomial

XO'l(l) e Xal(n—l)
G(Xla"'aXn—l) = : :
Xop () Xop_i(n—1)

is not identically zero. Since S, has cardinality < (n — 1)!, there is a 0, € S with
on(n) =k # n. Therefore,

Fopoon(X1, o0, X501,0) = £X; - G( Xy, ..., X1) # 0.

So in particular, F,, ,, is not identically zero.

Now suppose that for each pair i,j € {1,...,n} the set S;; has cardinality
< (n —2)!. Together with our assumption that S has cardinality > (n — 1)!, this
implies that S;; # 0 for 4,5 € {1,...,n}. Thus, we may pick oy € S with (1) = 1,
oy € S with 09(2) =1,...,0, € § with 0,(n) = 1. Then F;,, ,. (1,0,...,0) =1,

hence F,, ,, is not identically zero. O

n
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Let T' denote the collection of tuples (oy,...,0,) in S, for which F,, _, is not

,,,,,

identically 0. Let B be the set of numbers of the shape u; + - -+ 4+ u,, where u =
(ug,...,u,) runs through all tuples in I' = I'} with

Zui#() for each I C {1,...,n} with I # 0;
(43) iel
Fo,  on(ui,...,u,) #0 foreach (oq,...,0,) €T

In particular (taking I = {1,...,n}), each b € B is non-zero.
Two numbers by, by € K* are called I'1-equivalent if by /by € T'y.

Lemma 4.2. The set B is not contained in the union of finitely many 'y -equivalence

classes.

Proof. First suppose that B # (). Assume that B is contained in the union
of finitely many I'i-equivalence classes. Let bq,...,b; be representatives for these
classes. Then for every u = (uy,...,u,) € I' with (4.3) there are b; € {by,...,b;}
and u € I'y such that

Uy + -+, = b

Hence for given b;, (u1/u,...,u,/u) is a non-degenerate solution of
1+t r,=b inx=(ry,...,x,) €.

Each such equation has only finitely many non-degenerate solutions. Therefore, for
each b; there are only finitely many possibilities for (u;/u,...,u,/u), hence only
finitely many possibilities for uy/uy. So if (uq,...,u,) runs through all tuples in '
with (4.3), then u; /us runs through a finite set, U, say.

Now let F' be the product of the polynomials F,, ,, ((o1,...,0,) €T),
Y Xi (I CA{1,...,n}, I #0) and X; —uX, (u € U). Then F(uy,...,u,) =0
for every uy,...,u, € I'1. But since I'y is infinite, this implies that F' is identically
zero. Thus, if we assume that B # () and that Lemma 4.2 is false we obtain a
contradiction. The assumption B = () leads to a contradiction in a similar manner,
taking for F' the product of the polynomials F,, ., ((01,...,0,) € T), > .o/ X;
(I CA{1,....,n}, I #0). O
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Lemma 4.2 implies that the collection of tuples (b=, ... b™1) (n times) with b € B
is not contained in the union of finitely many I'-equivalence classes. We show that
for every b € B, the set of non-degenerate solutions of (4.1) cannot be covered by
fewer than n proper linear subspaces of K".

Choose b € B, and choose u = (uy,...,u,) € I' with u; + --- + u, = b and with
(4.3). Then each vector u, (o € S,,) is a non-degenerate solution of (4.1).

We claim that a proper linear subspace of K™ cannot contain more than (n — 1)!
vectors u, (0 € S,,). For suppose some subspace L of K™ contains more than (n—1)!

vectors u,. Then by Lemma 4.1, there are o4,...,0, € S, such that u,, € L for
i =1,...,n and such that F,, _, isnot identically 0. But since u satisfies (4.3), we
have F,, 5, (u) # 0. Therefore, the vectors u,,,...,u,, are linearly independent.
Hence L = K™.

Our claim shows that at least n proper linear subspaces of K™ are needed to cover
the set u, (o € S,,). Therefore, the set of non-degenerate solutions of (4.1) cannot
lie in the union of fewer than n proper subspaces.
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