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Abstract. Recently, Corvaja and Zannier [2, Theorem 3] proved an
extension of the Subspace Theorem with polynomials of arbitrary degree
instead of linear forms. Their result states that the set of solutions in
Pn(K) (K number field) of the inequality being considered is not Zariski
dense.

In this paper we prove, by a different method, a generalization of
their result, in which the solutions are taken from an arbitrary projective
variety X instead of Pn. Further we give a quantitative version, which
states in a precise form that the solutions with large height lie in a finite
number of proper subvarieties of X, with explicit upper bounds for the
number and for the degrees of these subvarieties (Theorem 1.3 below).

We deduce our generalization from a general result on twisted heights
on projective varieties (Theorem 2.1 in Section 2). Our main tools are
the quantitative version of the Absolute Parametric Subspace Theorem
by Evertse and Schlickewei [5, Theorem 1.2], as well as a lower bound by
Evertse and Ferretti [4, Theorem 4.1] for the normalized Chow weight
of a projective variety in terms of its m-th normalized Hilbert weight.

1. Introduction

1.1. The Subspace Theorem can be stated as follows. Let K be a number

field (assumed to be contained in some given algebraic closure Q of Q), n a

positive integer, 0 < δ 6 1 and S a finite set of places of K. For v ∈ S, let

L
(v)
0 , . . . , L

(v)
n be linearly independent linear forms in Q[x0, . . . , xn]. Then
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the set of solutions x ∈ Pn(K) of

(1.1) log

(∏
v∈S

n∏
i=0

|L(v)
i (x)|v
‖x‖v

)
6 −(n+ 1 + δ)h(x)

is contained in the union of finitely many proper linear subspaces of Pn.

Here, h(·) denotes the absolute logarithmic height on Pn(Q), | · |v, ‖ · ‖v

(v ∈ S) denote normalized absolute values on K and normalized norms on

Kn+1, and each |·|v has been extended to Q (see §1.4 below). The Subspace

Theorem was first proved by Schmidt [14],[15] for the case that S consists

of the archimedean places of K, and then later extended by Schlickewei [13]

to the general case.

1.2. We state a generalization of the Subspace Theorem in which the linear

forms L
(v)
i are replaced by homogeneous polynomials of arbitrary degree,

and in which the solutions are taken from an n-dimensional projective sub-

variety of PN where N > n > 1.

By a projective subvariety of PN we mean a geometrically irreducible

Zariski-closed subset of PN . For a Zariski-closed subset X of PN and for a

field Ω, we denote by X(Ω) the set of Ω-rational points of X. For homoge-

neous polynomials f1, . . . , fr in the variables x0, . . . , xN we denote by

{f1 = 0, . . . , fr = 0} the Zariski-closed subset of PN given by f1 = 0, . . . ,

fr = 0.

Then our result reads as follows:

Theorem 1.1. Let K be a number field, S a finite set of places of K and

X a projective subvariety of PN defined over K of dimension n > 1 and

degree d. Let 0 < δ 6 1. Further, for v ∈ S let f
(v)
0 , . . . , f

(v)
n be a system of

homogeneous polynomials in Q[x0, . . . , xN ] such that

(1.2) X(Q) ∩
{
f

(v)
0 = 0, . . . , f (v)

n = 0
}

= ∅ for v ∈ S.

Then the set of solutions x ∈ X(K) of the inequality

(1.3) log

∏
v∈S

n∏
i=0

|f (v)
i (x)|1/ deg f

(v)
i

v

‖x‖v

 6 −(n+ 1 + δ)h(x)
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is contained in a finite union
⋃u

i=1

(
X ∩ {Gi = 0}

)
, where G1, . . . , Gu are

homogeneous polynomials in K[x0, . . . , xN ] not vanishing identically on X

of degree at most

(8n+ 6)(n+ 2)2d∆n+1δ−1 with ∆ := lcm
(
deg f

(v)
i : v ∈ S, 0 6 i 6 n

)
.

It should be noted that if N = n, X = Pn and f
(v)
0 , . . . , f

(v)
n are linear

forms, then condition (1.2) means precisely that f
(v)
0 , . . . , f

(v)
n are linearly

independent.

We give an immediate consequence:

Corollary 1.2. Let f0, . . . , fn be homogeneous polynomials in Q[x0, . . . , xn]

such that {
x ∈ Qn+1

: f0(x) = · · · = fn(x) = 0
}

= {0}.
Let 0 < δ 6 1. Then the set of solutions x = (x0, . . . , xn) ∈ Zn+1 of

n∏
i=0

|fi(x)|1/degfi 6
(

max
06i6n

|xi|
)−δ

is contained in some finite union of hypersurfaces {G1 = 0}∪· · ·∪{Gu = 0},
where each Gi is a homogeneous polynomial in Q[x0, . . . , xn] of degree at

most (8n+ 6)(n+ 2)2∆n+1δ−1 with ∆ := lcm
(
deg fi : 0 6 i 6 n

)
.

1.3. In their paper [6], Faltings and Wüstholz introduced a new method to

prove the Subspace Theorem, and gave some examples showing that their

method enables to prove extensions of the Subspace Theorem with higher

degree polynomials instead of linear forms, and with solutions from an ar-

bitrary projective variety. Ferretti [7],[8] observed the role of Mumford’s

degree of contact [10] (or the Chow weight, see §2.3 below) in the work of

Faltings and Wüstholz and worked out several other cases. Evertse and Fer-

retti [4] showed that the extensions of the Subspace Theorem as proposed

by Faltings and Wüstholz in [6] can be deduced directly from the Subspace

Theorem itself.

Recently, Corvaja and Zannier [2, Theorem 3] obtained a result similar

to our Theorem 1.1 with X = Pn. (More precisely, Corvaja and Zannier

gave an essentially equivalent affine formulation, in which the polynomials
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f
(v)
i need not be homogeneous and in which the solutions x have S-integer

coordinates). In fact, Corvaja and Zannier showed that the set of solutions

of (1.3) is contained in a finite union of hypersurfaces in Pn and gave some

further information about the structure of these hypersurfaces, on the other

hand they did not provide an explicit bound for their degrees. Corvaja and

Zannier stated their result only for the case X = Pn but with their methods

this may be extended to the case that X is a complete intersection. In

contrast, our result is valid for arbitrary projective subvarieties X of PN .

In their paper [2], Corvaja and Zannier proved also finiteness results for

several classes of Diophantine equations. It is likely, that similar results can

be deduced by means of our approach, but we have not gone into this.

1.4. Below we state a quantitative version of Theorem 1.1. We first intro-

duce the necessary notation. All number fields considered in this paper are

contained in a given algebraic closure Q of Q. Let K be a number field and

denote by GK the Galois group of Q over K. For x = (x0, . . . , xN) ∈ QN+1
,

σ ∈ GK we write σ(x) = (σ(x0), . . . , σ(xN)). Denote byMK the set of places

of K. For v ∈ MK , choose an absolute value |.|v normalized such that the

restriction of |.|v to Q is |.|[Kv :R]/[K:Q] if v is archimedean and |.|[Kv :Qp]/[K:Q]
p

if v lies above the prime number p. Here |.| is the ordinary absolute value,

and |.|p is the p-adic absolute value with |p|p = p−1. These absolute values

satisfy the product formula
∏

v∈MK
|x|v = 1 for x ∈ K∗.

Given x = (x0, . . . , xN) ∈ KN+1 we put ‖x‖v := max(|x0|v, . . . , |xN |v) for

v ∈ MK . Then the absolute logarithmic height of x is defined by h(x) =

log
(∏

v∈MK
‖x‖v

)
. By the product formula, h(λx) = h(x) for λ ∈ K∗.

Moreover, h(x) depends only on x and not on the choice of the particular

number field K containing x0, . . . , xN . Thus, this function h gives rise to a

height on PN(Q).

Given a system f0, . . . , fm of polynomials with coefficients in Q we define

h(f0, . . . , fm) := h(a), where a is a vector consisting of the non-zero coef-

ficients of f0, . . . , fm. Further by K(f0, . . . , fm) we denote the extension of

K generated by the coefficients of f0, . . . , fm. The height of a projective

subvariety X of PN defined over Q is defined by h(X) := h(FX), where FX

is the Chow form of X (see §2.3 below).
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For every v ∈ MK we choose an extension of | · |v to Q (this amounts to

extending | · |v to the algebraic closure Kv of Kv and choosing an embedding

of Q into Kv). Further for v ∈ MK , x = (x0, . . . , xN) ∈ QN+1
we put

‖x‖v := max(|x0|v, . . . , |xN |v).

1.5. Schmidt [16] was the first to obtain a quantitative version of the Sub-

space Theorem, giving an explicit upper bound for the number of subspaces

containing all solutions with ‘large’ height. Since then his basic result has

been improved and generalized in various directions. Evertse and Schlick-

ewei [5, Theorem 3.1] deduced a quantitative version of the Absolute Sub-

space Theorem, dealing with solutions in Pn(Q) of some absolute extension

of (1.1). Their result can be stated as follows.

Let againK be a number field, and S a finite set of places ofK of cardinality

s. Let n > 1, 0 < δ 6 1. For v ∈ S, let L
(v)
0 , . . . , L

(v)
n be linearly indepen-

dent linear forms in Q[x0, . . . , xn]. Put D :=
∏

v∈S | det(L
(v)
0 , . . . , L

(v)
n )|v and

assume that [K(L
(v)
i ) : K] 6 C for v ∈ S, i = 0, . . . , n. Then the set of

x ∈ Pn(Q) with

log

(
D−1

∏
v∈S

n∏
i=0

max
σ∈GK

|L(v)
i (σ(x))|v
‖σ(x)‖v

)
6 −(n+ 1 + δ)h(x) ,

h(x) > 9(n+ 1)δ−1 log(n+ 1) + max
(
h(L

(v)
i ) : v ∈ S, 0 6 i 6 n

)
is contained in the union of not more than

(3n+ 3)(2n+2)s8(n+10)2δ−(n+1)s−n−5 log(4C) log log(4C)

proper linear subspaces of Pn(Q) which are all defined over K.

Typically, the lower bound for h(x) depends on the linear forms L
(v)
i , while

the upper bound for the number of subspaces does not depend on the L
(v)
i .

1.6. We now state an analogue for inequalities with higher degree polyno-

mials instead of linear forms. We first list some notation:

δ is a real with 0 < δ 6 1, K is a number field, S is a finite set of places of K

of cardinality s, X is a projective subvariety of PN defined over K of dimen-

sion n > 1 and degree d, f
(v)
0 , . . . , f

(v)
n (v ∈ S) are systems of homogeneous
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polynomials in Q[x0, . . . , xN ],{
C := max

(
[K(f

(v)
i ) : K] : v ∈ S, i = 0, . . . , n

)
,

∆ := lcm
(
deg f

(v)
i : v ∈ S, i = 0, . . . , n

)
,

(1.4)



A1 := (20nδ−1)(n+1)s · exp
(
212n+16n4nδ−2nd2n+2∆n(2n+2)

)
·

· log(4C) log log(4C),

A2 := (8n+ 6)(n+ 2)2d∆n+1δ−1,

A3 := exp
(
26n+20n2n+3δ−n−1dn+2∆n(n+2) log(2Cs)

)
,

H := log(2N) + h(X) + max
(
h(1, f

(v)
i ) : v ∈ S, 0 6 i 6 n

)
.

(1.5)

Theorem 1.3. Assume that

(1.2) X(Q) ∩
{
f

(v)
0 = 0, . . . , f

(v)
n = 0

}
= ∅ for v ∈ S.

Then there are homogeneous polynomials G1, . . . , Gu ∈ K[x0, . . . , xN ] with

u 6 A1 , degGi 6 A2 for i = 1, . . . , u

which do not vanish identically on X, such that the set of x ∈ X(Q) with

(1.6) log

∏
v∈S

n∏
i=0

max
σ∈GK

|f (v)
i (σ(x))|1/ deg f

(v)
i

v

‖σ(x)‖v

 6 −(n+ 1 + δ)h(x) ,

(1.7) h(x) > A3 ·H

is contained in
⋃u

i=1

(
X ∩ {Gi = 0}

)
.

Clearly, the bounds in Theorem 1.3 are much worse than those in the

result of Evertse and Schlickewei. It would be very interesting if one could

replace A1, A3 by quantities which are at most exponential in (some power

of) n and which are polynomial in δ−1, d,∆. Further, we do not know

whether the dependence of A2 on δ is needed.

1.7. Our starting point is a result for twisted heights on Pn (a quantitative

version of the Absolute Parametric Subspace Theorem), due to Evertse and

Schlickewei [5, Theorem 2.1] (see also Proposition 3.1 in Section 3 below).
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From this, we deduce an analogous result for twisted heights on arbitrary

projective varieties; the statement of this result is in Section 2 (Theorem 2.1)

and its proof in Section 3. The proof involves some arguments from Ev-

ertse and Ferretti [4], in particular an explicit lower bound of the normalized

Chow weight of a projective variety in terms of the m-th normalized Hilbert

weight of that variety. In Section 4 we give some height estimates; here we

use heavily Rémond’s exposé [12]. Then in Section 5 we deduce Theo-

rem 1.3. Using that PN(K) has only finitely many points with height below

any given bound, Theorem 1.1 follows at once from Theorem 1.3.

2. Twisted heights

2.1. The quantitative version of the Absolute Parametric Subspace The-

orem of Evertse and Schlickewei mentioned in the previous section deals

with a class of twisted heights defined on Pn(Q) parametrized by a real

Q > 1. Roughly speaking, this result states that there are a finite number

of proper linear subspaces of Pn such that for every sufficiently large Q,

the set of points in Pn(Q) with small Q-height is contained in one of these

subspaces. Theorem 2.1 stated below is an analogue in which the points are

taken from an arbitrary projective variety instead of Pn. Loosely speaking,

Theorem 1.3 stated in the previous section is proved by defining a suitable

finite morphism ϕ from X to a projective variety Y ⊂ PR and a finite num-

ber of classes of twisted heights on Y as above, and applying Theorem 2.1

to each of these classes.

2.2. Let K be a number field. For finite extensions of K we define normal-

ized absolute values similarly as for K. Thus, if L is a finite extension of

K, w is a place of L, and v is the place of K lying below w, then

(2.1) |x|w = |x|d(w|v)
v for x ∈ K, with d(w|v) :=

[Lw : Kv]

[L : K]
,

where Kv, Lw denote the completions at v, w, respectively.

We denote points on PR by y = (y0, . . . , yR). For v ∈ MK , let cv =

(c0v, . . . , cRv) be a tuple of reals such that c0v = · · · = cRv = 0 for all but

finitely many places v ∈MK and put c = (cv : v ∈MK). Further, let Q be
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a real > 1. We define a twisted height on PR(Q) as follows. First put

HQ,c(y) :=
∏

v∈MK

max
06i6R

(
|yi|vQciv

)
for y = (y0, . . . , yR) ∈ PR(K);

by the product formula, this is well-defined on PR(K). For any finite ex-

tension L of K we put

(2.2) ciw := civ · d(w|v) for w ∈ML,

where ML is the set of places of L and v the place of K lying below w. Then

for y ∈ PR(Q), we define

(2.3) HQ,c(y) :=
∏

w∈ML

max
06i6R

(
|yi|wQciw

)

where L is any finite extension of K such that y ∈ PR(L). In view of (2.1)

this definition does not depend on L.

2.3. Let Y be a (by definition irreducible) projective subvariety of PR of

dimension n and degree D, defined over K. We recall that up to a constant

factor there is a unique polynomial FY (u(0), . . . ,u(n)) with coefficients in

K in blocks of variables u(0) = (u
(0)
0 , . . . , u

(0)
R ), . . . , u(n) = (u

(n)
0 , . . . , u

(n)
R ),

called the Chow form of Y , with the following properties:

FY is irreducible over Q; FY is homogeneous in each block u(h) (h =

0, . . . , n); and FY (u(0), . . . ,u(n)) = 0 if and only if Y and the hyperplanes∑R
i=0 u

(h)
i yi = 0 (h = 0, . . . , n) have a Q-rational point in common.

It is well-known that the degree of FY in each block u(h) is D.

Let c = (c0, . . . , cR) be a tuple of reals. Introduce an auxiliary variable t

and substitute tciu
(h)
i for u

(h)
i in FY for h = 0, . . . , n, i = 0, . . . , R. Thus we

obtain an expression

FY (tc0u
(0)
0 , . . . , tcRu

(0)
R ; . . . ; tc0u

(n)
0 , . . . , tcRu

(n)
R )(2.4)

= te0G0(u
(0), . . . ,u(n)) + · · ·+ terGr(u

(0), . . . ,u(n)),
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with G0, . . . , Gr ∈ K[u(0), . . . ,u(n)] and e0 > e1 > · · · > er. Now we define

the Chow weight of Y with respect to c 1 by

(2.5) eY (c) := e0.

2.4. We formulate our main result for twisted heights. Below, Y is a pro-

jective subvariety of PR of dimension n > 1 and degree D, defined over K,

and cv = (c0v, . . . , cRv) (v ∈MK) are tuples of reals such that

civ > 0 for v ∈MK , i = 0, . . . , R;(2.6)

c0v = · · · = cRv = 0 for all but finitely many v ∈MK ;(2.7) ∑
v∈MK

max(c0v, . . . , cRv) 6 1.(2.8)

Put

(2.9) EY (c) :=
1

(n+ 1)D

(∑
v∈MK

eY (cv)

)
.

Further, let 0 < δ 6 1, and put

(2.10)


B1 := exp

(
210n+4δ−2nD2n+2

)
· log(4R) log log(4R),

B2 := (4n+ 3)Dδ−1,

B3 := exp
(
25n+4δ−n−1Dn+2 log(4R)

)
.

Theorem 2.1. There are homogeneous polynomials F1, . . . , Ft ∈
K[y0, . . . , yR] with

t 6 B1, degFi 6 B2 for i = 1, . . . , t,

which do not vanish identically on Y , such that for every real number Q

with

logQ > B3 · (h(Y ) + 1)

1The Chow weight was introduced in [4], and named such because of its relation to the
Chow form. It is an adaptation of the degree of contact earlier introduced by Mumford
[10], so perhaps the naming ’Mumford weight’ would have been a happier choice. Roughly
speaking, the degree of contact of Y with respect to c is defined for integer tuples c and
it is equal to er instead of e0.
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there is Fi ∈ {F1, . . . , Ft} with

(2.11)
{
y ∈ Y (Q) : HQ,c(y) 6 QEY (c)−δ

}
⊂ Y ∩

{
Fi = 0

}
.

3. Proof of Theorem 2.1

3.1. We first recall the quantitative version of the Absolute Parametric

Subspace Theorem of Evertse and Schlickewei. As before, K is an alge-

braic number field and R, n are integers with R > n > 1. We denote

the coordinates on Pn by (x0, . . . , xn). Given an index set I = {i0, . . . , in}
with i0 < · · · < in and linear forms Lj =

∑n
i=0 aijxi (j ∈ I) we write

det(Lj : j ∈ I) := det(ai,ij)i,j=0,...,n.

Let L0, . . . , LR be linear forms in K[x0, . . . , xn] with rank{L0, . . . , LR} =

n+1. Further, let Iv (v ∈MK) be subsets of {0, . . . , R} of cardinality n+1

such that

(3.1) rank{Li : i ∈ Iv} = n+ 1 for v ∈MK .

Define

(3.2) H :=
∏

v∈MK

max
I
| det(Li : i ∈ I)|v , D :=

∏
v∈MK

| det(Li : i ∈ Iv)|v ;

here the maximum is taken over all subsets I of {0, . . . , R} of cardinality

n+ 1. According to [4, Lemma 7.2] we have

(3.3) D > H1−(R+1
n+1) .

Let dv = (div : i ∈ Iv) (v ∈MK) be tuples of reals such that

div = 0 for i ∈ Iv and for all but finitely many v ∈MK ,(3.4) ∑
v∈MK

∑
i∈Iv

div = 0,(3.5)

∑
v∈MK

max(div : i ∈ Iv) 6 1(3.6)

and write d = (dv : v ∈MK).
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We define a twisted height on Pn(Q) as follows. For any real number

Q > 1 we first put

H∗
Q,d(x) =

∏
v∈MK

(
max
i∈Iv

|Li(x)|vQ−div

)
for x ∈ Pn(K).

More generally, if L is any finite extension of K, put

(3.7) diw := d(w|v)div, Iw := Iv

where v is the place of K lying below w. Then for x ∈ Pn(Q) we define

(3.8) H∗
Q,d(x) =

∏
w∈ML

(
max
i∈Iw

|Li(x)|vQ−diw

)
where L is any finite extension of K such that x ∈ Pn(L). This is indepen-

dent of the choice of L.

Now the result of Evertse and Schlickewei [5, Theorem 2.1] is as follows:

Proposition 3.1. Let Iv (v ∈ MK), d = (dv : v ∈ MK), satisfy (3.1),

(3.4), respectively, and let 0 < ε 6 1.

There are proper linear subspaces T1, . . . , Tt of Pn, defined over K, with

(3.9) t 6 4(n+9)2ε−n−5 log(3R) log log(3R),

such that for every real number Q with

(3.10) Q > max
(
H1/(R+1

n+1), (n+ 1)2/ε
)

there is Ti ∈ {T1, . . . , Tt} with

(3.11) {x ∈ Pn(Q) : H∗
Q,d(x) 6 D1/(n+1)Q−ε} ⊂ Ti .

3.2. We recall some results from [4]. As in Section 2, we denote the coor-

dinates on PR by (y0, . . . , yR). Let Y be a projective variety of PR defined

over K of dimension n and degree D. Let IY be the prime ideal of Y , i.e.

the ideal of polynomials from Q[y0, . . . , yR] vanishing identically on Y . For

m ∈ N, denote by Q[y0, . . . , yR]m the vector space of homogeneous polyno-

mials in Q[y0, . . . , yR] of degree m, and put (IY )m :=Q[y0, . . . , yR]m ∩ IY .

Then the Hilbert function of Y is defined by

HY (m) := dimQ

(
Q[y0, . . . , yR]m/(IY )m

)
.
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The scalar product of a = (a0, . . . , aR), b = (b0, . . . , bR) ∈ RR+1 is given by

a · b := a0b0 + · · · + aRbR. For a = (a0, . . . , aR) ∈ (Z>0)
R+1, denote by ya

the monomial ya0
0 · · · yaR

R . Then the m-th Hilbert weight of Y with respect

to a tuple c = (c0, . . . , cR) ∈ RR+1 is defined by

(3.12) sY (m, c) := max

HY (m)∑
i=1

ai · c

 ,

where the maximum is taken over all sets of monomials {ya1 , . . . ,yaHY (m)},
whose residue classes modulo (IY )m form a basis of Q[y0, . . . , yR]m/(IY )m.

We recall Evertse and Ferretti [4, Theorem 4.1]:

Proposition 3.2. Let c = (c0, . . . , cR) be a tuple of non-negative reals. Let

m > D be an integer. Then

(3.13) 1
mHY (m)

· sY (m, c) > 1
(n+1)D

· eY (c)− (2n+1)D
m

·max(c0, . . . , cR) .

Let m be a positive integer. Put

nm := HY (m)− 1, Rm :=
(

R+m
m

)
− 1,

and let ya0 , . . . ,yaRm be the monomials of degree m in y0, . . . , yR, in some

order. Denote by ϕm the Veronese map of degree m, y 7→ (ya0 , . . . ,yaRm ).

Lastly, denote by Ym the smallest linear subspace of PRm containing ϕm(Y ).

Lemma 3.3. (i) Ym is defined over K;

(ii) dimYm = nm 6 D
(

m+n
n

)
;

(iii) h(Ym) 6 Dm
(

m+n
n

)(
D−1h(Y ) + (3n+ 4) log(R + 1)

)
.

Proof. (i),(iii) [4, Lemma 8.3]; (ii) Chardin [1, Théorème 1]. �

3.3. Let cv ∈ RR (v ∈ MK) be tuples with (2.6) and (2.8). For a suitable

value of m, we link the twisted height HQ,c from Theorem 2.1 to a twisted

height on Pnm to which Proposition 3.1 is applicable. Put

(3.14) m := [(4n+ 3)Dδ−1] .



SUBSPACE THEOREM WITH POLYNOMIALS OF HIGHER DEGREE 13

Then by Proposition 3.2 and (2.6) we have

(3.15)
1

mHY (m)
·

(∑
v∈MK

sY (m, cv)

)
>

1

(n+ 1)D
·

(∑
v∈MK

eY (cv)

)
− δ

2
.

Denote as before the coordinates on PR by y = (y0, . . . , yR), those on

Pnm = PHY (m)−1 by x = (x0, . . . , xnm), and those on PRm = P(R+m
m )−1 by

z = (z0, . . . , zRm). Since Ym is an nm-dimensional linear subspace of PRm

defined over K, there are linear forms L0, . . . , LRm ∈ K[x0, . . . , xnm ] such

that the map

ψm : x 7→ (L0(x), . . . , LRm(x))

is a linear isomorphism from Pnm to Ym. Thus, ψ−1
m ϕm is an injective map

from Y into Pnm .

For v ∈ MK there is a subset Iv of {0, . . . , Rm} of cardinality nm + 1 =

HY (m) such that {yai : i ∈ Iv} is a basis of Q[y0, . . . , yR]m/(IY )m and

(3.16) sY (m, cv) =
∑
i∈Iv

ai · cv .

Now define the tuples dv = (div , i ∈ Iv) (v ∈MK) by

div = − 1

m
· ai · cv +

1

m(nm + 1)

(∑
j∈Iv

aj · cv

)
(3.17)

= − 1

m
· ai · cv +

1

mHY (m)
· sY (m, cv) ,

and put d = (dv : v ∈MK). Similarly to (3.2) we define

H :=
∏

v∈MK

max
I
| det(Li : i ∈ I)|v, D :=

∏
v∈MK

| det(Li : i ∈ Iv)|v ,

where the maximum is taken over all subsets I of {0, . . . , Rm} of cardinality

nm + 1. Then by, e.g., [4, page 1300] we have

(3.18) logH = h(Ym) .

We define in a usual manner a twisted height on Pnm(Q) by putting

H∗
Q,d(x) =

∏
w∈ML

max
i∈Iw

(
|Li(x)|wQ−diw

)
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for x ∈ Pnm(Q), where L is any finite extension of K such that x ∈ Pnm(L),

Q > 1 is a real number, and diw = d(w|v)div, Iw = Iv with v the place of K

below w. It follows at once from (2.7) that div = 0 for all but finitely many

v and for i ∈ Iv. Therefore this height is well-defined.

Lemma 3.4. Assume that

(3.19) Q > D6/δm(nm+1) .

Let y ∈ Y (Q) be such that

(3.20) HQ,c(y) 6 QEY (c)−δ,

where EY (c) = 1
(n+1)D

(∑
v∈MK

eY (cv)
)
. Let x = ψ−1

m ϕm(y). Then

(3.21) H∗
Qm,d(x) 6 D1/(nm+1)(Qm)−δ/3 .

Proof. Put sv := 1
mHY (m)

sY (m, cv), s :=
∑

v∈MK
sv. We first show that

(3.22) H∗
Qm,d(x) 6 Q−ms

(
HQ,c(y)

)m
.

Take a finite extension L of K such that y ∈ Y (L). We have x ∈ Pnm(L)

and Li(x) = yai for i = 0, . . . , Rm. So for w ∈ ML we have (putting

sw := d(w|v)sv, with v the place of K below w),

max
i∈Iw

(
|Li(x)|w(Qm)−diw

)
= max

i∈Iw

(
|yai|wQai·cw−msw

)
6 max

i=0,...,Rm

(
|yai|wQai·cw−msw

)
6

(
Q−sw max

i=0,...,R

(
|yi|wQciw

))m

.

By taking the product over all w ∈ML, (3.22) follows.

Now a successive application of (3.19), (3.22), (3.20), (3.15) gives

H∗
Qm,d(x) 6 D1/(nm+1)Qmδ/6 ·Q−msQmEY (c)−mδ 6 D1/(nm+1)(Qm)−δ/3 .

�

3.4. To complete the proof of Theorem 2.1 we apply Proposition 3.1 to

(3.21); that is, we apply Proposition 3.1 with n = nm, R = Rm, ε = δ/3,

and with Qm in place of Q. For the moment we assume

(3.23) logQ >
6

(nm + 1)mδ
(Rm + 1)nm+1(h(Ym) + 1) .
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In view of (3.18), this is precisely (3.10) with R = Rm, n = nm, ε = δ/3 and

with Qm in place of Q.

We have to verify that (3.1), (3.4), (3.5), (3.6) are satisfied with nm, Rm

in place of n,R. First, (3.1) follows at once from the definition of Iv and

the fact that ψm is a linear isomorphism. Secondly, (3.4) follows from (2.7)

and (3.17). Thirdly, (3.5) follows from (3.17), (3.16). Finally, (3.6) is conse-

quence of (2.6), (2.8) and the fact that 1
mHY (m)

· sY (m, cv) can be expressed

as a maximum of linear forms in c0v, . . . , cRv, whose coefficients are non-

negative and have sum equal to 1.

Thus, there are proper linear subspaces T1, . . . , Tt of Pnm , defined over K,

with

(3.24) t 6 4(nm+9)2(3/δ)nm+5 log(3Rm) log log(3Rm)

such that for every Q with (3.23) there is Ti ∈ {T1, . . . , Tt} with

{x ∈ Pnm(Q) : H∗
Qm,d(x) 6 D1/(nm+1)(Qm)−δ/3} ⊂ Ti .

For each space Ti there is a linear form Li ∈ K[z0, . . . , zRm ] vanishing

identically on ψm(Ti) but not on Ym. Since by definition, Ym is the smallest

linear subvariety of PRm containing ϕm(Y ), the linear form Li does not

vanish identically on ϕm(Y ). Replacing in Li the coordinate zj by yaj for

j = 0, . . . , Rm, we obtain a homogeneous polynomial Fi ∈ K[y0, . . . , yR] of

degree m not vanishing identically on Y such that if x = ψ−1
m ϕm(y) ∈ Ti,

then Fi(y) = 0.

It is easily seen that assumption (3.23), together with (3.18) and (3.3),

implies (3.19); hence Lemma 3.4 is applicable. Thus, we infer that there

are homogeneous polynomials F1, . . . , Ft ∈ K[y0, . . . , yR] of degree m, with t

satisfying (3.24), such that for every Q with (3.23) there is Fi ∈ {F1, . . . , Ft}
with

{y ∈ Y (Q) : HQ,c(y) 6 QEY (c)−δ} ⊂ Y ∩
{
Fi = 0

}
.

By (3.14) we have m 6 (4n+3)Dδ−1, which is the quantity B2 from (2.10).

So to complete the proof of Theorem 2.1, it suffices to show that the right-

hand side of (3.24) is at most B1 and that the right-hand side of (3.23) is

at most B3 · (h(Y ) + 1), where B1, B3 are given by (2.10).
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Using m > 7 and the inequality

(3.25)

(
x+ y

y

)
6

(x+ y)x+y

xxyy
=
(
1 +

y

x

)x

·
(
1 +

x

y

)y

6
(
e
(
1 +

x

y

))y

for positive integers x, y, we infer

(3.26) Rm =

(
R +m

m

)
− 1 6

(
e
(
1 +

R

m

))m

6 (4R)m .

So by (3.14),

log(3Rm) log log(3Rm) 6 2m2 log(4R) log log(4R)

6 2(8n+ 6)2D2δ−2 log(4R) log log(4R) .

Further, by Lemma 3.3, (ii),

nm 6 D

(
m+ n

n

)
6 D

(
e(1 +

m

n
)
)n

(3.27)

6 D
(
e(1 + 7Dδ−1)

)n
6 25nδ−nDn+1 .

Hence the right-hand side of (3.24) is at most

4(25nδ−nDn+1+9)2(3δ−1)25nδ−nDn+1+5 ×

×2(8n+ 6)2D2δ−2 log(4R) log log(4R)

6 exp
(
210n+4δ−2nD2n+2

)
· log(4R) log log(4R) = B1 ,

while by Lemma 3.3, (3.14), (3.26), (3.27), the right-hand side of (3.23) is

at most

6

(nm + 1)mδ

(
(4R)m + 1

)nm+1

×

×
(
1 +Dm

(
m+ n

n

)(
D−1h(Y ) + (3n+ 4) log(R + 1)

)
6 δ−1

(
(4R)(4n+3)Dδ−1

+ 1
)25nδ−nDn+1+1

×

×25nδ−nDn+1(3n+ 1) log(R + 1) · (h(Y ) + 1)

< exp
(
25n+4δ−n−1Dn+2 log(4R)

)
· (h(Y ) + 1) = B3 · (h(Y ) + 1) .

This completes the proof of Theorem 2.1. �
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4. Height estimates

4.1. In this section we deduce some height estimates, using results from

Rémond’s paper [12].

Let K be a number field. Denote as before the set of places of K by

MK , and denote the sets of archimedean and non-archimedean places of

K by M∞
K and M0

K , respectively. We use the normalized absolute values

| · |v introduced in §1.4. Recall that for each of these absolute values we

have chosen an extension to Q. In particular, for each v ∈ M∞
K there is an

isomorphic embedding σv : Q ↪→ C such that |x|v = |σv(x)|[Kv :R]/[K:Q] for

x ∈ Q.

We represent polynomials as f =
∑

m∈Mf
cf (m)m, where the symbol m

denotes a monomial, Mf is a finite set of monomials, and cf (m) (m ∈Mf )

are the coefficients. For any map σ on the field of definition of f we put

σ(f) :=
∑

m∈Mf
σ(cf (m))m.

We define norms for polynomials fi =
∑

m∈Mfi
cfi

(m)m (i = 1, . . . , r)

with complex coefficients:

‖f1, . . . , fr‖ := max
(
|cfi

(m)| : 1 6 i 6 r, m ∈Mfi

)
,

‖f1, . . . , fr‖1 :=
r∑

i=1

∑
m∈Mfi

|cfi
(m)|

and for polynomials f1, . . . , fr with coefficients in Q:

(4.1)

‖f1, . . . , fr‖v := max
(
|cfi

(m)|v : 1 6 i 6 r, m ∈Mfi

)
(v ∈MK),

‖f1, . . . , fr‖v,1 := ‖σv(f1), . . . , σv(fr)‖[Kv :R]/[K:Q]
1 (v ∈M∞

K ),

‖f1, . . . , fr‖v,1 := ‖f1, . . . , fr‖v (v ∈M0
K).

Lastly, for polynomials f1, . . . , fr with coefficients in K we define heights

h(f1, . . . , fr) := log

( ∏
v∈MK

‖f1, . . . , fr‖v

)
,

h1(f1, . . . , fr) := log

( ∏
v∈MK

‖f1, . . . , fr‖v,1

)
.
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More generally, for polynomials f1, . . . , fr with coefficients in Q we define

h(f1, . . . , fr), h1(f1, . . . , fr) by choosing a number field K containing the

coefficients of f1, . . . , fr and using the above definitions; this is independent

of the choice of K.

We state without proof some easy inequalities. First, for x ∈ Qn+1
and

f ∈ Q[x0, . . . , xn] homogeneous of degree D we have

(4.2) ‖f(x)‖v 6 ‖f‖v,1‖x‖D
v for v ∈MK .

Secondly, for x ∈ PN(Q) and f0, . . . , fr ∈ Q[x0, . . . , xN ] homogeneous of

degree D we have

(4.3) h(y) 6 Dh(x) + h1(f0, . . . , fr) ,

where y = (f0(x), . . . , fr(x)).

Thirdly, if f ∈ Q[x0, . . . , xn] is homogeneous of degreeD, and if g0, . . . , gn ∈
Q[x0, . . . , xm] are homogeneous of equal degree, then for the polynomial

f(g0, . . . , gn), obtained by substituting the polynomial gi(x0, . . . , xm) for xi

in f for i = 0, . . . , n, we have

(4.4) h1

(
f(g0, . . . , gn)

)
6 h1(f) +Dh1(g0, . . . , gn) .

Finally, for f1, . . . , fr ∈ Q[x1, . . . , xn] we have

(4.5) h(f1, . . . , fr) 6 h1(f1, . . . , fr) 6 h(f1, . . . , fr) + logM ,

where M is the number of non-zero coefficients in f1, . . . , fr.

4.2. We define another height for multihomogeneous polynomials. Given

a field Ω and tuples of non-negative integers l = (l0, . . . , lm), we write Ω[l]

for the set of polynomials with coefficients in Ω in blocks of variables z(0) =

(z
(0)
0 , . . . , z

(0)
l0

), . . . , z(m) = (z
(m)
0 , . . . , z

(m)
lm

) which are homogeneous in block

z(h) for h = 0, . . . ,m. For f ∈ Ω[l] we denote by degh f the degree of f in

block z(h).

Let

S(l + 1) := {(z0, . . . , zl) ∈ Cl+1 : |z0|2 + · · ·+ |zl|2 = 1} ,

S(l) := S(l0 + 1)× · · · × S(lm + 1) .
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Denote by µl+1 the unique U(l + 1,C)-invariant measure on S(l + 1) nor-

malized such that µl+1(S(l + 1)) = 1, and let µl = µl0+1 × · · · × µlm+1 be

the product measure on S(l). Then for f ∈ C[l] we set

(4.6) m(f) :=

∫
S(l)

log |f(z(0), . . . , z(m))| · µl +
1

2

m∑
h=0

degh f

(
lh∑

j=1

1

2j

)
.

Given a number field K, we define for f ∈ K[l],

(4.7) h∗(f) :=
∑

v∈M∞
K

[Kv : R]

[K : Q]
m(σv(f)) +

∑
v∈M0

K

log ‖f‖v .

Again, this does not depend on the choice of the number field K containing

the coefficients of f , so it defines a height on Q[l]. It is not difficult to verify

that

(4.8) h∗(f1 · · · fr) =
r∑

i=1

h∗(fi) for f1, . . . , fr ∈ Q[l].

Lemma 4.1. Let l = (l0, . . . , lm) be a tuple of non-negative integers, and

f ∈ Q[l], f 6= 0. Then

|h∗(f)− h1(f)| 6
m∑

h=0

(degh f) log(lh + 1) .

Proof. Put A :=
∏m

h=0(lh + 1)degh f . According to the definitions of h∗

and h1, it suffices to prove that for f ∈ C[l],

(4.9) |m(f)− log ‖f‖1| 6 logA.

Using |f(z(0), . . . , z(m))| 6 ‖f‖1 for (z(0), . . . , z(m)) ∈ S(l) we obtain at once

m(f) 6 log ‖f‖1 +
1

2

m∑
h=0

degh f

(
lh∑

j=1

1

2j

)
6 log ‖f‖1 + logA .

To prove the inequality in the other direction, write f =
∑

m∈Mf
c(m)m,

where the sum is over a finite number of monomials m =
∏m

h=0

∏lh
j=0(z

(h)
j )ahj

with
∑lh

j=0 ahj = degh f for h = 0, . . . ,m. For each such monomial we put

α(m) :=
m∏

h=0

(degh f)!

ah0! · · · ah,lh !
.
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Then by an argument on [12, pp. 111,112], ∑
m∈Mf

α(m)−1|c(m)|2
1/2

6 A1/2 exp(m(f)) .

On combining this with the Cauchy-Schwarz inequality and
∑

m α(m) 6 A,

we obtain

‖f‖1 =
∑

m∈Mf

|c(m)| 6

 ∑
m∈Mf

α(m)

1/2

·

 ∑
m∈Mf

α(m)−1|c(m)|2
1/2

6 A exp(m(f)) .

This proves log ‖f‖1 6 m(f) + logA, hence (4.9). �

Lemma 4.2. Let f1, . . . , fr ∈ Q[l] and f =
∏r

i=1 fi. Then

h1(f) 6
r∑

i=1

h1(fi) 6 h1(f) + 2
m∑

h=0

(degh f) log(lh + 1) .

Proof. The first inequality is straightforward while the second follows

from Lemma 4.1 and (4.8). �

4.3. In this subsection, X is a projective subvariety of PN of dimension

n > 1 and degree d defined over Q.

Let ∆ be a positive integer. Denote by M∆ the collection of all monomials

of degree ∆ in the variables x0, . . . , xN . Let u(h) = (u
(h)
m : m ∈ M∆)

(h = 0, . . . , n) be blocks of variables. Up to a constant factor there is a

unique, irreducible polynomial FX,∆ ∈ Q[u(0), . . . ,u(n)], called the ∆-Chow

form of X, having the following property (see [11]):

FX,∆(u(0), . . . ,u(n)) = 0 if and only if there is a Q-rational point in the

intersection of X and the hypersurfaces
∑

m∈M∆
u

(h)
m m = 0 (h = 0, . . . , n).

Notice that FX,1 is none other than the Chow form FX of X. The form

FX,∆ corresponds to the Chow form Fϕ∆(X) of the image of X under the

Veronese embedding ϕ∆ of degree ∆. It is known that FX,∆ is homogeneous

of degree ∆nd in u(h) for h = 0, . . . , n.
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For a monomial m = xa0
0 · · ·xaN

N of degree ∆, put β(m) = ∆!/a0! · · · aN !.

Then the modified Chow form GX,∆(u(0), . . . ,u(n)) is obtained by substitut-

ing β(m)1/2u
(h)
m for the variable u

(h)
m in the polynomial FX,∆(u(0), . . . ,u(n)).

Notice that GX,1 = FX,1 = FX . Further, using the estimates |β(m)| 6 ∆!,

|β(m)|p > |∆!|p for each prime number p, one easily obtains

|h1(FX,∆)− h1(GX,∆)| 6
1

2
(n+ 1)d∆n log(∆!)(4.10)

6
1

2
(n+ 1)d∆n+1 log ∆ .

The following is a special case of a fundamental result of Rémond [12, Thm.

2, pp. 99,100]:

Lemma 4.3. h∗(GX,∆) = ∆n+1h∗(GX,1) = ∆n+1h∗(FX).

From this we deduce:

Lemma 4.4. h1(FX,∆) 6 ∆n+1h(FX) + 5(n+ 1)d∆n+1 log(N + ∆).

Proof. Recall that FX,∆ and GX,∆ are homogeneous of degree ∆nd in

each block of variables u(h) (h = 0, . . . , n) and that each of these blocks

has
(

N+∆
∆

)
6 (N + ∆)∆ variables (that is, the number of coefficients of a

homogeneous polynomial of degree ∆ in N + 1 variables). So by (4.10) and

Lemma 4.1,

h1(FX,∆) 6 h1(GX,∆) +
1

2
(n+ 1)d∆n+1 log ∆

6 h∗(GX,∆) +
1

2
(n+ 1)d∆n+1 log ∆ + (n+ 1)d∆n log

(
N+∆

∆

)
6 h∗(GX,∆) +

3

2
(n+ 1)d∆n+1 log(N + ∆) .

Then using Lemma 4.3, again Lemma 4.1 and inequality (4.5) we obtain

h1(FX,∆) 6 ∆n+1h∗(FX) +
3

2
(n+ 1)d∆n+1 log(N + ∆)

6 ∆n+1h1(FX) +
5

2
(n+ 1)d∆n+1 log(N + ∆)

6 ∆n+1h(FX) +
5

2
(n+ 1)d∆n+1 log(N + ∆) + ∆n+1 logM ,
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where M is the number of non-zero coefficients of FX . Since FX is a poly-

nomial in n+ 1 blocks of N + 1 variables, and homogeneous of degree d in

each block, we have, using (3.25)

M 6

(
N + d

d

)n+1

6
(
e(N + 1)

)(n+1)d

6 exp

(
5

2
(n+ 1)d log(N + ∆)

)
.

By inserting this into the last inequality, our lemma follows. �

We arrive at the following:

Proposition 4.5. Let g0, . . . , gR be homogeneous polynomials of degree ∆

in Q[x0, . . . , xN ] such that

X(Q) ∩
{
g0 = 0, . . . , gR = 0

}
= ∅ .

Let Y = ϕ(X), where ϕ is the morphism on X given by x 7→ (g0(x), . . . , gR(x)).

Then

h(Y ) 6 ∆n+1h(X) + (n+ 1)d∆nh1(g0, . . . , gR) +

+5(n+ 1)d∆n+1 log(N + ∆) + 3(n+ 1)d∆n log(R + 1) .

Proof. For j = 0, . . . , R write yj for gj(x) and denote by gj the vector of

coefficients of gj, i.e., gj =
∑

m∈M∆
cgj

(m)m and gj = (cgj
(m) : m ∈M∆).

Introduce blocks of variables v(h) = (v
(h)
0 , . . . , v

(h)
R ) (h = 0, . . . , n) and define

the polynomial

G(v(0), . . . ,v(n)) := FX,∆

( R∑
j=0

v
(0)
j gj, . . . ,

R∑
j=0

v
(n)
j gj

)
.

ThenG(v(0), . . . ,v(n)) = 0 if and only ifX and the hypersurfaces
∑R

j=0 v
(h)
j gj

= 0 (h = 0, . . . , n) have a Q-rational point in common, if and only if Y and

the hyperplanes
∑R

j=0 v
(h)
j yj = 0 (h = 0, . . . , n) have a Q-rational point in

common, if and only if FY (v(0), . . . ,v(n)) = 0, where FY is the Chow form

of Y . Therefore, G is up to a constant factor equal to a power of FY .

Put A := (n + 1)d∆n+1 log(N + ∆), B := (n + 1)d∆n log(R + 1). No-

tice that G has degree d∆n in each block v(h). Further, by (4.4) we have
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h1(G) 6 h1(FX,∆)+(n+1)d∆nh1(g0, . . . , gR)+B. Together with Lemma 4.2,

Lemma 4.1, this implies

h(Y ) = h(FY ) 6 h1(FY ) 6 h1(G) + 2B

6 h1(FX,∆) + (n+ 1)d∆nh1(g0, . . . , gR) + 3B

6 ∆n+1h(X) + (n+ 1)d∆nh1(g0, . . . , gR) + 5A+ 3B ,

proving our Proposition. �

5. Proof of Theorem 1.3.

5.1. We start with some auxiliary results. We denote the coordinates of PR

by y = (y0, . . . , yR).

Lemma 5.1. Let Y be a projective subvariety of PR of dimension n > 1

and degree D, defined over Q. Let c = (c0, . . . , cR) be a tuple of reals. Let

{i0, . . . , in} be a subset of {0, . . . , R} such that

(5.1) Y (Q) ∩
{
yi0 = 0, . . . , yin = 0

}
= ∅ .

Then

(5.2) eY (c) > D(ci0 + · · ·+ cin).

Proof. For a subset I = {k0, . . . , kn} of {0, . . . , R} with k0 < k1 < · · · <
kn, define the bracket

[I] = [I](u(0), . . . ,u(n)) := det
(
u

(i)
kj

)
i,j=0,...,n

,

where again u(h) denotes the block of variables (u
(h)
0 , . . . , u

(h)
R ). Let I1, . . . , IS

with S =
(

R+1
n+1

)
be all subsets of {0, . . . , R} of cardinality n + 1. Then the

Chow form FY of Y can be written as a homogeneous polynomial of degree

D in [I1], . . . , [IS] :

FY =
∑
a∈A

C(a)[I1]
a1 · · · [IS]aS ,(5.3)

where A is the set of tuples of non-negative integers a = (a1, . . . , aS) with

a1 + · · · + aS = D and where C(a) ∈ Q for a ∈ A [9, p. 41, Theorem IV].
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For each bracket [I] we have

[I](tc0u
(0)
0 , . . . , tcRu

(0)
R ; . . . ; tc0u

(n)
0 , . . . , tcRu

(n)
R ) = t

P
i∈I ci [I],

therefore,

FY (tc0u
(0)
0 , . . . , tcRu

(0)
R ; . . . ; tc0u

(n)
0 , . . . , tcRu

(n)
R )(5.4)

=
∑
a∈A

C(a)t
PS

j=1 aj(
P

i∈Ij
ci)[I1]

a1 · · · [IS]aS .

Put e0 := (1, 0, . . . , 0), e1 := (0, 1, . . . , 0), . . ., eR := (0, 0, . . . , 1). Write

{i0, . . . , in} =: I1. By (5.1) we have FY (ei0 , . . . , ein) 6= 0. Further,

[I1](ei0 , . . . , ein) = 1, [I](ei0 , . . . , ein) = 0 for I 6= I1.

Hence in expression (5.3) there is a term C · [I1]D with C ∈ Q∗
, and if we

substitute u(j) = eij (j = 0, . . . , n) in (5.4) we obtain C · tD(ci0
+···+cin ). That

is, one of the numbers ei in (2.4) is equal to D (ci0 + · · ·+ cin). This implies

(5.2) at once. �

In addition, we need the following combinatorial lemma, which is a con-

sequence of [3, Lemma 4].

Lemma 5.2. Let θ be a real with 0 < θ 6 1
2

and let q be a positive integer.

Then there exists a set W of cardinality at most (e/θ)q−1, consisting of tuples

(c1, . . . , cq) of non-negative reals with c1 + · · · + cq = 1, with the following

property:

for every set of reals A1, . . . , Aq and Λ with Aj 6 0 for j = 1, . . . , q and∑q
j=1Aj 6 −Λ, there exists a tuple (c1, . . . , cq) ∈ W such that

Aj 6 −cj(1− θ)Λ for j = 1, . . . , q.

5.2. In what follows, K is a number field, S a finite set of places of K, and

X, N , n, d, s, C, f
(v)
i (v ∈ S, i = 0, . . . , n), C, ∆, A1, A2, A3, H are as in

Theorem 1.3. We denote the coordinates on PN by x = (x0, . . . , xN).

Let f0, . . . , fR be the distinct polynomials among σ(f
(v)
j ) (v ∈ S, j =

0, . . . , n, σ ∈ GK). Then by (1.4),

(5.5) R 6 C(n+ 1)s− 1 .
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Let K ′ be the extension of K generated by the coefficients of f0, . . . , fR.

Put gi := f
∆/ deg fi

i for i = 0, . . . , R. Thus, g0, . . . , gR are homogenenous

polynomials in K ′[x0, . . . , xN ] of degree ∆. Define

ϕ : x 7→ (g0(x), . . . , gR(x)), Y := ϕ(X) .

By assumption (1.2), ϕ is a finite morphism on X, and Y is a projective

subvariety of PR defined over K ′. We have

(5.6) dimY = n, deg Y =: D 6 d∆n .

We denote places on K ′ by v′ and define normalized absolute values | · |v′
on K ′ similarly to §1.4. Further, for every v′ ∈MK′ we choose an extension

of | · |v′ to Q. Since K ′/K is a normal extension, for every v′ ∈ MK′ there

is τv′ ∈ GK such that

(5.7) |x|v′ = |τv′(x)|1/g(v)
v for x ∈ Q

where v ∈ MK is the place below v′ and g(v) is the number of places of

K ′ lying above v. For each v′ ∈ M∞
K′ there is an isomorphic embedding

σv′ : K ′ ↪→ C such that |x|v′ = |σv′(x)|[Kv′ :R]/[K′:Q] for x ∈ Q. We define

norms ‖ · ‖v′ , ‖ · ‖v′,1 for polynomials similarly as in (4.1), with K ′, v′, σv′ in

place of K, v, σv.

5.3. For later purposes we estimate from above h1(1, g0, . . . , gR) and h(Y ).

By a straightforward computation we have for v′ ∈M∞
K′ ,

‖1, σv′(g0), . . . , σv′(gR)‖1

= 1 +
R∑

i=0

‖σv′(gi)‖1 6 1 +
R∑

i=0

‖σv′(fi)‖∆/ deg fi

1

6 1 +
R∑

i=0

((
deg fi +N

deg fi

)
‖σv′(fi)‖

)∆/ deg fi

6 (R + 2)(N + ∆)∆‖1, σv′(f0), . . . , σv′(fR)‖∆

6 (R + 2)(N + ∆)∆

R∏
i=0

‖1, σv′(fi)‖∆ .
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So for v′ ∈M∞
K′ we have

‖1, g0, . . . , gR‖v′,1 6
(
(R + 2)(N + ∆)∆

) [K′
v′ :R]

[K′:Q] ·
R∏

i=0

‖1, fi‖∆
v′ .

In an easier manner one obtains for v′ ∈M0
K′ ,

‖1, g0, . . . , gR‖v′,1 6
R∏

i=0

‖1, fi‖∆
v′ .

So by taking the product over v′ ∈ MK′ , substituting (5.5), and using that

polynomials with conjugate sets of coefficients have the same height,

h1(1, g0, . . . , gR) 6 ∆
( R∑

i=0

h(1, fi)
)

+ ∆ log
(
(R + 2)(N + ∆)∆

)
6 ∆C

(∑
v∈S

n∑
j=0

h(1, f
(v)
j )
)

+ ∆ log(N + ∆) + log(3Cns) ,

and by inserting this estimate into Proposition 4.5 we infer

h(Y ) 6 ∆n+1h(X) + (n+ 1)d∆n+1C
∑
v∈S

n∑
j=0

h(1, f
(v)
j ) +

+ 6(n+ 1)d∆n+1 log(N + ∆) + 4(n+ 1)d∆n log(3Cns) .

A straightforward computation gives the more tractable estimates

h1(g0, . . . , gR) 6 6∆2Cns ·H ,(5.8)

h(Y ) 6 25n2d∆n+2Cs ·H ,(5.9)

where H is defined by (1.5).

5.4. We reduce (1.6) to a finite number of systems of inequalities, and then

show that each such system leads to an inequality involving a twisted height.

Let x ∈ X(Q) be a solution of (1.6). For v ∈ S, let Iv be the subset

of {0, . . . , R} such that {f (v)
j : j = 0, . . . , n} = {fi : i ∈ Iv}. Put Gv :=

‖1, g0, . . . , gR‖v,1 for v ∈ S. Then∑
v∈S

∑
i∈Iv

log

(
max
σ∈GK

|gi(x)|v
Gv‖σ(x)‖∆

v

)
6 −(n+ 1 + δ)∆h(x) .
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By (4.2), the terms in the sum are 6 0. We apply Lemma 5.2 with q =

(n + 1)s and θ = δ
(2n+2+2δ)

= 1 − n+1+δ/2
n+1+δ

. We infer that there is a set W
with

(5.10) #W 6

(
e(2n+ 2 + 2δ)

δ

)(n+1)s−1

6 (17nδ−1)(n+1)s−1

consisting of tuples of non-negative reals (civ : v ∈ S, i ∈ Iv) with

(5.11)
∑
v∈S

∑
i∈Iv

civ = 1 ,

such that for every solution x ∈ X(Q) of (1.6) there is a tuple (civ : v ∈
S, i ∈ Iv) ∈ W with

log

(
max
σ∈GK

|gi(σ(x))|v
Gv · ‖σ(x)‖∆

v

)
6 −civ

(
n+ 1 +

δ

2

)
∆h(x)(5.12)

(v ∈ S, i ∈ Iv).

Denote by S ′ the set of places of K ′ lying above the places in S. Notice

that each element of GK acts as a permutation on g0, . . . , gR. Let v′ ∈ S ′.

Write v for the place of K lying below v′ and let τv′ ∈ GK be given by (5.7).

Then we define Iv′ ⊂ {0, . . . , R}, ci,v′ (i ∈ Iv′) by

{gi : i ∈ Iv′} = {τ−1
v′ (gj) : j ∈ Iv} for v′ ∈ S ′,

ci,v′ := cjv/g(v) for v′ ∈ S ′, i ∈ Iv′ ,

where j ∈ Iv is the index such that gi = τ−1
v′ (gj). Further, we put

Gv′ := ‖1, g0, . . . , gR‖v′,1 for v′ ∈MK′ .

Then in view of (5.7), we can rewrite system (5.12) as

log

(
max
σ∈GK

|gi(σ(x))|v′
Gv′ · ‖σ(x)‖∆

v′

)
6 −ci,v′

(
n+ 1 +

δ

2

)
∆h(x)(5.13)

(v′ ∈ S ′, i ∈ Iv′).

Invoking (5.10), (5.11) we obtain the following:
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Lemma 5.3. There is a set W ′ of cardinality at most (17nδ−1)(n+1)s−1,

consisting of tuples of non-negative reals (ci,v′ : v′ ∈ S ′, i ∈ Iv′) with

(5.14)
∑
v∈S′

∑
i∈Iv′

ci,v′ = 1 ,

with the property that for every x ∈ X(Q) with (1.6) there is a tuple in W ′

such that x satisfies (5.13).

We consider the solutions of a fixed system (5.13). Put

ci,v′ = 0 for v′ ∈ S ′, i ∈ {0, . . . , R}\Iv′(5.15)

and v′ ∈MK′\S ′, i = 0, . . . , R

and put cv′ := (c0,v′ , . . . , cR,v′) for v′ ∈ MK′ , c := (cv′ : v′ ∈ MK′). De-

note by y = (y0, . . . , yR) the coordinates of PR. We define HQ,c(y), EY (c)

similarly as (2.3), (2.9), respectively, but with K ′ in place of K.

Lemma 5.4. Let x ∈ X(Q) be a solution of (5.13) satisfying (1.7) and let

σ ∈ GK. Put

y := ϕ(σ(x)), Q := exp
(
(n+ 1 + δ/2)∆h(x)

)
.

Then

(5.16) HQ,c(y) 6 Q
EY (c)− δ

2(n+2)2 .

Proof. We first estimate from below EY (c). Let v′ ∈ S ′ and write Iv′ =

{i0, . . . , in}. From assumption (1.2), and from the fact thatX is defined over

K and that gi0 , . . . , gin are conjugate overK to powers of f
(v)
0 , . . . , f

(v)
n where

v ∈ S is the place below v′, it follows thatX(Q)∩
{
gi0 = 0, . . . , gin = 0

}
= ∅.

Since Y = ϕ(X), for y ∈ Y (Q) there is x ∈ X(Q) with yi = gi(x) for

i = 0, . . . , R. Hence

Y (Q) ∩
{
yi0 = 0, . . . , yin = 0

}
= ∅ .

Now Lemma 5.1 implies

1

(n+ 1)D
· eY (cv′) >

1

n+ 1
(ci0,v′ + · · ·+ cin,v′) =

1

n+ 1
·
∑
i∈Iv′

ci,v′ .
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This holds for v′ ∈ S ′. For v′ 6∈ S ′ we have eY (cv′) = 0 by (5.15). By

summing over v′ ∈ S ′ and using (5.14), we arrive at

(5.17) EY (c) >
1

n+ 1
.

Now let x ∈ X(Q) be a solution of (5.13) with (1.7) and let σ ∈ GK .

Then σ(x) is also a solution of (5.13). In fact, by (5.15), σ(x) satisfies

(5.13) for v ∈ MK , i = 0, . . . , R. Write y = ϕ(σ(x)) so that yi = gi(σ(x))

for i = 0, . . . , R. Let L be a finite normal extension of K ′ such that σ(x) ∈
X(L). Pick w ∈ ML and let v′ be the place of K ′ below w. Then there is

τw ∈ Gal(Q/K ′) such that |x|w = |τw(x)|d(w|v′)
v′ for x ∈ L, where d(w|v′) =

[Lw : K ′
v′ ]/[L : K ′]. Hence for i = 0, . . . , R, with the usual notation ciw =

d(w|v′)ci,v′ ,

|yi|wQciw = |gi(σ(x))|wQciw = (|gi(τwσ(x))|v′Qci,v′ )d(w|v′)

6
(
Gv′‖τwσ(x)‖∆

v′

)d(w|v′)
= G

d(w|v)
v′ ‖σ(x)‖∆

w .

By taking the product over w ∈ML and using h(σ(x)) = h(x) we obtain

HQ,c(y) 6 exp(h1(1, g0, . . . , gR)) ·Q
1

n+1+δ/2 .

Now (5.16) follows by observing that by (5.17), assumption (1.7), and (5.8),(
EY (c)− δ

2(n+ 2)2
− 1

n+ 1 + δ/2

)
logQ

>

(
1

n+ 1
− δ

2(n+ 2)2
− 1

n+ 1 + δ/2

)
logQ

=
δ(4n+ 6− δ(n+ 1))

4(n+ 1)(n+ 2)2
·∆h(x) >

δ∆

2(n+ 2)2
A3H

> 6∆2CnsH > h1(1, g0, . . . , gR) .

�

5.5. We finish the proof of Theorem 1.3. We apply Theorem 2.1 with K ′,
δ

2(n+2)2
in place of K, δ and, in view of (5.5) and (5.6), with D 6 d∆n

and R = C(n + 1)s− 1. Notice that by (5.14),(5.15), the conditions (2.6),

(2.7), (2.8) (with K ′ in place of K) are satisfied. Denote by B′
1, B

′
2, B

′
3

the quantities obtained by substituting δ
2(n+2)2

for δ, C(n + 1)s − 1 for R,
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and d∆n for D in the quantities B1, B2, B3, respectively, defined by (2.10).

Recall that if x satisfies (1.7) then Lemma 5.4 is applicable. Moreover,

logQ =

(
n+ 1 +

δ

2

)
∆h(x) > A3H

= exp
(
26n+20n2n+3δ−n−1dn+2∆n(n+2) log(2Cs)

)
·H

> exp
(
25n+4(2(n+ 2)2δ−1)n+1(d∆n)n+2 log(4C(n+ 1)s)

)
·

·
(
26n2d∆n+2Cs

)
·H

= B′
3 ·
(
26n2d∆n+2Cs

)
·H > B′

3(h(Y ) + 1) ,

where the last inequality follows from (5.9). Hence Theorem 2.1 is applica-

ble.

Now Theorem 2.1 and Lemma 5.4 imply that there are homogeneous

polynomials F1, . . . , Ft ∈ K ′[y0, . . . , yR] not vanishing identically on Y , with

t 6 B′
1 and degFi 6 B′

2 for i = 1, . . . , t, with the property that for every

solution x ∈ X(Q) of (5.13) with (1.7), there is Fi ∈ {F1, . . . , Ft} such that

Fi(ϕ(σ(x))) = 0 for every σ ∈ GK . (In fact, taking Q = exp
(
(n + 1 +

δ/2)∆h(x)
)

it follows from Theorem 2.1 that there is Fi with Fi(y) = 0 for

every y ∈ Y (Q) with HQ,c(y) 6 QEY (c)−δ/2(n+2)2 , and then by Lemma 5.4

this holds in particular for all points y = ϕ(σ(x)), σ ∈ GK .)

This means that F̃i(σ(x)) = 0 for σ ∈ GK , where F̃i is the polynomial

obtained by substituting gj for yj in Fi for j = 0, . . . , R. Notice that

F̃i ∈ K ′[x0, . . . , xN ], deg F̃i 6 B′
2∆, and that F̃i does not vanish identically

on X. Write F̃i =
∑M

k=1 ωkF̃ik where ω1, . . . , ωM is a K-basis of K ′, and

the F̃ik are polynomials with coefficients in K. We can choose Gi ∈ {F̃ik :

k = 1, . . . ,M} which does not vanish identically on X. Now σ(F̃i)(x) = 0

for σ ∈ GK . Since the polynomials F̃ik are linear combinations of the

polynomials σ(F̃i) (σ ∈ GK) it follows that F̃ik(x) = 0 for k = 1, . . . ,M , so

in particular Gi(x) = 0.

It follows that there are homogeneous polynomials G1, . . . , Gt ∈
K[x0, . . . , xN ] with t 6 B′

1 and degGi 6 B′
2∆ for i = 1, . . . , t, not vanishing

identically on X, such that the set of x ∈ X(Q) with (5.13) and with (1.7)

is contained in
⋃t

i=1

(
X ∩ {Gi = 0}

)
.
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According to Lemma 5.3, there are at most T := (17nδ−1)
(n+1)s−1

dif-

ferent systems (5.13), such that every solution x ∈ X(Q) of (1.6) satisfies

one of these systems. Consequently, there are homogeneous polynomials

G1, . . . , Gu ∈ K[x0, . . . , xN ] not vanishing identically on X, with u 6 B′
1T

and with degGi 6 B′
2∆ for i = 1, . . . , u, such that the set of x ∈ X(Q) with

(1.6), (1.7) is contained in
⋃u

i=1

(
X ∩ {Gi = 0}

)
.

Now the proof of Theorem 1.3 is completed by observing that in view of

(2.10),

B′
2∆ = (4n+ 3)(d∆n)(2(n+ 2)2δ−1)∆ = (8n+ 6)(n+ 2)2d∆n+1δ−1 = A2

and

B′
1T 6 exp

(
210n+4(2(n+ 2)2)2nδ−2n(d∆n)2n+2

)
·

· log(4(n+ 1)Cs) log log(4(n+ 1)Cs) ·
(
17nδ−1

)(n+1)s−1

6 exp
(
212n+16n4nδ−2nd2n+2∆n(2n+2)

)
·

·(20nδ−1)(n+1)s · log(4C) log log(4C)

= A1 . �
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[12] G. Rémond, Géometrie diophantienne multiprojective, In: Introduction to Algebraic

Independence Theory, Chap. 7. LNM 1752, Springer Verlag 2001.
[13] H.P. Schlickewei, The ℘-adic Thue-Siegel-Roth-Schmidt theorem, Arch. Math. 29

(1977), 267-270.
[14] W.M. Schmidt, Norm form equations, Ann. of Math. 96 (1972), 526-551.
[15] W.M. Schmidt, Simultaneous approximation to algebraic numbers by elements of a

number field, Monatsh. Math. 79 (1975), 55-66.
[16] W.M. Schmidt, The subspace theorem in diophantine approximation, Compos. Math.

96 (1989), 121-173.

J.-H. Evertse, Universiteit Leiden, Mathematisch Instituut, Postbus 9512,

2300 RA Leiden, The Netherlands

E-mail address: evertse@math.leidenuniv.nl
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