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K is a field of characteristic 0.

K∗ is the multiplicative group of K.

Γ is a subgroup of K∗ of finite rank, i.e., there

is a free subgroup Γ0 of Γ of finite rank such

that for every x ∈ Γ ∃m ∈ N with xm ∈ Γ0.

Define rankΓ := rankΓ0.

We consider equations

(1) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

with a1, . . . , an ∈ K∗.

Theorem A. (Schlickewei, Schmidt, E., 2002)

Let rank Γ = r. Then the number of non-de-

generate solutions of (1), i.e., with∑
i∈I

aixi 6= 0 for each subset I of {1, . . . , n},

is at most e(6n)4n(r+1).
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Two tuples (a1, . . . , an), (b1, . . . , bn) ∈ (K∗)n

are called Γ-equivalent if

b1
a1

∈ Γ, . . . ,
bn

an
∈ Γ .

Two equations

(1) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

with Γ-equivalent tuples of coefficients have

the same number of non-degenerate solutions.

Aim: Obtain more precise results for the

set of solutions of (1), valid for “almost all”

equivalence classes of (a1, . . . , an).
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Theorem B. (Győry, Stewart, Tijdeman, E.,

1988)

Let Γ be a given subgroup of K∗ of finite

rank. Then for all pairs (a, b) ∈ (K∗)2 with

the exception of finitely many Γ-equivalence

classes, the equation

ax + by = 1 in x, y ∈ Γ

has at most two solutions.

Fact: The bound 2 is best possible.

Problem: How to generalize this to equa-

tions in n > 3 unknowns?

4



Let n > 3.

Fact: (Győry, Stewart, Tijdeman, E., 1988)

For every h, there exist a multiplicative sub-

group Γ of Q∗ of finite rank, and infinitely

many Γ-equivalence classes of tuples

(a1, . . . , an) ∈ (Q∗)n, such that the equation

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

has at least h non-degenerate solutions.
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Let Γ be a given subgroup of K∗ of finite

rank.

Theorem C. (Győry, E., 1989)

For all tuples (a1, . . . , an) ∈ (K∗)n with the ex-

ception of finitely many Γ-equivalence classes,

the set of solutions of

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

is contained in the union of not more than

2(n+1)! proper linear subspaces of Kn.

Improvements:

E. (1993): (n!)2n+2;

E. (2000) 2n2
(unpublished)
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Theorem. (E.) For all tuples (a1, . . . , an) ∈
(K∗)n with the exception of finitely many Γ-

equivalence classes, the set of non-degener-

ate solutions of

(1) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

is contained in the union of not more than

2n

proper linear subspaces of Kn.

Remark. The degenerate solutions lie in at

most 2n subspaces
∑

i∈I aixi = 0 (I ⊆ {1, . . . , n}).
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Our main tool.

Assume w.l.o.g. that K is algebraically closed.

Let Γ be a subgroup of K∗ of finite rank.

View (K∗)n as an algebraic group with coordi-

natewise multiplication (x1, . . . , xn)∗(y1, . . . , yn)

= (x1y1, . . . , xnyn).

Let X be an algebraic subvariety of (K∗)n.

Call a point x ∈ X degenerate if there is

a one-dimensional algebraic subgroup H of

(K∗)n with x ∗ H ⊂ X, and non-degenerate

otherwise.

Theorem D. (Laurent, 1980’s)

X has at most finitely many non-degenerate

points with coordinates in Γ.
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Remark. A one-dimensional algebraic sub-

group H of (K∗)n can be expressed as

H = {(λc1, . . . , λcn) : λ ∈ K∗}

where c1, . . . , cn are integers with gcd 1.

Hence x = (x1, . . . , xn) is a degenerate point

of X if and only if there are integers c1, . . . , cn

with gcd 1 such that

(λc1x1, . . . , λcnxn) ∈ X for every λ ∈ K∗.
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A reduction.

Consider tuples (a1, . . . , an) ∈ (K∗)n such that

(1) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

has non-degenerate solutions.

Every Γ-equivalence class of such tuples con-

tains a normalized tuple, i.e., a tuple (a1, . . . , an)

such that (1,1, . . . ,1) is a non-degenerate so-

lution of (1).

Hence it suffices to show:

Theorem.

For all but finitely many normalized tuples

a ∈ (K∗)n, the set of non-degenerate solu-

tions of (1) is contained in the union of not

more than 2n proper linear subspaces of Kn.
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For every a = (a1, . . . , an) ∈ (K∗)n the equa-
tion

(1) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

has at most A := e(6n)4n(r+1) non-degenerate
solutions where r = rank Γ.

Given a normalized tuple a, we can order the
non-degenerate solutions of (1) in a sequence

(1, . . . ,1), (x21, . . . , x2n), . . . , (xA1, . . . , xAn),

where we have copied some of the solutions
if the number of non-degenerate solutions is
smaller than A.

Thus we get

rank


1 · · · 1 1

x21 · · · x2n 1
... ... ...

xA1 · · · xAn 1

 6 n .

This defines an algebraic subvariety X of
(K∗)n(A−1) which is independent of a.

11



Each normalized tuple of coefficients a =

(a1, . . . , an) gives rise to a point (x21, . . . , xAn) ∈
X with coordinates in Γ.

a ∈ CLASS I

if (x21, . . . , xAn) is a non-degenerate point of

X.

a ∈ CLASS II

if (x21, . . . , xAn) is a degenerate point of X.
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Each normalized tuple of coefficients a =

(a1, . . . , an) gives rise to a point (x21, . . . , xAn) ∈
X with coordinates in Γ.

a ∈ CLASS I

if (x21, . . . , xAn) is a non-degenerate point of

X.

a ∈ CLASS II

if (x21, . . . , xAn) is a degenerate point of X.

We will prove:

CLASS I is finite.

If a is in CLASS II, then the non-degenerate

solutions of

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

lie in not more than 2n subspaces of Kn.
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CLASS I.

a = (a1, . . . , an) is such that (x21, . . . , xAn) is
a non-degenerate point with coordinates in Γ
of

X : rank


1 · · · 1 1

x21 · · · x2n 1
... ... ...

xA1 · · · xAn 1

 6 n .

By Laurent’s Theorem, (x21, . . . , xAn) belongs
to a finite set independent of a.

We can determine a uniquely from (x21, . . . , xAn)
by solving

a1 + · · ·+ an = 1

a1xi1 + · · ·+ anxin = 1 (i = 2, . . . , A).

Hence CLASS I is finite.
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CLASS II.

a = (a1, . . . , an) is such that x = (x21, . . . , xAn)

is a degenerate point of

X : rank


1 · · · 1 1

x21 · · · x2n 1
... ... ...

xA1 · · · xAn 1

 6 n .

Then there are integers c21, . . . , cAn with

gcd(c21, . . . , cAn) = 1 such that

rank


1 · · · 1 1

λc21x21 · · · λc2nx2n 1
... ... ...

λcA1xA1 · · · λcAnxAn 1

 6 n

for every λ ∈ K∗.
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Substitute λ = −1. Then we get

rank


1 · · · 1 1

±x21 · · · ±x2n 1
... ... ...

±xA1 · · · ±xAn 1

 6 n .

Not all signs are + since not all cij are even.

Hence there are b1, . . . , bn, b0 ∈ K, not all 0

such that

b1 + · · ·+ bn = b0

±b1xi1 ± · · · ± bnxin = b0 (i = 2, . . . , A).
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Conclusion:

Recall that (1, . . . ,1), (xi1, . . . , xin) (i = 2, . . . , A)

contain all non-degenerate solutions of

(1) a1x1+ · · ·+anxn = 1 in x1, . . . , xn ∈ Γ.

So for each non-degenerate solution of (1)

there are n signs ± such that

±b1x1 ± · · · ± bnxn = b0 .

Thus, if a ∈ CLASS II, then the non-degenerate

solutions of (1) lie in at most 2n proper linear

subspaces of Kn.

QED
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A speculation.

For every tuple a = (a1, . . . , an) ∈ (K∗)n with

the exception of finitely many Γ-equivalence

classes, the following holds:

1) If a is Γ-equivalent to (b, b, . . . , b) for some

b ∈ K∗, then the set of solutions of

(1) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

is contained in the union of not more than n

proper linear subspaces of Kn.

2) If a is not Γ-equivalent to (b, b, . . . , b) for

any b ∈ K∗, then the set of solutions of (1)

is contained in the union of not more than 2

proper linear subspaces of Kn.
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Remark. If u = (u1, . . . , un) is a solution of

bx1 + bx2 + · · ·+ bxn = 1

then so are the points uσ = (uσ(1), . . . , uσ(n))

for each permutation σ of 1,2, . . . , n.

For “generic” u, precisely n proper linear sub-

spaces of Kn are needed to cover the set of

all points uσ.
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