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INTRODUCTION

A linear recurrence sequence U = {un}∞n=0 (in

C) is a sequence given by a linear recurrence

un = c1un−1 + c2un−2 + · · · + ckun−k(1)

(n > k)

with coefficients ci ∈ C and initial values

u0, . . . , uk−1 ∈ C.

The smallest k such that U satisfies a recur-

rence of type (1) is called the order of U .

If k is the order of U , then the coefficients

c1, . . . , ck are uniquely determined.

In that case the companion polynomial of U

is given by

FU(X) := Xk − c1Xk−1 − c2Xk−2 − · · · − ck .
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FACT. Let U = {un}∞n=0 be a linear recur-

rence sequence. Assume that its companion

polynomial can be factored as

(2) FU(X) = (X − α1)
e1 · · · (X − αr)

er

with distinct α1, . . . , αr and ei > 0.

Then un can be expressed as a polynomial-

exponential sum,

un =
r

∑

i=1

fi(n)αn
i for n > 0(3)

where fi is a polynomial of degree ei − 1 (i =

1, . . . , r).

Conversely, if {un}∞n=0 is given by (3) then it

is a linear recurrence sequence with compan-

ion polynomial given by (2).
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Proof. Let U = {un}∞n=0 be a linear recur-

rence sequence of order k with companion

polynomial

FU(X) = Xk − c1Xk−1 − · · · − ck

= (X − α1)
e1 · · · (X − αr)

er.

Then for some polynomial A of degree < k

and for certain constants cij,

∞
∑

n=0

unXn =
A(X)

1 − c1X − c2X2 − · · · − ckXk

=
r

∑

i=1

ei
∑

j=1

cij

(1 − αiX)j

=
r

∑

i=1

ei
∑

j=1

cij

∞
∑

n=0

(

n+j−1
j−1

)

αn
i Xn .
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ZERO MULTIPLICITY

The zero multiplicity of a linear recurrence

sequence U = {un}∞n=0 is given by

N(U) := #{n ∈ Z>0 : un = 0}.

Assume that U has companion polynomial

FU(X) = (X − α1)
e1 · · · (X − αr)

er

with αi distinct, ei > 0.

U is called non-degenerate if none of the quo-

tients αi/αj (1 6 i < j 6 r) is a root of unity.

THEOREM (Skolem-Mahler-Lech, 1934-35-

53)

Let U be a non-degenerate linear recurrence

sequence. Then N(U) is finite.
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Example. Let U = {un}∞n=0 be given by

un = 3n+(−3)n+n(2n−(2e2πi/3)n) (n > 0).

Then U has companion polynomial

FU(X) = (X−3)(X+3)(X−2)2(X−2e2πi/3)2

and un = 0 for n = 3,9,15, . . ..

Problem. Suppose that U is non-degenerate.

Find a good upper bound for N(U).
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Example. Let U = {un}∞n=0 be a linear re-

currence sequence of order k with terms in R.

Suppose that its companion polynomial is

FU(X) = (X − α1)
e1 · · · (X − αr)

er

with 0 < α1 < · · · < αr. Then U is non-

degenerate and

un =
r

∑

i=1

fi(n)αn
i (n > 0)

where the fi are polynomials with real coeffi-

cients.

FACT (Follows from Rolle’s Theorem)

The function u(x) :=
∑r

i=1 fi(x)α
x
i has at

most
∑r

i=1 deg fi 6 k − 1 zeros in R.

Hence N(U) 6 k − 1.

Old conjecture: N(U) 6 C(k) for every non-

degenerate linear recurrence sequence U of

order k with terms in C.
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Linear recurrence sequences of order 3

THEOREM (Beukers, 1991)

Let U = {un}∞n=0 be a non-degenerate linear

recurrence sequence of order 3 with terms in

Q. Then

N(U) 6 6.

Example (Berstel, 1974)

un+3 = 2un+2 − 4un+1 + 4un (n > 3),

u0 = u1 = 0, u2 = 1.

Then u0 = u1 = u4 = u6 = u13 = u52 = 0.

THEOREM (Beukers, Schlickewei, 1996)

Let U = {un}∞n=0 be a non-degenerate linear

recurrence sequence of order 3 with terms in

C. Then

N(U) 6 61.
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Linear recurrence sequences of arbitrary

order

Earlier results in the 1990’s:

Schlickewei, van der Poorten and Schlickewei,

Schlickewei and Schmidt:

upper bounds for N(U) valid for linear recur-

rence sequences with algebraic terms and de-

pending on the order k of U and other pa-

rameters.

THEOREM (Schmidt, 2000).

Let U = {un}∞n=0 be a non-degenerate linear

recurrence sequence of order k with terms in

C. Then

N(U) 6 exp exp exp(20k).
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Steps in the proof.

1) Reduce to the case that all terms of U

are algebraic numbers, using a specialization

argument from algebraic geometry.

2) Apply techniques from Diophantine ap-

proximation, the Quantitative p-adic Subspace

Theorem.

3) Write un =
∑r

i=1 fi(n)αn
i , where the fi are

polynomials. The proof is by induction on
∑r

i=1 deg fi.

4) Special case (Schlickewei, Schmidt, Ev.)

Suppose that un =
∑k

i=1 ciα
n
i where the ci are

non-zero constants. Then

N(U) 6 e(6k)3k
.
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THE QUOTIENT OF TWO

LINEAR RECURRENCE SEQUENCES

If {un}∞n=0, {vn}∞n=0 are linear recurrence se-

quences, then so are {λun + µvn}∞n=0 (λ, µ ∈
C) and {un·vn}∞n=0. What about {un/vn}∞n=0?

If this is a linear recurrence sequence then

un/vn =
∑r

i=1 hi(n)γn
i for certain polynomials

hi and certain γi.

Hence all terms un/vn lie in a finitely gener-

ated subring of C, namely the ring generated

by the γi and the coefficients of the hi.
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THEOREM (Pourchet, 1979, van der Poorten,

1988)

Let U = {un}∞n=0, V = {vn}∞n=0 be two linear

recurrence sequences with terms in C. Sup-

pose that there is a finitely generated subring

R of C such that un/vn ∈ R for all but finitely

many n.

Then there is n0 > 0 such that {un/vn}∞n=n0

is a linear recurrence sequence.

Can we weaken the condition

“un/vn ∈ R for all but finitely many n” to

“un/vn ∈ R for infinitely many n”?
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THEOREM (Corvaja, Zannier, 2002)

Let U = {un}∞n=0, V = {vn}∞n=0 be two linear

recurrence sequences with terms in C.

Assume that there is a finitely generated sub-

ring R of C such that un/vn ∈ R for infinitely

many n.

Then there are a polynomial g(X) and posi-

tive integers a, b such that
{

g(an + b)
uan+b

van+b

}∞

n=0
,

{

van+b

g(an + b)

}

are linear recurrence sequences.

Proof.

1) Reduce to the case that U, V have alge-

braic terms by a specialization argument.

2) Apply the p-adic Subspace Theorem.
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Example.

Let

un = 4n−1 − (−1)n−1,

vn = n · 2n−1 + n · (−1)n−1 (n > 0).

For every prime number n > 3 we have

un

vn
=

4n−1 − 1

n(2n−1 + 1)
=

2n−1 − 1

n
∈ Z

(using Fermat’s little theorem).

Hence un/vn ∈ Z for infinitely many n.

Verify that

(2n+1) ·u2n+1

v2n+1
= 22n−1,

v2n+1

2n + 1
= 22n+1

are linear recurrence sequences, but that

{un/vn}∞n=0 and {nun/vn}∞n=0 are not linear

recurrence sequences.
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D-TH ROOTS OF LINEAR

RECURRENCE SEQUENCES

Let d be a positive integer, let {un}∞n=0 be a

linear recurrence sequence and suppose that

there is a linear recurrence sequence {vn}∞n=0

such that un = vd
n for all n. Write

vn =
r

∑

i=1

hi(n)γn
i

where γi ∈ C and hi is a polynomial.

Let R be the ring generated by the γi and the

coefficients of the hi.

Then for every n there is y ∈ R with yd = un.
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THEOREM (Zannier, 2000)

Let d be a positive integer, let {un}∞n=0 be

a linear recurrence sequence with terms in C

and suppose that there is a finitely generated

subring of C such that for every n > 0 there

is y ∈ R with yd = un.

Then there is a linear recurrence sequence

{vn}∞n=0 such that vd
n = un for every n > 0.

Proof. Specialization, algebraic number the-

ory, arithmetic geometry.

What if there is y ∈ R with yd = un for in-

finitely many n?
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THEOREM (Corvaja, Zannier, 1998)

Let d be a positive integer. Let {un}∞n=0 be

a linear recurrence sequence with terms in Q,

satisfying the following condition:

un =
r

∑

i=1

ciα
n
i for n > 0,

where the ci are non-zero constants, and where

|α1| > max(|α2|, . . . , |αr|).
Assume that for infinitely many n there is y ∈
Q such that yd = un.

Then there are a linear recurrence sequence

{vn}∞n=0 with terms in Q, as well as positive

integers a, b, such that

vd
n = uan+b for every n > 0.

Proof. p-adic Subspace Theorem.
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THE SUBSPACE THEOREM

For x = (x1, . . . , xm) ∈ Zm put

‖x‖ := max(|x1|, . . . , |xm|)

SUBSPACE THEOREM (Schmidt, 1972)

Let Li(X) = αi1X1+· · ·+αimXm (i = 1, . . . , m)

be m linearly independent linear forms in m

variables with algebraic coefficients in C and

let δ > 0.

Then the set of solutions x ∈ Zm of

|L1(x) · · ·Lm(x)| 6 ‖x‖−δ

is contained in the union of finitely many

proper linear subspaces of Qm.
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Example (m = 3). Consider

(4)

|(x1−
√

2x2)(x1+
√

2x2)(x3−
√

2x2)| 6 ‖x‖−1 .

1) (4) has infinitely many solutions

x = (x1, x2, x3) ∈ Z3 in the subspace x1 = x3,

which are given by x1 = x3, |x2
1 − 2x2

2| = 1,

x1x2 > 0.

2) (4) has infinitely many solutions x ∈ Z3 in

the subspace x1 = −x3, which are given by

x1 = −x3, |x2
1 − 2x2

2| = 1, x1x2 6 0.

3) (4) has only finitely many solutions x ∈ Z3

with x1 6= ±x3, given by (±1,0,0), (0,0,±1).

Remark. The Pell equation |x2
1−2x2

2| = 1 has

infinitely many solutions in integers x1, x2.
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p-adic absolute values

Given a prime number p we define the p-adic

absolute value | · |p on Q by

|0|p = 0;

|a|p = p−r if a = prb/c where b, c are integers

not divisible by p.

Example: | 9
200|2 = 23 since 9

200 = 2−3 9
25.

Likewise | 9
200|3 = 3−2.

Properties:

|ab|p = |a|p|b|p; |a + b|p 6 max(|a|p, |b|p);
a ∈ Z, a divisible by pr ⇒ |a|p 6 p−r.

Product formula:

a composed of primes p1, . . . , pt

⇒ |a| · |a|p1 · · · |a|pt = 1.
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P-ADIC SUBSPACE THEOREM

(Schlickewei, 1977)

Let p1, . . . , pt be distinct prime numbers.

Let L1(X), . . . , Lm(X) be m linearly indepen-

dent linear forms in m variables with coeffi-

cients in Q.

For each p ∈ {p1, . . . , pt}, let L1p(X), . . . , Lmp(X)

be m linearly independent linear forms in m

variables with coefficients in Q.

Let δ > 0.

Then the set of solutions x ∈ Zm of

|L1(x) · · ·Lm(x)| ·
t

∏

i=1

|L1,pi
(x) · · ·Lm,pi(x)|pi

6 ‖x‖−δ

is contained in the union of finitely many

proper linear subspaces of Qm.
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Remark 1. There is a more general result

in which the coefficients of the linear forms

Li, Lip are algebraic, and the solutions x have

their coordinates in a given algebraic number

field (Schmidt, Schlickewei).

Remark 2. All proofs given up to now for

the (p-adic) Subspace Theorem are ineffec-

tive, i.e., these proofs do not allow to deter-

mine effectively the subspaces containing all

solutions.

Remark 3. There is however a Quantitative

p-adic Subspace Theorem, giving an explicit

upper bound for the number of subspaces

containing all solutions (Schmidt 1989, Schlick-

ewei 1991,. . ., Schlickewei& Ev., 2002).

This is a crucial tool in the proof of Schmidt’s

theorem on the zero multiplicity of linear re-

currence sequences.
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AN APPLICATION

We prove:

THEOREM Let p, q be two prime numbers

with p > q. Then there are only finitely many

positive integers n such that

pn − 1

qn − 1
∈ Z .

(This is a special case of the Theorem of

Corvaja and Zannier on quotients of linear

recurrence sequences).
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Let h be a positive integer. Then

(qhn − 1)
pn − 1

qn − 1
= (pn − 1)

( h−1
∑

i=0

qin
)

.

Hence

qhnpn − 1

qn − 1
+

h−1
∑

i=0

qin −
h−1
∑

i=0

pnqin =
pn − 1

qn − 1
,

or

x1 + x2 + · · · + x2h+1 =
pn − 1

qn − 1

where

x1 = qhnpn−1
qn−1,

xi = q(i−2)n (i = 2, . . . , h + 1),

xi = −pnq(i−h−2)n (i = h + 2, . . . ,2h + 1).
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Put

xn := (x1, x2, . . . , x2h+1)

= (qhnpn−1
qn−1,1, . . . , q(h−1)n,

−pn, . . . ,−pnq(h−1)n).

LEMMA Let qh+1 > p. Then there is δ > 0

such that for all sufficiently large n with pn−1
qn−1 ∈

Z we have

|(x1 + · · · + x2h+1)x2 · · ·x2h+1| ·
·|x1 · · ·x2h+1|p · |x1 · · ·x2h+1|q 6 ‖xn‖−δ .

Hence {xn : pn−1
qn−1 ∈ Z} is contained in a finite

union of proper linear subspaces of Q2h+1.
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Proof. Suppose zn := pn−1
qn−1 ∈ Z. Recall

xn = (x1, x2, . . . , x2h+1)

= (qhnpn−1
qn−1,1, . . . , q(h−1)n,

−pn, . . . ,−pnq(h−1)n).

Hence

‖xn‖ = qhnpn−1
qn−1 ≈ (pqh−1)n.

Further,

|x1 + · · · + x2h+1| = pn−1
qn−1;

|x1|p = |qhnzn|p = 1;

|x1|q = |qhnzn|q 6 q−hn;

|xi| · |xi|p · |xi|q = 1 for i = 2, . . . ,2h + 1

and so the product of these terms is at most

q−hnpn − 1

qn − 1
≈ (qh+1/p)−n ≈ ‖xn‖−δ

where δ =
log qh+1/p

pqh−1 . QED.
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The set {xn : pn−1
qn−1 ∈ Z} is contained in the

union of finitely many proper linear subspaces

of Q2h+1.

It suffices to show that if T is any proper

linear subspace of Q2h+1, then there are only

finitely many n such that xn ∈ T .
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W.l.o.g. T is given by an equation

a1x1 + · · · + a2h+1x2h+1 = 0 with ai ∈ Q.

Substitute

xn = (qhnpn−1
qn−1,1, . . . , q(h−1)n,

−pn, . . . ,−pnq(h−1)n)

and multiply with qn − 1.

Then we obtain an equation

r
∑

i=1

ciα
n
i = 0

where each αi is an integer composed of p
and q and each ci is a constant.

The left-hand side is a non-degenerate linear

recurrence sequence.

So by the Skolem-Mahler-Lech Theorem (or

Rolle’s Theorem), there are only finitely many

possibilities for n. QED
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Two integers a, b are called multiplicatively

independent if there are no positive integers

m, n such that am = bn.

By extending the above argument, the fol-

lowing result can be proved:

THEOREM (Bugeaud, Corvaja, Zannier, 2003)

Let a, b be two multiplicatively independent

integers. Then

lim
n→∞

loggcd(an − 1, bn − 1)

n
= 0.
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