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INTRODUCTION

A linear recurrence sequence U = {un}o2q (in
C) is a sequence given by a linear recurrence

(1) un = crup—1+coup_o+ -+ cpup_yg
(n > k)

with coefficients ¢; € C and initial values
ug, ..., ur_1 € C.

The smallest £ such that U satisfies a recur-
rence of type (1) is called the order of U.

If k£ is the order of U, then the coefficients
c1,-..,CL are uniquely determined.

In that case the companion polynomial of U
IS given by

Fy(X) =XF—cgxF 1l _eoxF2_...—¢.
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FACT. Let U = {un}2y be a linear recur-
rence sequence. Assume that its companion
polynomial can be factored as

(2) X)) =E&—-a)? (X —ar)”
with distinct aq,...,ar and e; > 0.

Then u, can be expressed as a polynomial-
exponential sum,

.
(3) up = »_ fi(n)al forn>0
1=1

where f; is a polynomial of degree e; —1 (i =
1,...,7).

Conversely, if {un}S2q is given by (3) then it
is a linear recurrence sequence with compan-
ion polynomial given by (2).



Proof. Let U = {un}>2, be a linear recur-
rence sequence of order k with companion
polynomial
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Then for some polynomial A of degree < k
and for certain constants ¢;;,

n A(X)
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ZERO MULTIPLICITY

The zero multiplicity of a linear recurrence
sequence U = {un}>2  is given by
NU) :=#{n € Z>q : up = 0}.

Assume that U has companion polynomial
Fy(X) = (X —ap)? - (X —ap)”

with «; distinct, e; > 0.
U is called non-degenerate if none of the quo-
tients o;/a; (1 <i<j<r)isaroot of unity.

THEOREM (Skolem-Mahler-Lech, 1934-35-
53)

Let U be a non-degenerate linear recurrence
sequence. Then N(U) is finite.



Example. Let U = {up}52, be given by

un = 3" (=3)"+n(2"— (2273 (n > 0).

Then U has companion polynomial
Fi(X) = (X —3)(X+3)(X —2)2(X —2¢271/3)2
and up, =0 for n =3,9,15,....

Problem. Suppose that U is non-degenerate.
Find a good upper bound for N(U).



Example. Let U = {un}>2, be a linear re-
currence sequence of order k with terms in R.
Suppose that its companion polynomial is

Fy(X) = (X —a1)® - (X — ap)®

with 0 < a1 < -+ < ap. Then U is non-
degenerate and

un =Y fin)al (n>0)
1=1

where the f;, are polynomials with real coeffi-
cients.

FACT (Follows from Rolle's Theorem)
The function u(z) = Y!_; fi(x)al has at
most >'_,deg f; < k—1 zeros in R.

Hence N(U) < k—1.
Old conjecture: N(U) < C(k) for every non-

degenerate linear recurrence sequence U of
order k£ with terms in C.



Linear recurrence sequences of order 3

THEOREM (Beukers, 1991)

Let U = {un}, 2o be a non-degenerate linear
recurrence sequence of order 3 with terms in
Q. Then

N(U) < 6.

Example (Berstel, 1974)

un_|_3 = 2un_|_2 — 4un_|_1 —I— 4un (n 2 3),
ug=u1 =0, up = 1.

Then ug =41 = ugqg = ug = u13 = ugpo = 0.

THEOREM (Beukers, Schlickewei, 1996)
Let U = {un}, 2o be a non-degenerate linear
recurrence sequence of order 3 with terms in
C. Then

N(U) < 61.



Linear recurrence sequences of arbitrary
order

Earlier results in the 1990’s:

Schlickewei, van der Poorten and Schlickewei,
Schlickewei and Schmidt:

upper bounds for N(U) valid for linear recur-
rence sequences with algebraic terms and de-
pending on the order £k of U and other pa-
rameters.

THEOREM (Schmidt, 2000).

Let U = {un}>y be a non-degenerate linear
recurrence sequence of order k with terms in
C. Then

N(U) < expexpexp(20k).



Steps in the proof.

1) Reduce to the case that all terms of U
are algebraic numbers, using a specialization
argument from algebraic geometry.

2) Apply techniques from Diophantine ap-
proximation, the Quantitative p-adic Subspace
T heorem.

3) Write up = Y274 fi(n)al, where the f; are
polynomials. The proof is by induction on

4) Special case (Schlickewei, Schmidt, Ev.)
Suppose that un, = YF_; c;a where the ¢; are
non-zero constants. Then

N(U) < &R
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THE QUOTIENT OF TWO
LINEAR RECURRENCE SEQUENCES

If {un}og, {vn}l are linear recurrence se-
quences, then so are {Aun + pon}iy (A p €
C) and {un-vn}oy. What about {un/vn}o g7

If this is a linear recurrence sequence then
Un/vn = Y i_q hi(n)y* for certain polynomials
h; and certain ~;.

Hence all terms un /vy, lie in a finitely gener-
ated subring of C, namely the ring generated
by the ~; and the coefficients of the h;.
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THEOREM (Pourchet, 1979, van der Poorten,
1988)

Let U= {un} gy, V ={vn}>Ly be two linear
recurrence sequences with terms in C. Sup-
pose that there is a finitely generated subring
R of C such that un /vy € R for all but finitely
many n.

Then there is ng > 0 such that {un/vn}%ozno

is a linear recurrence sequence.

Can we weaken the condition
“un/vn € R for all but finitely many n” to
“un/vn € R for infinitely many n"?
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THEOREM (Corvaja, Zannier, 2002)

Let U= {un}olg, V ={vn}oly be two linear
recurrence sequences with terms in C.
Assume that there is a finitely generated sub-
ring R of C such that un/vn, € R for infinitely
many n.

Then there are a polynomial g(X) and posi-
tive integers a,b such that

(otan+oyientt} L e

are linear recurrence sequences.

Proof.

1) Reduce to the case that U,V have alge-
braic terms by a specialization argument.

2) Apply the p-adic Subspace Theorem.
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Example.

Let
vm=n-2""t4n. (=1)" 1 (n>=0).
For every prime number n > 3 we have

qn—1 _1 on—1_1
Un n(2n—1 4+ 1) n

(using Fermat’s little theorem).

Hence uyn/vyn € Z for infinitely many n.

Verify that

Von41 n+1

are linear recurrence sequences, but that
{un/vn}tog and {nun/vn}s2y are not linear
recurrence sequences.
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D-TH ROOTS OF LINEAR
RECURRENCE SEQUENCES

Let d be a positive integer, let {un}> 2, be a
linear recurrence sequence and suppose that
there is a linear recurrence sequence {vn}o2 g
such that u, = v for all n. Write

T
vn = ) hi(n)y]
i=1

where ~;, € C and h; is a polynomial.

Let R be the ring generated by the ~;, and the
coefficients of the h;.

Then for every n there is y € R with y% = un.
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THEOREM (Zannier, 2000)

Let d be a positive integer, let {un};2q be
a linear recurrence sequence with terms in C
and suppose that there is a finitely generated
subring of C such that for every n > 0 there
is y € R with y& = un,.

Then there is a linear recurrence sequence
{vn}o 4 such that vd = u, for every n > 0.

Proof. Specialization, algebraic number the-
ory, arithmetic geometry.

What if there is y € R with y% = wu, for in-
finitely many n?7
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THEOREM (Corvaja, Zannier, 1998)

Let d be a positive integer. Let {un} 2, be
a linear recurrence sequence with terms in Q,
satisfying the following condition:

.
Up = Z cia fornm >0,
=1

where the c; are non-zero constants, and where

1| > max(lazl, ..., |ar]).
Assume that for infinitely many n there isy €
Q such that y% = un.
Then there are a linear recurrence sequence
{on}oy with terms in Q, as well as positive
integers a,b, such that

vg = Ugp4p fOr every n = 0.

Proof. p-adic Subspace Theorem.
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THE SUBSPACE THEOREM

For x = (x1,...,zm) € Z™ put

x|l := max(lz], ..., |zm])

SUBSPACE THEOREM (Schmidt, 1972)

Let LZ(X) = ;1 X1+ +omXm (Z =1,... ,m)
be m linearly independent linear forms in m
variables with algebraic coefficients in C and
let 6 > 0.

Then the set of solutions x € Z™ of
L1(%) - Lin(x)] < |Ix[|7°

is contained in the union of finitely many
proper linear subspaces of QM.
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Example (m = 3). Consider

(4)
(21 —V222) (21 +V222) (z3— V222)| < ||x]|7L.

1) (4) has infinitely many solutions

x = (1, %0, 23) € Z3 in the subspace z1 = z3,
which are given by x; = z3, |3 — 2z3| = 1,
xr1xo = 0.

2) (4) has infinitely many solutions x € Z3 in
the subspace xy = —x3, which are given by
r1 = —x3, |:1:% — 2:1:%| =1, z1zo < 0.

3) (4) has only finitely many solutions x € Z3
with x1 # +x3, given by (£1,0,0), (0,0,+1).

Remark. The Pell equation |z$—2x3| = 1 has
infinitely many solutions in integers x1, x».
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p-adic absolute values

Given a prime number p we define the p-adic
absolute value |- |, on Q by

0[p = 0;
lalp = p~" if a = p"b/c where b, c are integers
not divisible by p.

9 9

Example: |535]2 = 23 since 535 = 2735%.

Likewise |5o5l3 =372

Properties:

|ablp = lalp|blp; |a + blp < max(jalp, [b]p);
a € Z, a divisible by p" = |alp <p~".

Product formula:
a composed of primes pq,...,pt
= la| - |alp, -+ - |alp, = 1.
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P-ADIC SUBSPACE THEOREM
(Schlickewei, 1977)

Let pq,...,ps be distinct prime numbers.

Let L1(X),...,Lm(X) be m linearly indepen-
dent linear forms in m variables with coeffi-
cients in Q.

Foreachp € {p1,...,pt}, let L1,(X), ..., Lmp(X)
be m linearly independent linear forms in m
variables with coefficients in Q.

Let o > 0.

Then the set of solutions x € Z™ of

t
|L1(X) e Lm(X)| ' H |L1,pi(X) T Lm,pi(x)|pi
=1

—5
< x|l

is contained in the union of finitely many
proper linear subspaces of QM.
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Remark 1. There is a more general result
in which the coefficients of the linear forms
L;, L;, are algebraic, and the solutions x have
their coordinates in a given algebraic number
field (Schmidt, Schlickewei).

Remark 2. All proofs given up to now for
the (p-adic) Subspace Theorem are ineffec-
tive, i.e., these proofs do not allow to deter-
mine effectively the subspaces containing all
solutions.

Remark 3. There is however a Quantitative
p-adic Subspace Theorem, giving an explicit
upper bound for the number of subspaces
containing all solutions (Schmidt 1989, Schlick-
ewei 1991,..., Schlickewei& Ev., 2002).

This is a crucial tool in the proof of Schmidt’s
theorem on the zero multiplicity of linear re-
currence sequences.
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AN APPLICATION

We prove:

THEOREM Let p,q be two prime numbers
with p > q. Then there are only finitely many
positive integers n such that

p"—1

cl.
" —1

(This is a special case of the Theorem of
Corvaja and Zannier on quotients of linear
recurrence sequences).
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Let h be a positive integer. Then

1 p" — h—1
(" - DE = =" =D X ")
q" — i=0
Hence
h—1 n
hnpn_l ) nzn_ —1
q qn_l—l-;)q Zp 1
1=
or
n_1
r1 + T2+ - +332h—|—1—
q" — 1
where
n_1q
xi=q<i_2)n (1=2,...,h+ 1),

z; = —ptq=h=2)n (; =p 42 .. 2nh+1).
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Xp = (®1,22,--,Top41)
_1 .
= (qh’”gn_l,l gth=1n,
-1
—p", ., —p g,

LEMMA Let ¢"*1 > p. Then thereis § >0
such that for all sufficiently large n with Zn—j C
Z, we have

(z1+ -+ 2op41)22 - Topt1] -

|1 @oppalp |21 Tong1le < l1xnl 70

Hence {xy, : qz L e Z} is contained in a finite

union of proper linear subspaces of Q2h+1,
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Proof. Suppose z, = p _1 € 7. Recall

xn = (x1,20,..., 332h-|—1)
= ("5=1,1,...,¢0 D,
—p ... —pnq(h_l)n).
Hence
Ixnll = ¢""Ei=1 ~ (pg"~1)™.
Further,

v1+ -+ xopt1| = Gt

r1lp = [¢"znlp = 1;

331|q — |qhnzn|q < q—hn;

ajz||$z|p|3§z|q=1 fore.=2,...,2h+1

and so the product of these terms is at most

_ p -1
hn ( h—l—l/p) n

— ~ x|~

q

_|_
where § = 'nggh_l/p. QED.
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The set {xp : g:f—j € Z} is contained in the
union of finitely many proper linear subspaces

of Q2h+1,

It suffices to show that if T is any proper
linear subspace of Q2h*1 then there are only
finitely many n such that x,, € T
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W.l.0.g. T is given by an equation
air1 + -+ ADh+1T2p+1 — O with a; € Q.

Substitute

n_1 .
Xn — (qhngn_la 17 c ety q(h 1)77,,

" _pnq(h—l)n)

g o o oy

and multiply with ¢"™ — 1.

Then we obtain an equation

.
Y cal =0
1=1

where each «; is an integer composed of p
and g and each ¢; is a constant.

The left-hand side is a non-degenerate linear
recurrence sequence.

So by the Skolem-Mahler-Lech Theorem (or
Rolle’'s Theorem), there are only finitely many
possibilities for n. QED
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Two integers a,b are called multiplicatively
independent if there are no positive integers
m,n such that a™ = b".

By extending the above argument, the fol-
lowing result can be proved:

THEOREM (Bugeaud, Corvaja, Zannier, 2003)
Let a,b be two multiplicatively independent
integers. Then

loggcd(a™ — 1.6 — 1
i 1099 (a , )

n—aoo n

= 0.
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