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Notation:

K is an algebraically closed field of character-

istic 0.

K∗ is the multiplicative group of K.

Γ is a subgroup of K∗ of finite rank, i.e., there

is a free subgroup Γ0 of Γ of finite rank such

that for every x ∈ Γ ∃m ∈ N with xm ∈ Γ0.

Define rank Γ := rank Γ0.

Example:

Γ = { m
√

2u3v5w : u, v, w ∈ Z,m ∈ N} has rank

3.
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We consider equations

(1) a1x1 + a2x2 = 1 in x1, x2 ∈ Γ

with a1, a2 ∈ K∗.

Siegel-Mahler-Lang (1927-1960): (1) has only

finitely many solutions.

Theorem 1. (Beukers, Schlickewei, 1996)

Let rank Γ = r. Then eq. (1) has at most

216(r+1) solutions.

Proof. Specialization (to reduce from ar-

bitrary fields of characteristic 0 to number

fields); Diophantine approximation (Thue-

Siegel method).
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It is easy to construct equations

(1) a1x1 + a2x2 = 1 in x1, x2 ∈ Γ.

with two solutions:

pick any two distinct pairs (x1, x2), (y1, y2)

from Γ and solve a1, a2 from a1x1 +a2x2 = 1,

a1y1 + a2y2 = 1.

There are “few” equations (1) with more than

two solutions.
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Two equations

(1) a1x1 + a2x2 = 1 in x1, x2 ∈ Γ

and b1x1 + b2x2 = 1 in x1, x2 ∈ Γ have the

same number of solutions if b1 = a1u1, b2 =

a2u2 for some u1, u2 ∈ Γ.

Taking for (u1, u2) a solution of (1) we ob-

tain an equation with the same number as

solutions as (1), whose sum of coefficients is

1.

A pair of coefficients (a1, a2) ∈ K∗ ×K∗ with

a1 + a2 = 1 is called normalized.

Theorem 2. (Győry, Stewart, Tijdeman, E.,

1988): For every subgroup Γ of K∗ of finite

rank there are only finitely many normalized

pairs (a1, a2) such that (1) has more than two

solutions.

5



We now consider equations in n > 3 variables

(2) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

with a1, . . . , an ∈ K∗.

A solution (x1, . . . , xn) is called non-degenerate

if∑
i∈I

aixi 6= 0 for each non-empty I ⊂ {1, . . . , n}

and otherwise degenerate.

Degenerate solutions give rise to infinite

families of solutions.

If (x1, . . . , xn) is a solution with
∑m

i=1 aixi = 0

(m < n) then (ux1, . . . , uxm, xm+1, . . . , xn) sat-

isfies (2) for every u ∈ Γ.
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Laurent, van der Poorten, Schlickewei, E.

(1980’s):

if Γ is a subgroup of K∗ of finite rank, then

(2) a1x1 + · · ·+anxn = 1 in x1, . . . , xn ∈ Γ

has only finitely many non-degenerate solu-

tions.

Theorem 3. (Schlickewei, Schmidt, E., 2002):

Let rank Γ = r. Then eq. (2) has at most

exp
(

(6n)4n(r+1)
)

non-degenerate solutions.

Proof: Specialization; Diophantine approxi-

mation (Thue-Siegel-Roth-Schmidt method)
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Let n > 3.

A tuple (a1, . . . , an) is called normalized if

(1, . . . ,1) is a non-degenerate solution of

(2) a1x1 + · · ·+anxn = 1 in (x1, . . . , xn) ∈ Γ

i.e., a1 + · · ·+an = 1 and
∑

i∈I ai 6= 0 for each

non-empty I ⊂ {1, . . . , n}.

Question: Does there exist an upper bound

H independent of Γ such that for all but

finitely normalized tuples (a1, . . . , an), Eq. (2)

has at most H non-denegerate solutions?

No: For every h, there exist a multiplicative

subgroup Γ of K∗ of finite rank, and infinitely

many normalized tuples (a1, . . . , an) ∈ (K∗)n,

such that (2) has at least h non-degenerate

solutions.
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Proof. (n = 3). For i = 1, . . . , h, pick

ui1, ui2 ∈ K∗ with ui1 + ui2 = 2.

Let Γ be the group generated by ui1, ui2 (i =

1, . . . , h).

Then for every b ∈ K with b 6= 0,1 the equa-

tion
b

2
x1 +

b

2
x2 + (1− b)x3 = 1

has h solutions in Γ, i.e., (ui1, ui2,1) (i =

1, . . . , h).

For all but finitely many b, the tuple of co-

efficients is normalized and the solutions are

non-degenerate.

Remark. The solutions in this construction

all lie in the subspace x1 + x2 − 2x3 = 0.
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Theorem 4. (Győry, E., 1989)

For every subgroup Γ of K∗ of finite rank,

there is a finite collection EΓ of normalized

tuples, such that for every normalized tuple

(a1, . . . , an) ∈ (K∗)n outside EΓ, the set of

solutions of

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

is contained in the union of at most 2(n+1)!

proper linear subspaces of Kn.
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Theorem 5. (E.,2004) For every subgroup

Γ of K∗ of finite rank, there is a finite col-

lection EΓ of normalized tuples, such that for

every normalized tuple (a1, . . . , an) ∈ (K∗)n

outside EΓ, the set of non-degenerate solu-

tions of

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

is contained in the union of at most

2n

proper linear subspaces of Kn.

Remark 1. The degenerate solutions lie in

at most 2n subspaces
∑

i∈I aixi = 0 (I ⊆
{1, . . . , n}).

Remark 2. The bound 2n is probably far

from best possible. (n???)
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Ingredients of the proof:

1) The result of Schlickewei, Schmidt, E.

that

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

has at most exp
(

(6n)4n(r+1)
)

non-degenerate

solutions, where r = rankΓ.

(In fact we will need only that this bound is

independent of a1, . . . , an).

2) A result by Laurent on points in algebraic

subvarieties of (K∗)n with coordinates in Γ.
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Laurent’s result.

As before,K is an algebraically closed field of
characteristic 0 and Γ a subgroup of K∗ of
finite rank.

View (K∗)n as an algebraic group with coordi-
natewise multiplication (x1, . . . , xn)∗(y1, . . . , yn)
= (x1y1, . . . , xnyn).

An algebraic subvariety of (K∗)n is a set

X = {x ∈ (K∗)n : f1(x) = · · · fm(x) = 0}
with f1, . . . , fm ∈ K[X1, . . . , Xn].

An algebraic subgroup of (K∗)n is an alge-
braic subvariety closed under coordinatewise
multiplication.

A translate of an algebraic subgroup is a coset
x ∗H = {x ∗ u : u ∈ H} where x ∈ (K∗)n and
H is an algebraic subgroup.

13



Let X be an algebraic subvariety of (K∗)n.

Call a point x ∈ X degenerate if there is a

positive dimensional algebraic subgroup H of

(K∗)n with x ∗ H ⊂ X, and non-degenerate

otherwise.

Theorem. (Laurent, 1980’s)

X has at most finitely many non-degenerate

points with coordinates in Γ.

Example. Let X = {a1x1 + · · ·+ anxn = 1}.
Then x = (x1, . . . , xn) is non-degenerate ⇐⇒∑

i∈I aixi 6= 0 for each non-empty I ⊂ {1, . . . , n}.
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A useful fact.

Every m-dimensional algebraic subgroup H of

(K∗)n can be expressed as a direct product

H0 ×G

where H0
∼= (K∗)m and G is a finite group.

An algebraic subgroup of positive dimension

contains points of any finite order.
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Construction of a variety.

Let Γ be a subgroup of K∗ of finite rank.

There is a uniform bound A such that for

every a = (a1, . . . , an) ∈ (K∗)n the equation

(2) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

has at most A non-degenerate solutions.

(E.g., the bound of Schlickewei, Schmidt, E.)
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Given a normalized tuple a = (a1, . . . , an), we

can order the non-degenerate solutions of

(2) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

in a sequence

(1, . . . ,1), (x21, . . . , x2n), . . . , (xA1, . . . , xAn),

where we have copied some of the solutions

if the number of non-degenerate solutions is

smaller than A.

Thus we get

rank


1 · · · 1 1

x21 · · · x2n 1
... ... ...

xA1 · · · xAn 1

 6 n .

This defines an algebraic subvariety X of

(K∗)n(A−1) which is independent of a.
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Each normalized tuple of coefficients a =

(a1, . . . , an) gives rise to a point (x21, . . . , xAn) ∈
X with coordinates in Γ.

a ∈ CLASS I

if (x21, . . . , xAn) is a non-degenerate point of

X.

a ∈ CLASS II

if (x21, . . . , xAn) is a degenerate point of X.

We will prove:

CLASS I is finite.

If a is in CLASS II, then the non-degenerate

solutions of

a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ

lie in at most 2n subspaces of Kn.
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CLASS I.

a = (a1, . . . , an) is such that (x21, . . . , xAn) is
a non-degenerate point with coordinates in Γ
of

X : rank


1 · · · 1 1

x21 · · · x2n 1
... ... ...

xA1 · · · xAn 1

 6 n .

By Laurent’s Theorem, (x21, . . . , xAn) belongs
to a finite set independent of a.

We can determine a uniquely from (x21, . . . , xAn)
by solving

a1 + · · ·+ an = 1

a1xi1 + · · ·+ anxin = 1 (i = 2, . . . , A).

Hence CLASS I is finite.
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CLASS II.

a = (a1, . . . , an) is such that x = (x21, . . . , xAn)
is a degenerate point of

X : rank


1 · · · 1 1

x21 · · · x2n 1
... ... ...

xA1 · · · xAn 1

 6 n .

Then there is a positive dimensional algebraic
group H such that x ∗H ⊂ X.

Take p ∈ H of order 2, p = (ε21, . . . , εAn),
say, with εij ∈ {±1} and not all equal to 1.

Then p ∗ x ∈ X, i.e.,

rank


1 · · · 1 1

ε21x21 · · · ε2nx2n 1
... ... ...

εA1xA1 · · · εAnxAn 1

 6 n .
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There are b0, b1, . . . , bn, not all 0, such that

b1 + · · ·+ bn = b0

b1εi1xi1 + · · ·+ bnεinxin = b0 (i = 1, . . . , A).

Recall that (1, . . . ,1), (xi1, . . . , xin) (i = 2, . . . , A)
contain all non-degenerate solutions of

(2) a1x1 + · · ·+ anxn = 1 in x1, . . . , xn ∈ Γ.

Hence each non-degenerate solution of (2)
satisfies one of the 2n equations

±b1x1 ± · · · ± bnxn = b0 .

Thus, if a ∈ CLASS II, then the non-degenerate
solutions of (2) lie in at most 2n proper linear
subspaces of Kn.

QED
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Analogues for abelian varieties.

Let A be an abelian variety and X a subva-

riety of A, both defined over an algebraically

closed field K of characteristic 0.

Denote by + the group operation and by 0

the zero element of A.

A point x ∈ X is called degenerate if there is

a positive dimensional abelian subvariety B of

A such that x + B ⊂ X, and non-degenerate

otherwise.

Denote by XND the set of non-degenerate

points of X.

A subvariety X of A is called normalized if

0 ∈ XND

Every subvariety can be made normalized af-

ter a translation.
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Abelian varieties vs. linear equations

A(K) ←→ (K∗)n

X ←→ {a1x1 + · · ·+ anxn = 1}

XND ←→
∑

i∈I aixi 6= 0 for all I

0 ←→ (1, . . . ,1)

X normalized ←→ (a1, . . . , an) normalized
(0 ∈ XND) ((1, . . . ,1) non-deg. sol.)
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A qualitative finiteness result.

Let A be an abelian variety and X a subva-

riety of A, both defined over an algebraically

closed field K of characteristic 0.

Let Γ be a subgroup of A(K) of finite rank.

Theorem 6. (Conjectured by Lang; proved

by Faltings, Hindry, McQuillan, 1990’s)

XND(K) ∩ Γ is finite.

Proof: Diophantine approximation (Faltings);

Kummer theory and specialization (Hindry,

McQuillan).
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Rémond’s result.

Let A be an abelian variety defined over an

algebraically closed field K of characteristic

0.

We may view A as a projective subvariety of

PN for some N .

Denote by V(n,D) the collection of subvari-

eties X of A with the following properties:

(i) X (viewed as a subvariety of PN) is de-

fined by polynomials of degree 6 D with co-

efficients in K;

(ii) dimX = n;

(iii) X is normalized, i.e., 0 ∈ XND.
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Theorem 7. (Rémond, 2004)

For every subgroup Γ of A(K) of finite rank,

there is a finite subcollection EΓ of V(n,D)

such that for every X ∈ V(n,D) \ EΓ, the set

XND(K) ∩ Γ is contained in the union of at

most

(2Dn+1)2(dimA)2

(n − 1)-dimensional subvarieties of X, each

given by polynomials of degree at most D.

Proof. Theorem 6 + arguments similar to

those going into the proof of the result for

linear equations.
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Application to curves

Let A be an abelian variety defined over Q,

viewed as a subvariety of PN . For every num-

ber field L, the group A(L) is finitely gener-

ated (Mordell-Weil theorem).

Let C(D) be the collection of curves C ⊂ A

of genus > 2 defined over Q such that 0 ∈ C

and such that C is defined by polynomials of

degree 6 D.

By applying Theorem 8 with n = 1, Γ = A(L)

we obtain:

Corollary. For every number field L there is

a finite subcollection EL of C(D) such that

for every curve C ∈ C(D) \ EL, the number of

L-rational points of C is at most

(2D2)3(dimA)2
.
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Final remark.

Rémond proved a more general result for sub-

varieties of semi-abelian varieties which con-

tains as special cases both his result for abelian

varieties, and my result for linear equations.
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