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Notation:

K is an algebraically closed field of character-
istic O.
K™ is the multiplicative group of K.

[ is a subgroup of K* of finite rank, i.e., there
is a free subgroup g of ' of finite rank such
that for every x € I' dm € N with =™ € ;.

Define rank[ := rankl .
Example:

= {V2u3v5% : y,v,w € Z,m € N} has rank
3.



We consider equations

(1) a1 —|— an>Tro = 1 in r1,To € [

with aq,as € K*.

Siegel-Mahler-Lang (1927-1960): (1) has only
finitely many solutions.

Theorem 1. (Beukers, Schlickewei, 1996)
Let rank T = r. Then eq. (1) has at most
216(r+1) sojutions.

Proof. Specialization (to reduce from ar-
bitrary fields of characteristic O to number
fields); Diophantine approximation (Thue-
Siegel method).



It is easy to construct equations
(1) aixi+apzo=1 inxzy,x0€l.

with two solutions:
pick any two distinct pairs (x1,22), (y1,y2)
from [ and solve aq1,as from aqx1+arxo> = 1,

a1y1 + aryo = 1.

There are “few” equations (1) with more than
two solutions.



Two equations
(1) ayjzx1+aozo=1 inxzy,xoel

and bixqy +boxo = 1 in 1,20 € [' have the
same number of solutions if b1 = ajuy, b =
ar>uo for some uq,un € 1.

Taking for (uq,u>) a solution of (1) we ob-
tain an equation with the same number as
solutions as (1), whose sum of coefficients is
1.

A pair of coefficients (a1,a>) € K* x K* with
a1 +a> =1 is called normalized.

Theorem 2. (Gybry, Stewart, Tijdeman, E.,
1988): For every subgroup I' of K* of finite
rank there are only finitely many normalized
pairs (a1,a») such that (1) has more than two
solutions.



We now consider equations in n > 3 variables

(2) a1x1+ --+anrn=1 inxzq,...,xn €
with aq,...,an € K*.

A solution (z1,...,xpn) is called non-degenerate
if

Y a;z; 7 0 for each non-empty I C {1,...,n}
=
and otherwise degenerate.

Degenerate solutions give rise to infinite
families of solutions.

If (331, co ,:Cn) IS a solution with Z;n:l a;x; =0
(m < n) then (uxq,...,uTm,Tpy41,--.,Tn) Sat-
isfies (2) for every uw e I'.



Laurent, van der Poorten, Schlickewei, E.
(1980's):

if ™ is a subgroup of K* of finite rank, then
(2) ayzx1+---+anzn=1 inzq,...,xn €l

has only finitely many non-degenerate solu-
tions.

Theorem 3. (Schlickewei, Schmidt, E., 2002):
Let rank T = r. Then eq. (2) has at most

exp ((6n)4"(r—|—1)) non-degenerate solutions.

Proof: Specialization; Diophantine approxi-
mation (Thue-Siegel-Roth-Schmidt method)



Let n > 3.

A tuple (a1,...,an) is called normalized if
(1,...,1) is a non-degenerate solution of

(2) ayz1+---+anzn=1 in (xq1,...,zn) €T

i.e., a1 +---+an=1and } ;cra; # 0 for each
non-empty I C {1,...,n}.

Question: Does there exist an upper bound
H independent of ' such that for all but
finitely normalized tuples (a1,...,an), Eq. (2)
has at most H non-denegerate solutions?

No: For every h, there exist a multiplicative
subgroup I of K* of finite rank, and infinitely
many normalized tuples (aq,...,an) € (K*)%,
such that (2) has at least h non-degenerate
solutions.



Proof. (n = 3). For ¢« = 1,...,h, pick
u;1, u;p € K* with w1 + ujp = 2.

Let I be the group generated by wu;1,u;o (i =
1,...,h).

Then for every b € K with b %= 0,1 the equa-
tion

b b

51t Seat (1-b)zz=1
has h solutions in I, i.e., (u;1,u;», 1) (1 =

1,....h).

For all but finitely many b, the tuple of co-
efficients is normalized and the solutions are
non-degenerate.

Remark. The solutions in this construction
all lie in the subspace 1 + xo — 2x3 = 0.



Theorem 4. (Gyéry, E., 1989)

For every subgroup I of K* of finite rank,
there is a finite collection & of normalized
tuples, such that for every normalized tuple
(a1,...,an) € (K*)™ outside &-, the set of
solutions of

a1+ --+apnzn =1 inxzq,...,xn €

is contained in the union of at most 2(nt+1)!
proper linear subspaces of K™.

10



Theorem 5. (E.,2004) For every subgroup
[T of K* of finite rank, there is a finite col-
lection & of normalized tuples, such that for
every normalized tuple (aq1,...,an) € (K*)"
outside &, the set of non-degenerate solu-
tions of

aix1+ --+anrn=1 Iinxzq,...,xzn €
is contained in the union of at most
2’)7,

proper linear subspaces of K™.

Remark 1. The degenerate solutions lie in
at most 2" subspaces > ;cra;z; = 0 (I C

{(1,....n}). -

Remark 2. The bound 2" is probably far
from best possible. (n?77)
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Ingredients of the proof:

1) The result of Schlickewei, Schmidt, E.
that

a1x1+ --+anrn=1 inxzq,...,xzn €

has at most exp ((6n)4”(r—|—1)) non-degenerate
solutions, where r = rank [ .

(In fact we will need only that this bound is
independent of a1,...,an).

2) A result by Laurent on points in algebraic
subvarieties of (K*)™ with coordinates in I'.
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Laurent’s result.

As before, K is an algebraically closed field of
characteristic O and I' a subgroup of K* of
finite rank.

View (K*)™ as an algebraic group with coordi-
natewise multiplication (x1,...,zn)*(y1,...,yn)
= (z1Y1,--->TnYn).

An algebraic subvariety of (K*)™ is a set

X={xe(E)": fix) =" fm(x) =0}
with fq1,..., mEK[Xl,...,Xn].

An algebraic subgroup of (K*)" is an alge-
braic subvariety closed under coordinatewise
multiplication.

A translate of an algebraic subgroup is a coset
x+H={x*u:ué€& H} where x € (K*)" and
H is an algebraic subgroup.

13



Let X be an algebraic subvariety of (K*)".

Call a point x € X degenerate if there is a
positive dimensional algebraic subgroup H of
(K*)™ with x* H C X, and non-degenerate
otherwise.

Theorem. (Laurent, 1980's)
X has at most finitely many non-degenerate
points with coordinates in I .

Example. Let X = {a1z1+ - -+ anzn = 1}.

Then x = (x1,...,zn) iS NON-degenerate <
> ic1 aix; 7= 0 for each non-empty I C {1,...,n}.
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A useful fact.

Every m-dimensional algebraic subgroup H of

(K*)™ can be expressed as a direct product
HO X GG

where Hg = (K*)™ and G is a finite group.

An algebraic subgroup of positive dimension
contains points of any finite order.
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Construction of a variety.

Let ' be a subgroup of K* of finite rank.

There is a uniform bound A such that for
every a= (a1,...,an) € (K*)™ the equation

has at most A non-degenerate solutions.

(E.g., the bound of Schlickewei, Schmidt, E.)
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Given a normalized tuple a = (a1,...,an), We
can order the non-degenerate solutions of
(2) aiz1+--+anzn=1 inz1,...,zn €

in a sequence

(1,...,1),(%21,...,.IQn),...,(CE‘A]_,...,xAn),

where we have copied some of the solutions
if the number of non-degenerate solutions is
smaller than A.

Thus we get
1 1 1
rank | %21 "7 *2n 1 < n.
TA1 0 XA, 1

This defines an algebraic subvariety X of
(K*)"(A=1) which is independent of a.
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Each normalized tuple of coefficients a =
(a1,...,an) givesrise to a point (z51,...,T4,) €
X with coordinates in I'.

ac CLASS 1
if (x21,...,24,) IS @ non-degenerate point of
X.

ac CLASS II
if (x21,...,24,) IS @ degenerate point of X.

We will prove:

CLASS I is finite.

If a is in CLASS II, then the non-degenerate
solutions of

aix1+---+anxn=1 nxq,...,2n €
lie in at most 2™ subspaces of K™.
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CLASS 1.

a = (al, Ceey an) IS such that (3321, ce ,xAn) IS
a nhon-degenerate point with coordinates in I
of

X : rank x_zl wzn 1 <n.
Ta1 - Tan 1
By Laurent’s Theorem, (z51,...,x4,) belongs
to a finite set independent of a.
We can determine a uniquely from (x51,...,24,)

by solving

a1+ -+ap =1
a1r;1+ - +tanxy, =1 (=2,...,A).

Hence CLASS I is finite.
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CLASS 1II.

a=(ay,...,an)issuchthatx = (x21,...,24,)
IS a degenerate point of

1 .. 1 1
X : rank $:21 wznl <n.
TAl o TaAp 1

Then there is a positive dimensional algebraic
group H such that x+x H C X.

Take p € H of order 2, p = (e21,..--,€4n),
say, with ¢;; € {1} and not all equal to 1.

Thenpxx e X, i.e.,

1
rank | £21%21 fonon 1
EA1TA1 "'° €AnTAp 1
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There are bg,bq1,...,bn, not all O, such that

b]__l_—l_b’n:bO
bigi1xi1 + -+ bngipwin =bo (1 =1,...,A).

Recallthat (1,...,1), (x;1,...,2;p) (1 =2,...,A)
contain all non-degenerate solutions of

(2) aix1+---+apnzpn=1inxzq1,...,2n €.

Hence each non-degenerate solution of (2)
satisfies one of the 2™ equations

Thus, ifa e CLASSII, then the non-degenerate
solutions of (2) lie in at most 2™ proper linear
subspaces of K™.

QED
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Analogues for abelian varieties.

Let A be an abelian variety and X a subva-
riety of A, both defined over an algebraically
closed field K of characteristic O.

Denote by 4+ the group operation and by O
the zero element of A.

A point x € X is called degenerate if there is
a positive dimensional abelian subvariety B of
A such that x4+ B C X, and non-degenerate
otherwise.

Denote by XVP the set of non-degenerate
points of X.

A subvariety X of A is called normalized if
0¢c xND

Every subvariety can be made normalized af-
ter a translation.
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Abelian varieties vs. linear equations

A(K)
X
XND
0

X normalized
(0 e XND)

A

()"

{a1z1 + -+ apzp = 1}
>icraix; 7= 0 for all I
(1,...,1)

(aq,...,an) normalized
((1,...,1) non-deg. sol.)
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A qualitative finiteness result.

Let A be an abelian variety and X a subva-
riety of A, both defined over an algebraically
closed field K of characteristic O.

Let ' be a subgroup of A(K) of finite rank.

Theorem 6. (Conjectured by Lang; proved
by Faltings, Hindry, McQuillan, 1990's)
XND(KYNT is finite.

Proof: Diophantine approximation (Faltings);
Kummer theory and specialization (Hindry,
McQuillan).
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Rémond’s result.

Let A be an abelian variety defined over an
algebraically closed field K of characteristic
0.

We may view A as a projective subvariety of
PN for some N.

Denote by V(n,D) the collection of subvari-
eties X of A with the following properties:

(i) X (viewed as a subvariety of PV) is de-
fined by polynomials of degree < D with co-
efficients in K;

(ii) dim X = n;

(iii) X is normalized, i.e., 0 € XD
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Theorem 7. (Rémond, 2004)

For every subgroup I of A(K) of finite rank,
there is a finite subcollection &~ of V(n, D)
such that for every X € V(n,D) \ &, the set
XND(K)NT is contained in the union of at
most

(n — 1)-dimensional subvarieties of X, each
given by polynomials of degree at most D.

Proof. Theorem 6 4+ arguments similar to
those going into the proof of the result for
linear equations.
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Application to curves

Let A be an abelian variety defined over Q,
viewed as a subvariety of PYV. For every num-
ber field L, the group A(L) is finitely gener-
ated (Mordell-Weil theorem).

Let C(D) be the collection of curves C C A
of genus > 2 defined over Q such that 0 € C
and such that C is defined by polynomials of
degree < D.

By applying Theorem 8 withn =1, = A(L)
we obtain:

Corollary. For every number field L there is
a finite subcollection £; of C(D) such that
for every curve C € C(D) \ &1, the number of
L-rational points of C is at most
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Final remark.

Rémond proved a more general result for sub-
varieties of semi-abelian varieties which con-
tains as special cases both his result for abelian
varieties, and my result for linear equations.
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