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1. Introduction.

In this paper we give a survey of recent results obtained by the authors on

discriminant and resultant equations.

The discriminant of a binary form F =
∑m

i=0 aiX
m−iY i =∏m

k=1(αkX − βkY ) is defined by

D(F ) =
∏

16k<l6m

(αkβl − αlβk)
2.

As is well known, D(F ) is a homogeneous polynomial in Z[a0, . . . , am] of

degree 2m− 2. Further, for any scalar λ and any 2× 2-matrix U =
(

a
c

b
d

)
we have

(1.1) D(λFU) = λ2m−2(det U)m(m−1)D(F ),

where FU(X,Y ) := F (aX + bY, cX + dY ).

The resultant of two binary forms

F =
m∑

i=0

aiX
m−iY i =

m∏
k=1

(αkX − βkY ),

G =
n∑

j=0

bjX
n−jY j =

n∏
l=1

(γlX − δlY )
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is given by

R(F, G) =
m∏

k=1

n∏
l=1

(αkδl − βkγl).

Using the well-known determinantal expression for the resultant (see [29,

§34]), one shows that R(F, G) is a polynomial in Z[a0, . . . , am; b0, . . . , bn]

which is homogeneous of degree n in a0, . . . , am and homogeneous of degree

m in b0, . . . , bn. Further, for any scalars λ, µ and any 2 × 2-matrix U one

has

(1.2) R(λFU , µGU) = λnµm(det U)mnR(F, G).

We note that the discriminant and resultant of monic binary forms F, G,

i.e. with F (1, 0) = 1, G(1, 0) = 1 coincide with those of the polynomials

F (X, 1), G(X, 1).

Let S = {p1, . . . , pt} be a finite, possibly empty set of primes. The ring of

S-integers is defined by ZS = Z[(p1 · · · pt)
−1] if S 6= ∅ and ZS = Z if S = ∅.

The unit group of ZS is ZS
∗ = {±

∏t
i=1 pwi

i : wi ∈ Z} if S 6= ∅ and {±1} if

S = ∅. We consider the discriminant equation

D(F ) ∈ cZS
∗

to be solved in binary forms F ∈ ZS[X, Y ], and the resultant equation

R(F, G) ∈ cZS
∗

to be solved in pairs of binary forms F, G ∈ ZS[X,Y ], where c is a positive

integer. The solutions of these equations can be divided in a natural way

into equivalence classes. In the monic case the earlier results concerning

these equations were stated and proved in terms of polynomials. In this

paper, we give a survey on recent results obtained by us concerning the

number of equivalence classes. In Section 2 we present some results from

[2] on the discriminant equation, while Section 3 is devoted to some new

results on the resultant equation which will appear in [3].

The focus of this paper will be on estimates for the number of equivalence

classes, and so we will not discuss algorithmic results. In the literature

there are finiteness results for much more general equations and inequalities,

such as ’inhomogeneous versions’, inequalities involving discriminants or
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resultants, or discriminant and resultant equations for binary forms with

coefficients in an arbitrary finitely generated domain of characteristic 0,

etc. Again, we refrain from a discussion of those. For simplicity we restrict

ourselves to results on binary forms with coefficients in ZS, but we note

that some of our results in [2] have been established for binary forms with

coefficients in the ring of S-integers of an arbitrary algebraic number field.

2. Discriminant equations.

For a domain Ω we denote by Ω∗ the unit group of Ω, by NS2(Ω) the

set of non-singular 2 × 2-matrices with entries in Ω, and by GL2(Ω) the

group of matrices in NS2(Ω) with determinant in Ω∗. Two binary forms

F, G ∈ Ω[X, Y ] are called Ω-equivalent if there are ε ∈ Ω∗ and U ∈ GL2(Ω)

such that G = εFU . 1 For monic binary forms F , we define a stronger

notion of equivalence as follows: two monic binary forms F, G ∈ Ω[X,Y ]

are called strongly Ω-equivalent if there are ε ∈ Ω∗ and a ∈ Ω such that

G(X, Y ) = F (X+aY, εY ). It is immediate from (1.1) that if F, G ∈ Ω[X, Y ]

are Ω-equivalent, then D(G) = εD(F ) for some ε ∈ Ω∗.

From classical results of Lagrange and Gauss it follows that for any non-

zero integer c, the binary quadratic forms F ∈ Z[X, Y ] with discriminant

D(F ) = c lie in only finitely many Z-equivalence classes. Hermite proved the

analogous result for binary cubic forms in Z[X, Y ]. The proofs of Lagrange,

Gauss and Hermite are effective in that they give an effective procedure to

determine a full system of representatives for the equivalence classes.

In 1972, Birch and Merriman [6] extended the finiteness results of La-

grange, Gauss and Hermite as follows. Let OS be the ring of S-integers in

some number field K, where S is a finite set of places of K. Let c ∈ OS,

c 6= 0. Then for any integer m > 2, the binary forms F ∈ OS[X, Y ] of

degree m with

(2.1) D(F ) ∈ cO∗
S

1In [2], two binary forms F,G ∈ Ω[X, Y ] such that G = εFU for some ε ∈ Ω∗,
U ∈ GL2(Ω) are called weakly Ω-equivalent, while the notion of Ω-equivalence is used
for binary forms F,G such that G = FU for some U ∈ GL2(Ω). This latter notion of
Ω-equivalence is not used in the present paper.
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lie in only finitely many OS-equivalence classes. The proof of Birch and

Merriman is ineffective.

In the 1970’s, Győry [19] proved in a quantitative form that every monic

binary form F ∈ OS[X,Y ] of degree m satisfying (2.1) is strongly OS-

equivalent to a monic binary form with height bounded above by an effec-

tively computable number depending only on K, S and c. For monic binary

forms, this is a more precise and effective version of the result of Birch and

Merriman. Győry’s results made it possible to find in principle all power

integral bases of a given number field, and also to find in principle all solu-

tions of an index form equation. Győry’s proof depends on lower bounds for

linear forms in logarithms of algebraic numbers, both in the archimedean

and the p-adic case.

In 1991, Evertse and Győry [12] proved an effective analogue of the

result of Birch and Merriman in full generality, i.e., they proved that every

binary form F ∈ OS[X, Y ] with (2.1) is OS-equivalent to a binary form with

height effectively bounded above in terms of K, S and c. Again, the proof

depends on lower bounds for linear forms in logarithms.

Below we discuss some recent results by the authors [2], giving explicit

upper bounds for the number of equivalence classes of binary forms with

(2.1). In [2] we proved results valid for binary forms having their coefficients

in the ring of S-integers of an arbitrary number field. For simplicity we state

here our results only over the ring of S-integers ZS = Z[(p1 · · · pt)
−1] in Q,

where S = {p1, . . . , pt} is a finite, possibly empty set of primes.

We first deal with irreducible binary forms. Let F (X, Y ) =
∑m

i=0 aiX
m−iY i

=a0

∏m
k=1(X−θ(i)Y ) be a binary form in ZS[X, Y ] which is irreducible over

Q, where θ(1), . . . , θ(m) are the conjugates of some algebraic number θ and

let K = Q(θ). We define the invariant order OF associated with F to be

the ZS-module generated by

(2.2) ω1 = 1, ω2 = a0θ, ω3 = a0θ
2 + a1θ, . . . , ωm = a0θ

m−1 + · · ·+ am−2θ .

As it turns out (see [25] or [28]), OF is a ZS-order in K, i.e., an overring of

ZS which is finitely generated as a ZS-module and has quotient field K. Fur-

ther, the discriminant of the basis given by (2.2), i.e., DK/Q(ω1, . . . , ωm) =
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det(TrK/Q(ωiωj)), is precisely the discriminant of F . Nakagawa [25] and

Simon [28] showed that if F, G ∈ ZS[X, Y ] are two ZS-equivalent binary

forms, then their associated orders OF , OG are isomorphic as ZS-algebras.

Using an argument of Delone and Faddeev [7, II, §15], one can show

that there is a one-to-one correspondence between ZS-equivalence classes

of irreducible binary cubic forms in ZS[X,Y ] and isomorphism classes of

ZS-orders in cubic number fields. On the other hand, Simon [28] gave ex-

amples of number fields of degree 4 and higher, having orders not coming

from a binary form. From the result of Birch and Merriman mentioned

above it follows that there are only finitely many ZS-equivalence classes of

binary forms whose associated order is isomorphic to a given order. The

quantitative version below is the special case k = Q of Bérczes, Evertse

and Győry [2, Theorem 2.1].

Theorem 2.1. [2] Let K be a number field of degree m > 4. Let S =

{p1, . . . , pt} be a finite, possibly empty set of primes. Let O be a ZS-order

in K. Then the irreducible binary forms F ∈ ZS[X, Y ] with

(2.3) OF
∼= O as ZS-algebras

lie in the union of at most 224m3(t+1) ZS-equivalence classes.

An irreducible binary form F ∈ Q[X,Y ] is said to be associated with a

number field K if there is θ with K = Q(θ) such that F (θ, 1) = 0. We agree

that the binary forms cY (c ∈ Q∗) are associated with Q. A binary form

F ∈ Q[X, Y ] is said to be associated with the number fields K0, . . . , Kr

if it can be factored as
∏r

i=0 Fi, where Fi is an irreducible binary form

in Q[X, Y ] associated with Ki for i = 0, . . . , r. It is easy to check that

deg F =
∑r

i=0[Ki : Q]. The discriminant of a number field K is denoted

by DK/Q. If F ∈ ZS[X, Y ] is an irreducible binary form associated with K,

then with ω1, . . . , ωm given by (2.2), we have

(2.4) D(F ) = DK/Q(ω1, . . . , ωm) ∈ (c2DK/Q) · Z∗
S,

where c is the index of OF in the integral closure of ZS in K.

More generally, let F ∈ ZS[X, Y ] be a binary form associated with the

number fields K0, . . . , Kr. Then F can be factored as
∏r

i=0 Fi where Fi is
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an irreducible binary form in ZS[X, Y ] associated with Ki for i = 0, . . . , r.

From (1.1), (1.2) it follows easily that

(2.5) D(F ) =
r∏

i=0

D(Fi) ·
∏

06i<j6r

R(Fi, Fj)
2,

and in combination with (2.4) this gives that there is c ∈ ZS \ {0} with

(2.6) D(F ) ∈ (c2

r∏
i=0

DKi/Q) · Z∗
S.

The following result is the special case k = Q of [2, Theorem 2.3]. For a

positive integer d we denote by ω(d) the number of distinct primes dividing

d. Further, for α ∈ N, we put

(2.7) τα(d) :=
∏
p|d

(
ordp(d) + α

α

)
,

where the product is taken over all primes dividing d, and where ordp(d) is

the exponent of p in the prime factorization of d.

Theorem 2.2. [2] Let K0, . . . , Kr be number fields with [K0 : Q] > 3. Put

m :=
∑r

i=1[Ki : Q]. Let S = {p1, . . . , pt} be a possibly empty set of primes,

and c a positive integer coprime with p1 · · · pt if t > 0. Then the set of

binary forms F ∈ ZS[X, Y ] which are associated with K0, . . . , Kr and which

satisfy (2.6) lie in the union of at most

224m3(t+ω(c)+1) · τm(m−1)/2(c
2)

( ∑
dm(m−1)/2|c

d
)

ZS-equivalence classes, where the sum is taken over all positive integers d

such that dm(m−1)/2 divides c.

This may be compared with [10, Theorem 1], which deals with the special

case that the binary forms F under consideration are monic. In this result,

the splitting field of F is fixed and not the fields K0, . . . , Kr. Further, in

[19, Part II] and [10] explicit upper bounds are given for the degree of F .

The upper bound in Theorem 2.2 is of the shape O(c
2

m(m−1)
+δ) as c →∞

for every δ > 0. One can show as follows that this cannot be improved to
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O(cκ) as c →∞ for any κ < 2/m(m−1). Pick a binary form F0 ∈ ZS[X,Y ]

of non-zero discriminant associated with K0, . . . , Kt. Then

D(F0) ∈ (c2
0

r∏
i=0

DKi/Q) · Z∗
S

for some non-zero c0 ∈ Z coprime with p1 · · · pt. Consider the binary forms

F = (F0)A for all matrices A ∈ NS2(Z) with determinant equal to ∆, say,

where ∆ is coprime with p1 · · · pt. By (1.1), each such binary form F satisfies

(2.6) with c = c0∆
m(m−1)/2. Further, by an argument in [2, §9] these binary

forms lie in at least O(∆) = O(c2/m(m−1)) ZS-equivalence classes.

To obstruct the above construction we impose an additional condition on

our binary forms. A binary form F ∈ ZS[X, Y ] is called ZS-minimal if it can

not be expressed as F = GA with G ∈ ZS[X, Y ] and A ∈ NS2(ZS)\GL2(ZS).

The following result is not contained in [2].

Theorem 2.3. Let K0, . . . , Kr, m, S, c be as in Theorem 2.2. Then the

set of ZS-minimal binary forms F ∈ ZS[X, Y ] which are associated with

K0, . . . , Kr and which satisfy (2.6), lie in the union of at most

224m3(t+ω(c)+1) · τm(m−1)/2(c
2)

ZS-equivalence classes.

It should be noted that the bound in Theorem 2.3 is O(cδ) as c → ∞ for

every δ > 0.

We mention that Theorems 2.1 and 2.2 have been established in [2] in a

more general form, for binary forms having their coefficients in the ring of

S-integers in an arbitrary number field instead of Q. However, we have not

been able to carry over Theorem 2.3 to number fields.

We sketch the proofs of the results mentioned above. For a field K, we

endow (K∗)n with coordinatewise multiplication (x1, . . . , xn)(y1, . . . , yn) =

(x1y1, . . . , xnyn). Our main tool is the following result:

Theorem (Beukers, Schlickewei [5]). Let K be a field of characteristic

0 and Γ a subgroup of (K∗)2 of finite rank ρ. Further, let a, b ∈ K∗. Then
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the equation

(2.8) ax + by = 1 in (x, y) ∈ Γ

has at most 28ρ+16 solutions.

We first sketch the proof of Theorem 2.1. The first step of the proof is to

estimate the number of Q-equivalence classes of binary forms with (2.3), and

the second step to estimate how many ZS-equivalence classes are contained

in a Q-equivalence class. Recall that according to the definition from the

beginning of this section, two binary forms F, G are called Q-equivalent if

G = λFU for some λ ∈ Q∗ and U ∈ GL2(Q).

Let F ∈ ZS[X, Y ] be a binary form with (2.3). Then F can be factored

as

F (X, Y ) = a0

m∏
k=1

(X − θ
(k)
F Y ),

with Q(θF ) = K. The cross ratios associated with F are defined by

∆ijkl(F ) =
(θ

(i)
F − θ

(j)
F )(θ

(k)
F − θ

(l)
F )

(θ
(i)
F − θ

(k)
F )(θ

(j)
F − θ

(l)
F )

(1 6 i, j, k, l 6 m). We denote by ∆(F ) the tuple consisting of all these

cross ratios. Let Kijkl := Q(θ
(i)
F , θ

(j)
F , θ

(k)
F , θ

(l)
F ).

By an elementary argument (see [2, Lemma 5.1 and p. 390]) one shows

that ∆ijkl(F ) = aijklxijkl, where aijkl depends only on the given order O,

and where xijkl belongs to the unit group Uijkl of the integral closure of ZS in

Kijkl. By inserting this into the well-known relation ∆ijkl(F )+∆ilkj(F ) = 1,

one obtains

aijklxijkl + ailkjxilkj = 1.

Using the Dirichlet-Chevalley-Weil S-unit theorem, one can estimate from

above the ranks of the groups Uijkl in terms of m and t. Then an application

of the result of Beukers and Schlickewei gives an explicit upper bound for

the number of possibilities for the tuple of cross ratios ∆(F ), as F runs

through all binary forms with (2.3).
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Now if F, G are two binary forms in ZS[X, Y ] with (2.3) and with ∆(F ) =

∆(G), then by elementary projective geometry there exists a unique pro-

jective transformation mapping the roots θ
(1)
F , . . . , θ

(m)
F of F to the roots

θ
(1)
G , . . . , θ

(m)
G of G. This transformation is defined over Q since it is invari-

ant under the action of the Galois group of the normal closure of K over Q.

Then by an elementary manipulation one shows that F, G are Q-equivalent.

Thus, one obtains an explicit upper bound for the number of Q-equivalence

classes of binary forms F ∈ ZS[X, Y ] satisfying (2.3).

By making the above argument more precise, one derives an upper bound

224(m3−m2)(t+1). Using an elementary argument (see [2, Lemma 3.3 and

§5]) one shows that each Q-equivalence class is contained in at most mt+1

ZS-equivalence classes. By multiplying the two bounds one obtains Theo-

rem 2.1. �

We now sketch the proofs of Theorems 2.2 and 2.3. We first assume that

c = 1, and restrict ourselves to irreducible binary forms F associated with a

number field K. For such forms, the order OF is equal to the integral closure

of ZS in K. So by Theorem 2.1, the binary forms F under consideration lie

in at most 224m3(t+1) ZS-equivalence classes.

We keep our assumption c = 1, but now consider reducible binary forms

in ZS[X, Y ] associated with a sequence of number fields K0, . . . , Kr. Such

forms can be factored as F =
∏r

i=0 Fi, where Fi ∈ ZS[X, Y ] is irreducible

and associated with Ki. Then by (2.4), (2.5), (2.6) we have D(Fi) ∈
DKi/QZ∗

S for i = 0, . . . , r and R(Fi, Fj) ∈ Z∗
S for 0 6 i < j 6 r. Using

the already established result for irreducible binary forms one may estimate

the number of ZS-equivalence classes for F0, and given F0 one may estimate

the number of possibilities for F1, . . . , Fr, using a result for a special case

of the resultant equation discussed in the next chapter. Thus, one proves

Theorems 2.2 and 2.3 in the special case c = 1.

We now consider binary forms F satisfying (2.6) for arbitrary c. Let T :=

S ∪ {p : p|c}. Then by what already has been established, the binary forms

under consideration lie in at most 224m3(t+ω(c)+1) ZT -equivalence classes. One
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obtains Theorem 2.2 by using the elementary [2, Proposition 4.7], which

implies that a ZT -equivalence class is contained in the union of at most

τm(m−1)/2(c
2)

( ∑
dm(m−1)/2|c d

)
ZS-equivalence classes.

To prove Theorem 2.3 we have to make some modifications in the proof

of [2, Proposition 4.7], which we discuss below.

For a prime number p, let Zp denote the localization of Z at p; thus

ZS = ∩p6∈SZp. A binary form F ∈ Zp[X, Y ] is called Zp-minimal, if there are

no binary form G ∈ Zp[X, Y ] and A ∈ NS2(Zp)\GL2(Zp) such that F = GA.

Assume that F is not Zp-minimal for some p 6∈ S, i.e., that F = GA for

some binary form G ∈ Zp[X,Y ] and some A ∈ NS2(Zp) \ GL2(Zp). We

may express A as A = UB, where U ∈ GL2(Zp) and B ∈ NS2(ZS) with

det B = pβ for some positive integer β. Thus, F = HB, where H = GU .

We have H ∈ Zp[X, Y ]. Further, for every prime q 6∈ S ∪ {p} we have

B ∈ GL2(Zq), hence H ∈ Zq[X, Y ]. This implies H ∈ ZS[X, Y ]. So F is not

ZS-minimal. That is, if we assume that the binary form F is ZS-minimal,

then it is also Zp-minimal for every prime p 6∈ S.

Let C be a set of binary forms F ∈ ZS[X, Y ] which are ZS-minimal,

are associated with K0, . . . , Kr, satisfy (2.6), and are ZT -equivalent to one

another. Let p be a prime outside S. By combining Lemmata 4.3 and

4.5 of [2], we infer the following: there is a collection D of binary forms

F0 ∈ Zp[X,Y ] of cardinality at most

τp :=

(
2 ordp(c) + 1

2
m(m− 1)

1
2
m(m− 1)

)

such that for every F ∈ C there are F0 ∈ D and A ∈ NS2(Zp) with

F = (F0)A. By the remarks above, the binary forms in C are Zp-minimal.

Therefore, the binary forms in C lie in at most τp Zp-equivalence classes.

Now basically this means that C is contained in the union of at most∏
p6∈S τp = τm(m−1)/2(c

2) S-equivalence classes. (In fact one has to work with

’augmented forms’ as introduced in [2, §2] and use [2, Lemma 3.2]). Multi-

plying the latter bound with our estimate for the number of T -equivalence

classes, we obtain Theorem 2.6. �
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3. Resultant equations.

We introduce some terminology in addition to what has been introduced in

the previous section. Let Ω be a domain. Two pairs of binary forms (F1, G1),

(F2, G2) in Ω[X, Y ] are called Ω-equivalent if F2 = ε(F1)U , G2 = η(G1)U

for some ε, η ∈ Ω∗ and U ∈ GL2(Ω). Two pairs of monic binary forms

(F1, G1), (F2, G2) in Ω[X, Y ] are called strongly Ω-equivalent if F2(X, Y ) =

F1(X + aY, εY ), G2(X, Y ) = G1(X + aY, εY ) for some a ∈ Ω, ε ∈ Ω∗.

Let again S = {p1, . . . , pt} be a finite, possibly empty set of primes, and c

a positive integer coprime with p1 · · · pt if t > 0. We deal with the resultant

equation

(3.1) R(F, G) ∈ cZ∗
S

to be solved in binary forms F, G ∈ ZS[X, Y ].

At present, there are two types of finiteness results for (3.1). The first

deals with the case that one of the binary forms, G, say, is fixed, and F is

allowed to vary. Then from results of Schmidt [27], Fujiwara [18], Ru

and Wong [26], and Győry [21] it follows that if G ∈ ZS[X, Y ] is a binary

form of degree n > 3 with non-zero discriminant then up to multiplication

by a factor from Z∗
S, there are only finitely many binary forms F ∈ ZS[X,Y ]

of degree m < n/2 that satisfy (3.1). Further, in [23] (see also [4]) the upper

bound (
234n2

)m3(t+ω(c)+1)

was given for the number of these binary forms F . By restricting to linear

binary forms F = yX−xY , Eq. (3.1) reduces to the Thue-Mahler equation

G(x, y) ∈ cZ∗
S and we deduce the well-known finiteness result for the latter.

More generally, if one views the coefficients of F as variables x0, . . . , xm,

one can express (3.1) as a decomposable form equation H(x0, . . . , xm) ∈
cZ∗

S in x0, . . . , xm ∈ ZS, where H is a decomposable form, i.e., a product

of linear forms with algebraic coefficients. Győry [21], [23] obtained the

finiteness results for (3.1) by applying general theory for decomposable form

equations, see [8], [15].
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In the second type of finiteness result, both F, G are allowed to vary, but

one has to fix a number field L such that both F, G factor into linear forms

in L[X, Y ]. By (1.2), if (F, G) is a solution of (3.1) then so is any pair

ZS-equivalent to (F, G). So if we allow both F, G to vary, we can prove only

finiteness results up to ZS-equivalence. The first result of this type was

proved by Győry [20]. He showed that if m, n are integers with m > 2,

n > 2 and m + n > 5, and L is a given number field, then there are only

finitely many strong ZS-equivalence classes of pairs of monic binary forms

F, G ∈ ZS[X, Y ] satisfying (3.1) such that deg F = m, deg G = n, F , G

have non-zero discriminant and F , G factor into linear forms in L[X, Y ].

Further, in [20] explicit upper bounds are given for the number of such ZS-

equivalence classes and for deg F +deg G. Then Evertse and Győry [14]

proved an analogue for not necessarily monic binary forms, stating that if

m > 3, n > 3, then up to (not necessarily strong) ZS-equivalence, there are

only finitely many pairs of binary forms F, G ∈ ZS[X, Y ] satisfying (3.1)

such that deg F = m, deg G = n, F , G have non-zero discriminant and F ,

G factor into linear factors in L[X, Y ]. One can show in both the monic and

non-monic case that the conditions on m,n cannot be relaxed. We mention

that both types of finiteness results depend on the Subspace Theorem and

are therefore ineffective.

Below, we give a survey of some new quantitative results concerning the

second type of finiteness result for (3.1), which will appear in [3]. In what

follows, S = {p1, . . . , pt} is a finite, possibly empty set of primes and c a

positive integer, assumed to be coprime with p1 · · · pt if S 6= ∅. Further,

K1, . . . , Kr, L1, . . . , Ls are number fields. Put

m :=
r∑

i=1

[Ki : Q], n :=
s∑

i=1

[Li : Q].

We will deal with pairs of binary forms (F, G) such that F is associated with

K1, . . . , Kr and G with L1, . . . , Ls. Our first result concerns monic binary

forms.

Theorem 3.1. [3] Assume that m > 2, n > 2, m + n > 5. Then the set of

pairs of monic binary forms F, G ∈ ZS[X, Y ] with deg F = m, deg G = n

and
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(3.1) R(F, G) ∈ cZ∗
S

for which

F is associated with K1, . . . , Kr, G is associated with L1, . . . , Ls,

F , G have non-zero discriminants,

is contained in the union of at most

e17(m+n+1011)mn(t+ω(c)+1)

strong ZS-equivalence classes.

This may be compared with the upper bound of [20, Theorem 2a], where

the fields Ki and Lj are not fixed, but F and G split into linear factors over

a given number field.

We now deal with binary forms which are not necessarily monic. Un-

fortunately, in this case we are able to give an explicit estimate only for

the number of ZS-equivalence classes of those pairs of binary forms F, G

such that at least one of F, G is ZS-minimal. Without this requirement, the

number of ZS-equivalence classes remains finite, but we are no longer able

to give an explicit upper bound for their number.

We mention that every pair of binary forms F, G ∈ ZS[X, Y ] satisfying

(3.1) can be derived from a pair (F0, G0) of binary forms in ZS[X,Y ] satis-

fying (3.1) of which F0 is ZS-minimal. Indeed, suppose that F, G are binary

forms in ZS[X, Y ] satisfying (3.1) and that F is not ZS-minimal. Then F =

(F1)A1 , where F1 is a binary form in ZS[X, Y ] and A1 ∈ NS2(ZS)\GL2(ZS).

If F1 is not ZS-minimal we have F1 = (F2)A2 , where F2 ∈ ZS[X, Y ] and

A2 ∈ NS2(ZS) \ GL2(ZS), etc. In each step of this process, we obtain a

binary form whose discriminant is a proper divisor of the discriminant of

its predecessor. So after finitely many steps we find a ZS-minimal form,

F0 ∈ ZS[X,Y ], say, such that F = (F0)A for some A ∈ NS2(ZS) \GL2(ZS).

Now take G0 := G(det A)A−1 . Then F0, G0 ∈ ZS[X,Y ], F0 is ZS-minimal,

and by (1.2), R(F0, G0) = R(F, G) ∈ cZ∗
S.

Theorem 3.2 below gives an explicit upper bound for the number of ZS-

equivalence classes of pairs (F0, G0). In order to estimate explicitly the

number of ZS-equivalence classes of pairs (F, G), we would need more precise
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information about the matrix A, but this is not provided by our method of

proof.

The arithmetic function τα(d) is defined by (2.7). Now our quantitative

result, with the requirement that F be ZS-minimal, reads as follows:

Theorem 3.2. [3] Assume that m > 3, n > 3. Then the set of pairs of

binary forms F, G ∈ ZS[X, Y ] such that

(3.1) R(F, G) ∈ cZ∗
S

for which

F is associated with K1, . . . , Kr, G is associated with L1, . . . , Ls,

F , G have non-zero discriminants,

F is ZS-minimal,

is contained in the union of at most

e1024mn(m+n)(t+1) · 2ω(c)τmn+2(c)

ZS-equivalence classes.

If we drop the requirement that F be ZS-minimal, we can only prove a

’semi-effective’ upper bound for the number of ZS-equivalence classes.

Theorem 3.3. [3] Let m > 3, n > 3. Then the number of ZS-equivalence

classes of pairs of binary forms (F, G) ∈ ZS[X, Y ] satisfying all conditions

of Theorem 3.2 except for the ZS-minimality of F , is at most

O
(
c

1
mn

+δ
)

as c →∞

for every δ > 0, where the implied constant depends on S, K1, . . . , Kr,

L1, . . . , Ls and δ and cannot be computed effectively from our method of

proof.

The following example shows that the upper bound in Theorem 3.3 cannot

be improved to O(cκ) as c → ∞ for any κ < 1
mn

. Fix two binary forms

F, G ∈ Z[X, Y ] of degrees m, n, respectively, such that F , G have non-zero

discriminant and R(F, G) =: r 6= 0. Let p be a large prime number. Then

the pairs of binary forms (Fb, Gb) given by Fb(X, Y ) = F (pX − bY, Y ),
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Gb(X, Y ) = G(pX − bY, Y ) (b = 0, . . . , p − 1) are pairwise Z-inequivalent.

By (1.2), the resultant of Fb, Gb is rpmn. Hence, letting p →∞ and putting

c = |r|pmn, we have an infinite sequence of integers c, such that pairs of

binary forms (F, G) satisfying the conditions of Theorem 3.3 lie in � c
1

mn

Z-equivalence classes.

We deduce a consequence for Thue-Mahler equations

(3.2) F (x, y) ∈ cZ∗
S in x, y ∈ ZS with gcd(x, y) = 1.

Two solutions (x1, y1), (x2, y2) of (3.2) are called proportional if (x2, y2) =

ε(x1, y1) for some ε ∈ Z∗
S. Evertse and Győry [11] proved that for every

number field L there are only finitely many ZS-equivalence classes of binary

forms F ∈ ZS[X, Y ] such that F splits into linear factors over L and (3.2)

has at least three pairwise non-proportional solutions. We have the following

quantitative result:

Corollary 3.4. [3] Let K1, . . . , Kr be a sequence of number fields with∑r
i=1[Ki : Q] =: m > 3 and c a positive integer coprime with the primes in

S. Then the set of binary forms F ∈ ZS[X, Y ] such that

F is associated with K1, . . . , Ku, F has non-zero discriminant,

F is ZS-minimal,

and such that (3.2) has at least three pairwise non-proportional solutions,

is contained in the union of at most

e3×1024m(m+3)(t+1) · 2ω(c)τ3m+2(c
3)

ZS-equivalence classes.

This can be deduced from Theorem 3.2 as follows. Let F ∈ ZS[X, Y ]

be a binary form satisfying the conditions of Corollary 3.4. Then (3.2) has

three pairwise non-proportional solutions, (xj, yj) (j = 1, 2, 3), say. Define

the binary form

G(X, Y ) :=
3∏

j=1

(yjX − xjY ).
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Then

R(F, G) =
3∏

j=1

F (xj, yj) ∈ c3Z∗
S .

Now Corollary 3.4 follows at once by applying Theorem 3.2 with n = 3,

(L1, . . . , Ls) = (Q, Q, Q) and with c3 instead of c. �

At present, we have finiteness results for (3.1) only in the case that one of

the binary forms F, G is fixed, or in the case that F, G are both allowed to

vary, but both F, G split into linear factors over a prescribed number field.

An intermediate case is, when both F, G are allowed to vary but only one of

them is assumed to split over a given number field. Consider binary forms

F, G ∈ ZS[X, Y ] satisfying (3.1) of degrees m, n, respectively, where n > m.

The identity R(F, G + HF ) = R(F, G) for any binary form H ∈ ZS[X,Y ]

of degree n − m shows that we cannot prove finiteness for the number of

ZS-equivalence classes if we do not fix a splitting field for the binary form

with the larger degree. On the other hand, it is an open problem whether

or not the number of ZS-equivalence classes is finite if we fix a splitting field

for the binary form with the larger degree, but not for the form with the

smaller degree.

More precisely, we suggest the following.

Problem. Does there exist a function c(m) depending only on m for which

the following holds? Let L be a number field and m,n integers with m > 3

and n > c(m). Then there are only finitely many ZS-equivalence classes of

pairs of binary forms F, G ∈ ZS[X, Y ] satisfying (3.1) such that deg F = m,

deg G = n, F, G have non-zero discriminants, G factors into linear forms

in L[X,Y ] and no further condition is imposed on F .

If the answer to this problem is affirmative, then by a similar argument

as in the proof of Corollary 3.4 it will follow that up to ZS-equivalence

there are only finitely many binary forms F ∈ ZS[X, Y ] of degree m > 3

and non-zero discriminant such that Eq. (3.2) has more than c(m) pairwise

non-proportional solutions. The latter has been proved in the special case

S = ∅ with c(m) = 29m for m < 400 [24] and c(m) = 6m for m > 400 [13],

but for S 6= ∅ it is still open; it can be compared with Conjecture 1 in [11].
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We briefly sketch the proofs of Theorems 3.1, 3.2 and 3.3.

We start with Theorem 3.1. The basic tool in the proof is the following

result.

Theorem 3.5. [3] Let K be a field of characteristic 0 and let m, n be integers

with m > 2, n > 2, m + n > 5. For i = 1, . . . ,m, j = 1, . . . , n, let Γij be

a subgroup of K∗ of rank at most ρ. If (x1, . . . , xm, y1, . . . , yn) runs through

the tuples in Km+n for which

xi − yj ∈ Γij for 1 6 i 6 m, 1 6 j 6 n,

x1, . . . , xm, y1, . . . , yn are pairwise distinct,

then the set of mn-tuples
(

xi−yj

x1−y1
: i = 1, . . . ,m, j = 1, . . . , n

)
runs through

a set of cardinality at most

3× 224(ρ+1)(m+n−4)e189(4ρ+1).

The proof of Theorem 3.6 uses the following result of Evertse, Schlick-

ewei and Schmidt [17]: if N > 3 and if Γ is a subgroup of (K∗)N of finite

rank ρ, then the equation

(3.3) x1 + · · ·+ xN = 1 in (x1, . . . , xN) ∈ Γ

has at most e(6N)3N (Nρ+1) non-degenerate solutions, i.e, with
∑

i∈I xi 6= 0 for

each non-empty subset I of {1, . . . , N}. We prove Theorem 3.5 by applying

this result to the identities

xi − y1

x1 − y1

− xi − yj

x1 − y1

+
x1 − yj

x1 − y1

= 1.

�

Denote by σi1, . . . , σi,mi
the isomorphic embeddings of Ki into C for i =

1, . . . , r and by τj1, . . . , τj,nj
the isomorphic embeddings of Lj into C for j =

1, . . . , s. Let K1, . . . , Km be the fields σik(Ki) (i = 1, . . . , r, k = 1, . . . ,mi)

in some order, and L1, . . . , Ln the fields τjl(Lj) (j = 1, . . . , s, l = 1, . . . , nj)

in some order.
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Let F, G ∈ ZS[X, Y ] be two monic binary forms satisfying the conditions

of Theorem 3.1. Then we can express F, G as

F (X, Y ) =
m∏

i=1

(X − βiY ), G(X, Y ) =
n∏

j=1

(X − δjY ),

with βi ∈ Ki integral over ZS for i = 1, . . . ,m, and δj ∈ Lj integral over ZS

for j = 1, . . . , n. With these expressions, (3.1) becomes

(3.4)
m∏

i=1

n∏
j=1

(δj − βi) ∈ cZ∗
S.

Let T be the set consisting of the primes in S and of the primes dividing c.

Then δj−βi ∈ Γij, where Γij is the unit group of the integral closure of ZT in

the compositum KiLj. This group Γij has rank at most mn(t+ω(c)+1)−1.

Now applying Theorem 3.5 to the tuples (β1, . . . , βm, δ1, . . . , δn), Theo-

rem 3.1 follows. �

The proof of Theorem 3.2 is rather different. Our main tool is the follow-

ing result.

Theorem 3.6. [3] Let K be a field of characteristic 0. For i, j = 1, 2, let

Γij be a subgroup of K∗ of rank ρ. Then the equation

(3.5)

∣∣∣∣∣∣∣
1 1 1

1 x11 x12

1 x21 x22

∣∣∣∣∣∣∣ = 0 in xij ∈ Γij for i, j = 1, 2

has at most e3015(4ρ+2) solutions such that each 2× 2-subdeterminant of the

left-hand side of (3.5) is 6= 0.

The proof of Theorem 3.6 uses the result of Evertse, Schlickewei and

Schmidt concerning equation (3.3). Following Evertse, Győry, Stew-

art and Tijdeman [16], one expands the determinant, considers all par-

titions of this expansion into minimal vanishing subsums, and applies the

result on (3.3) to each of the subsums, see also [1] for a similar computation.

The proof of Theorem 3.2 has a similar structure as that of the results

on discriminants in Section 2. Let F, G ∈ ZS[X,Y ] be two binary forms
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satisfying the conditions of Theorem 3.2. We may assume without loss of

generality that F (1, 0) and G(1, 0) are distinct from 0. We can express F, G

as

F (X, Y ) = a0

m∏
k=1

(X − αkY ), G(X, Y ) = b0

n∏
l=1

(X − βlY ).

Define the quantities

Θijkl(F, G) :=
(αi − βk)(αj − βl)

(αi − βl)(αj − βk)
(1 6 i, j 6 m, 1 6 k, l 6 n)

and let Θ(F, G) be the tuple consisting of all Θijkl (i, j = 1, . . . ,m, k, l =

1, . . . , n). Now for any triples (i, j, g) from {1, . . . ,m} and (k, l, h) from

{1, . . . , n} one has ∣∣∣∣∣∣∣
1 1 1

1 Θijkl(F, G) Θijhl(F, G)

1 Θgjkl(F, G) Θgjhl(F, G)

∣∣∣∣∣∣∣ = 0

and moreover, each 2× 2-subdeterminant of the left-hand side is non-zero.

Using (3.1) one shows that each Θijkl(F, G) belongs to a finitely generated

multiplicative group independent of F, G with rank bounded above in terms

of m,n, t, ω(c). So by applying Theorem 3.6 one obtains that if F, G runs

through all pairs of binary forms in ZS[X, Y ] satisfying the conditions of

Theorem 3.2, then Θ(F, G) runs through a finite set of cardinality bounded

above in terms of m, n, t and ω(c).

Now one can show that any two pairs (F1, G1), (F2, G2) in ZS[X, Y ] sat-

isfying the conditions of Theorem 3.2 and for which Θ(F1, G1) = Θ(F2, G2),

are Q-equivalent, i.e., F2 = λ(F1)U , G2 = µ(G1)U for some λ, µ ∈ Q∗ and

U ∈ GL2(Q). Thus, one obtains an upper bound for the number of Q-

equivalence classes. By means of an elementary argument one estimates

the number of ZS-equivalence classes contained in a Q-equivalence class. In

this way the proof of Theorem 3.2 is completed. �

We now sketch the proof of Theorem 3.3. We use that every non-zero

a ∈ ZS can be expressed uniquely as a = ε·|a|S, where ε is a rational number

composed of primes in S, and |a|S a positive integer composed of primes
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outside S. Given a binary form F (X, Y ) =
∑m

i=0 aiX
m−iY i ∈ ZS[X,Y ] we

define [F ]S :=gcd(|a0|S, . . . , |am|S).

Recall that for every pair of binary forms (F, G) in ZS[X, Y ] satisfy-

ing (3.1) there is a pair of binary forms (F0, G0) in ZS[X, Y ] such that

R(F0, G0) ∈ cZ∗
S, F0 is ZS-minimal and F = (F0)A, G0 = G(det A)A−1 for

some matrix A ∈ NS2(ZS). By Theorem 3.2, the pairs (F0, G0) lie in at

most O(cδ) ZS-equivalence classes for any δ > 0. By an elementary argu-

ment one can show that for any given binary form G0 ∈ ZS[X, Y ], the set

of binary forms G ∈ ZS[X, Y ] for which there exists A ∈ NS2(ZS) such that

G0 = G(det A)A−1 is contained in the union of at most O([G0]
1/n
S |D(G0)|δS)

ZS-equivalence classes for any δ > 0. By (1.2), [G0]
m
S is a divisor of c. Fur-

ther, |D(G0)|S can be estimated from above using the following inequality

by Evertse and Győry [14]:

|R(F0, G0)|S �
(
|D(F0)|

n
m−1

S |D(G0)|
m

n−1

S

) 1
17
−δ

for every δ > 0, where the constant implied by� depends on S, K1, . . . , Kr,

L1, . . . , Ls, δ, and is not effectively computable from the method of proof.

This implies that |D(G0)|S � c17n/m if we take δ sufficiently small. By

combining this with the other facts mentioned above, Theorem 3.3 easily

follows. �

Remark. As a common generalization of the discriminant equation (2.1)

and the resultant equation (3.1), Győry [20], [22] studied the so-called

semi-resultant equation. He obtained some finiteness results for this equa-

tion, partly in quantitative form. We note that with the arguments sketched

in the present paper it is possible to obtain quantitative finiteness results

for semi-resultant equations extending those of Győry.
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[12] J.-H. Evertse, K. Győry, Effective finiteness results for binary forms with given
discriminant, Compositio Math., 79 (1991), 169–204.
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