ON THE NUMBER OF PAIRS OF BINARY FORMS WITH
GIVEN DEGREE AND GIVEN RESULTANT

ATTILA BERCZES, JAN-HENDRIK EVERTSE, AND KALMAN GYORY

1. INTRODUCTION

Denote by R(F,G) the resultant of two binary forms F,G. Let S =
{p1,...,p:} be a finite, possibly empty set of primes. The ring of S-integers
and group of S-units are defined by

ZS - Z[(pl o 'pt)_l]a Zg‘ - {j:pilﬂl o pivt CWry .., W € Z}J

respectively, where Zg = Z, Z% = {£1} if S = (). We deal with the so-called
resultant equation

(1.1) R(F,G) € cZj

to be solved in binary forms F,G € Zg[X,Y], where ¢ is a positive inte-
ger. As it turns out, the set of pairs (F, ) satisfying this equation can be
divided into equivalence classes, where two pairs of binary forms (F;, Gy),
(Fy, Go) are said to be equivalent, if there are e, € Z% and a matrix
U = (2%) € GLy(Zs) such that F5(X,Y) = eFy(aX + bY,cX + dY),
G2(X,Y) =nGi(aX +bY,cX +dY).

First GYORy [11], [12] for monic binary forms F,G (i.e., with F'(1,0) =
G(1,0) = 1) and later EVERTSE and GYORY [8] for arbitrary binary forms
F. G, proved results which imply that there are only finitely many equiv-
alence classes of pairs of binary forms F,G € Zg[X,Y] that satisfy (1.1)
and certain additional conditions. In [12], Gy0ry established his results on
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monic binary forms in a quantitative form, giving explicit upper bounds
for the number of equivalence classes, while the results for arbitrary binary
forms from [8] were established only in a qualitative form. In the present
paper, we improve the quantitative results from [12], and prove quantitative
versions of the finiteness results from [§].

In a simplified form, one of our results (Theorem 2.3 below) can be stated
as follows. Let m > 3, n > 3 be integers and L a number field. Then the
set of pairs of binary forms (F, Q) in Zg|X, Y] satisfying (1.1) such that F
has degree m, G has degree n, F', G do not have multiple factors and F,G
split into linear factors in L|X,Y] is contained in the union of O(cwmn*9)
equivalence classes as ¢ — oo for every § > 0. Here, the implied constant
depends on L, m, n, S, 6 and cannot be computed explicitly from our
method of proof. It is shown that the exponent on ¢ cannot be improved to

something smaller than —L-.
mn

On the other hand, if we restrict ourselves to monic binary forms F, G,
we can derive an upper bound for the number of equivalence classes which
is completely explicit in terms of m,n, t and ¢ (see Theorem 2.1 below). We
derive a similar such explicit bound for binary forms F, G that are not nec-
essarily monic, but there we have to impose a suitable minimality condition
on one of F,G. We explain that without this condition it probably becomes
very difficult to obtain a fully explicit upper bound for the number of equiv-
alence classes. As a corollary of our Theorem 2.2, we give a quantitative
version of a result by EVERTSE and GYORY [7] on Thue-Mahler equations
(Corollary 2.4 below).

In Section 2 we state Theorems 2.1, 2.2, 2.3 and Corollary 2.4. Theorem
2.1 will be proved in Sections 3, 4 and Theorem 2.2 in Sections 5-8. The
main tools are explicit upper bounds from [5] and [10] for the number of
solutions of linear equations with unknowns from a multiplicative group.
The latter is a consequence of the Quantitative Subspace Theorem. In our
arguments we use ideas from [9], [8] and [2]. Theorem 2.3 is proved in
Section 9. Here the hard core is an inequality from [8] relating the resultant
of two binary forms to the discriminants of these forms. This inequality is

a consequence of the qualitative Subspace Theorem.
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2. RESsuLTS

We introduce some terminology. The resultant of two binary forms
F=a X" +a X"V + - +an Y™ = [[(axX = B:Y),
k=1
G=bX"+ b X"V 4 4 b,Y" = [[(nX = 6Y)

=1

is given by

m n

R(F,G) = H H(Oék5z — Ben)-

k=1 I=1
From the well-known expression for R(F, G) as a determinant (see [15, §34])
we infer that R(F,G) is a polynomial in Z[ay, ..., amn;bo, . .., b,| which is
homogeneous of degree n = deg G in ay, . . ., a,, and homogeneous of degree

m = deg F in by,...,b,. Further, for any scalars A\, p and any matrix
A= (2%) we have

(2.1) R(AFA, puG4) = A"u™(det A" R(F, G) ,
where for a binary form F' we define F)4 by

Fi(X,)Y) := F(aX +bY,cX +dY).

For a domain €2, we denote by NS,(2) the set of 2 x 2-matrices with
entries in {2 and non-zero determinant, and by GLy(2) the group of 2 x 2-
matrices with entries in €2 and determinant in the unit group Q*. Two
binary forms Fi, Fy € Q[X,Y] are called Q-equivalent if there are £ €
U € GLy(Q2) such that F, = ¢(F})y. Two pairs of binary forms (Fj, Gy),
(Fy, G9) are called Q-equivalent if there are e, € Q" U € GLy(Q2) such
that Fy = e(F1)y, G2 = n(G1)y. A binary form F with F(1,0) = 1
is called monic. Two pairs of monic binary forms (Fy,Gy), (F2,G2) in
Q[X,Y] are called strongly Q-equivalent if F5(X,Y) = Fi(X + bY,eY),
Go(X,Y) = G1(X +bY,eY) for some b € Q, € € Q*.

We return to the resultant equation (1.1). Let S = {p1,...,p:} be a finite,

possibly empty set of primes. Without loss of generality we may assume

that the number ¢ in (1.1) is a positive integer which is coprime with p; - - - p;
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if S # (. Clearly, if (F,G) is a pair of binary forms with (1.1), then by (2.1)
every pair Zg-equivalent to (F, G) also satisfies (1.1). Therefore, the set of
solutions of (1.1) decomposes into Zg-equivalence classes. Likewise, the set
of pairs of monic binary forms F,G € Zg[X, Y] with (1.1) decomposes into
strong Zg-equivalence classes.

There were some earlier finiteness results on (1.1) in which one of the
binary forms I, G’ was kept fixed, but GYORY was the first to obtain results
on (1.1) in which both F,G are allowed to vary. He proved [11, Theorem
7] the following result for monic binary forms. Let L be a given number
field, and m,n integers with m > 2, n > 2, m +n > 5. Then there are
only finitely many strong Zg-equivalence classes of pairs of monic binary
forms F,G € Zg|X,Y] satisfying (1.1) such that deg I’ = m, degG = n,
F, G have no multiple factors and F' - G has splitting field L (i.e., L is the
smallest number field over which F' - G splits into linear factors). Further,
n [12], Gy6ry obtained explicit upper bounds both for deg F' + deg G and
for the number of strong equivalence classes. In fact, by combining Gyory’s
arguments from [12] with the explicit upper bound for the number of non-
degenerate solutions of S-unit equations from [6, Theorem 3|, one can show
that the pairs of monic binary forms (F, G) with the properties given above

lie in at most
(2.2) (2(m + n + 1)121050(L:Q (t+w(e)+1) ymn—2

strong Zgs-equivalence classes, where w(c) is the number of distinct primes
dividing c. Note that 1 < [L: Q] < m!n!. !

EVERTSE and GYORY [8, Corollary 1] extended Gyéry’s qualitative result
to binary forms which are not necessarily monic. Under the slightly stronger
hypothesis m > 3, n > 3, they proved that there are only finitely many Zg-
equivalence classes of pairs of binary forms F, G satisfying (1.1) such that
deg F' = m, deg G = n, F, G have no multiple factors and F'- G has splitting
field L. Further, they showed that deg F' + deg G is bounded above in
terms of S, L and ¢. We mention that both Gyo6ry for monic binary forms

IThe results in [11], [12] were formulated in terms of monic polynomials instead of
monic binary forms. The formulation in terms of monic binary forms fits more conve-

niently into the present paper.
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and Evertse and Gy6ry for not necessarily monic binary forms proved more
general results for binary forms with coefficients in the ring of S-integers of

a number field. 2

Gyéry [12] and Evertse and Gyéry [8] showed also that their finiteness
results do not remain valid if the conditions on m, n are relaxed, or if neither
F nor G is required to split into linear factors over a prescribed number
field. It is not known whether the finiteness results can be extended to the
case that only one of F,G is required to split over a given number field,
see [3] for a discussion on this. Probably the condition that F',G' have no
multiple factors can be removed if we assume that F.G have sufficiently
many distinct factors in C[X, Y] (see [12] in the monic case).

Below we give precise quantitative versions of our results mentioned
above. In contrast to the above discussion, we do not deal with binary
forms F, G such that F' - G has a given splitting field but instead with bi-
nary forms associated with certain given number fields. We say that a binary
form F' € Q[X, Y] is associated with a number field K if F' is irreducible in
Q[X,Y] and if there is # such that F'(6,1) = 0 and K = Q(f). We agree
that the binary forms aY (a € Q) are associated with Q. A binary form
F € Q[X,Y] is said to be associated with the sequence of number fields
K, ..., K, if it can be factored as [[;_, F; where F; € Q[X,Y] is an irre-
ducible binary form associated with K;, for ¢ = 1,... u. It is easy to check
that a binary form F associated with K, ..., K, has degree >\ | [K; : Q].

For a non-zero integer d, we denote by w(d) the number of distinct primes
dividing d, and by ord,(d) the exponent of the prime number p in the prime
factorization of d.

Our first theorem gives a quantitative result on (1.1) for monic binary
forms which is better than (2.2) if the degrees of the number fields with

which F, G are associated are not too small.

2In the monic case, the results of [11], [12] were established in the even more general
situation when the ground ring is an integrally closed and finitely generated domain over
Z.
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Theorem 2.1. Let m,n be integers with m > 2, n > 2, m+n > 5 and
Ky,...,Ky, Li,..., L, number fields with

u v

Z[Ki : Q] = m, Z[LZ : Q] = n.

i=1 =1
Further, let S = {p1,...,pi} be a finite, possibly empty set of primes and c
a positive integer, coprime with py---py if S # 0. Then the set of pairs of
monic binary forms F,G € Zg[X,Y] with

(1.1) R(F,G) € ¢Zj
for which

— F is associated with K1, ..., K,, G is associated with L, ..., L,,
— F, G do not have multiple factors,

s contained in the union of at most

e17(m—|—’r7,-|— 10" Yymn(t4+w(c)+1)

strong Zg-equivalence classes.

18(m+n)mn(t+w(c)+1) if m+nis

Clearly, our bound can be replaced by e
sufficiently large. We note that from Theorem 2.2 below one can derive a

result similar to 2.1 but with a larger bound.

In Theorem 2.2 below, we give an explicit upper bound for the number of
equivalence classes for not necessarily monic binary forms, but instead we
have to assume that one of the binary forms satisfies a certain minimality
condition. More precisely, a binary form F' € Zg[X, Y] is called Zg-minimal
if there are no binary form G' € Zg[X, Y] and matrix A € NSy(Zs)\GLa(Zs)
such that F' = G4.

Theorem 2.2. Let m,n be integers with m > 3, n > 3. Further, let
Ky,....Ky,, Ly,...,L,, S and ¢ be as in Theorem 2.1. Then the set of
pairs of binary forms F,G € Zg|X,Y] satisfying (1.1) for which

— F is associated with K1, ..., K,, G is associated with Ly, ..., Ly,
— F, G do not have multiple factors,

— F is Zg-minimal
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1s contained in the union of at most

61024 (m—l—n)mn(t—f—l)w (C)

Zs-equivalence classes, where

b(e) = 29 H (Ordp(c) +mn + 2)‘

mn + 2
plc

Using the arguments of the proof of Theorem 2.2 we could also give an
explicit upper bound for deg F' + deg G. We will not work this out in our
paper.

If in Theorem 2.2 we drop the condition that F be Zg-minimal, the
number of Zg-equivalence classes remains finite, but we are no longer able
to give an explicit upper bound for it. In fact, we believe that to give
an explicit upper bound for the number of equivalence classes without the
minimality constraint is a difficult problem, and at the end of this section we
give an example to illustrate this. We managed only to prove the following
asymptotic result.

Theorem 2.3. Let again m,n be integers with m > 3, n > 3, and let
Ky,...,Ky, Ly,...,L,, S and ¢ be as in Theorem 2.1. Then the number
of Zs-equivalence classes of pairs of binary forms F,G € Zg[X,Y| which
satisfy (1.1) and for which

— F is associated with K, ..., K,, G is associated with Ly, ..., L,,
— F, G do not have multiple factors,

is, for every 6 > 0, at most
1
O(CW+5) as ¢ — oo,

where the implied constant depends on K+,...,K,, L1,...,L,, m,n,S and
0. This constant cannot be computed effectively from our method of proof.

The following example shows that the exponent of ¢ cannot be replaced
by something smaller than % Fix two binary forms F,G € Z[X,Y] of
degrees m > 3, n > 3, respectively, without multiple factors, and hav-

ing resultant R(F,G) =: r # 0. Suppose that F' is associated with the
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number fields Ki,..., K, and G with the number fields Lq,...,L,. Let p
be any prime number. Then the pairs of binary forms (F},, Gp) given by
Fy(X,)Y)=F(pX,bX +Y), G,(X,Y)=G(pX,bX +Y) (b=0,...,p—1)
are pairwise Z-inequivalent. Further, [} is associated with K4,..., K, and
Gy with Ly, ..., L, and F,, G, do not have multiple factors. By (2.1) we
have R(Fy, Gy) = rp™. So if we take ¢ := |r[p™" and let p — oo, we
obtain infinitely many integers ¢ such that the set of pairs of binary forms
(F,G) satisfying the conditions of Theorem 2.3 with S = 0 lie in > cin
Z-equivalence classes.

We give a consequence for Thue-Mahler equations of the shape
(2.3) F(z,y) € cZs in (v,y) € Zs X Zg, with ged(x,y) =1,

where F' is a binary form in Zg[X,Y] and ¢ a positive integer coprime
with the primes in S. Two solutions (x1,y1), (x2,y2) of (2.3) are called
proportional if (xa,y2) = A(x1,41) for some A € Q*. EVERTSE AND GYORY
[7] proved the following. Let m > 3 and let L be a given number field.
Then the binary forms F' € Zg[X,Y] of degree m such that F' has no
multiple factors, F' splits into linear factors over L and such that (2.3)
has at least three pairwise non-proportional solutions, lie in finitely many

Zs-equivalence classes.

We prove the following quantitative result:

Corollary 2.4. Let m be an integer with m > 3, Ky, ..., K, number fields
with Y7 [[K; - Q] = m, S = {p1,...,p} a finite, possibly empty set of
primes, and c a positive integer coprime with py---p; if S # 0. Then the
set of binary forms F € Zg| X, Y] such that

— (2.8) has three pairwise non-proportional solutions,
— F is associated with (K, ..., K,), F' has no multiple factors,

— F is Zg-minimal
15 contained in the union of at most

BX 102 m(mA3)(t+1) | guw(c) H 3ord,(c) +3m + 2
3m + 2

ple

Zs-equivalence classes.
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We derive Corollary 2.4 from Theorem 2.2. Let F' € Zg[X, Y] be a binary
form satisfying the conditions of Corollary 2.4. Let (x1,v1), (22, y2), (z3,Y3)

be pairwise non-proportional solutions of (2.3). Define the binary form
G(X,Y) =[I_,(%:X — 2;Y). Then

3

R(F,G) = [ F(zi,v) € 'z,

i=1
Hence the pair (F,G) satisfies the conditions of Theorem 2.2 with n = 3,
(Ly,...,L,) = (Q,Q,Q), and with ¢? instead of c. By applying Theorem 2.2
with these data, we see that the pairs (F, G) lie in at most N Zg-equivalence
classes, where N is the quantity obtained by substituting n = 3 and ¢* for
¢ in the upper bound in Theorem 2.2. Hence the binary forms F' lie in at
most N Zg-equivalence classes. [

We return to the problem, addressed to above, to give a fully explicit
upper bound for the number of equivalence classes of pairs (F, G) satisfying
the conditions of Theorem 2.3 without the constraint that I’ be Zg-minimal.
In Lemma 9.3 in Section 9 we prove that for every pair of binary forms (F, G)
in Zs[X,Y] with (1.1) there are a pair of binary forms (Fy, Go) in Zg[X, Y]
with (1.1) such that Fy is Zg-minimal, and a matrix A € NSy(Zg), such
that

(2.4) F=(F)a, G=(Go)(det 4)-14-

Now Theorem 2.2 gives an explicit upper bound for the number of Zg-
equivalence classes of pairs (Fy, Go), so what we would like is to give an
explicit upper bound for the number of Zg-equivalence classes of pairs (F, G)
corresponding to a given pair (Fp, G) as in (2.4). But for this we would need
some “effective information” about the pair (Fy, Gp) that is not provided
by our method of proof.

We illustrate more concretely the problems that arise by considering a
special case. Let S = {p1,...,p:} be a finite set of primes. Consider binary

forms

(25) F=XX-aY)X—-aY), G=YHX-Y)(hX-Y),
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where aq,as,b1,b0 € Z, a1 > 0, ag,by,bo # 0, a; # as, by # by. These
constraints on aq, as, by, by imply that any two distinct pairs of binary forms

of type (2.5) are Zg-inequivalent. We have

2 2
(2.6) R(F,G) = =[] — aity).
i=1 j=1

We consider
(2.7) R(F,G) € Z§ in binary forms of type (2.5).
From (2.6), (2.7) it follows that
(2.8) giji=1—a;bj € Zg for i,j=1,2.
Further,

1 1 1
(29) 1 €11 €12 = 0.

1 eo e

Lemma 3.3 in Section 3 of the present paper gives an explicit upper bound
for the number of solutions e11, €12, €91, €92 € Z§ of (2.9) such that

(2.10) each 2 x 2-subdeterminant of the left-hand side is # 0.

Notice that this is satisfied by the numbers of the type (2.8).
Let €11,€19,€921,620 € Z N Z% be any solution of (2.9),(2.10). Define the
quantities

1—¢ 1—¢ 1—¢
V= Feed(l —en, 1 —em), ay = — =, dj = b—'glv pi=—,
1 1 ay

where we choose the sign of b} such that @} > 0. Then a},a), b} € Z and
moreover b, € Z since a}/al, = (1 —e11)/(1 —€21) = (1 —£12) /(1 — £92) and
ged(ay,ay) = 1. Further, e1; = 1 — a{b), g1 = 1 — ahd], 10 = 1 — a}bh,
€99 = 1 — asby,.

If we require that F' be Zg-minimal then ged(aq,az) = 1. In that case
we have a; = a}, as = aj, by = b}, by = b, and so ay, as, by, by are uniquely
determined by e11, €19, €21, €99. Thus, we obtain an explicit upper bound for
the number of solutions (F, G) of (2.7) for which F is Zg-minimal.
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If we do not require that F' be Zg-minimal, we obtain for every solution
€11,E91, €12, €22 € Z N Z§ of (2.9), (2.10) and every positive divisor d of
ged (b, b5) = ged(1 — 11,1 — 91,1 — €12, 1 — €99)
a solution (F,G) of (2.7), given by
a; = daly, ay = day, by = b} /d, by =by/d.

Thus, to obtain an explicit upper bound for the total number of solutions
(F,G) of (2.7), we need for every solution €11, €19, 91,22 € Z5 N Z of (2.9)
an explicit upper bound for the number of divisors of the quantity
ged(1—eqq, 1 —e91, 1 — 12,1 —£92). We have no clue how to determine such
a bound.

3. AUXILIARY RESULTS

Let (C*)™ be the N-fold direct product of C* with coordinatewise mul-
tiplication (x1,...,2n8)(y1,...,yn) = (T121, ..., xnyn). We say that a sub-
group I' of (C*)" has rank r if I" has a free subgroup I'y of rank r such that
for every u € I' there is s € Z~y with u® € I'.

Lemma 3.1. Let T be a subgroup of (C*)N of rank r and ay, ... ,ay € C*,
Then the equation

(3.1) ax1+--+ayry=1in = (x1,...,zxy) €T
has at most e NN+ solutions with

(3.2) Z a;x; # 0 for each non-empty subset I of {1,...,N} .

il
Proof. See EVERTSE, SCHLICKEWEI, and SCHMIDT [10, Theorem 1.1]. [

For N = 2, the following lemma gives a sharper result.

Lemma 3.2. Let N = 2 and let T', ay,as be as in Lemma 3.1. Then the

equation (3.1) has at most
98(r+2)

solutions.
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Proof. This is an immediate consequence of Theorem 1.1 of BEUKERS and
SCHLICKEWEI [5]. O

Lemma 3.3. Fori,j = 1,2, let I';; be a subgroup of C* of rank r. Then
the equation

1 1 1
(3'3) 1 211 22| =01z €y fori,j=1,2

1 @o1 o

4r+42

has at most €30"°( ) solutions such that

(3.4)  each 2 x 2-subdeterminant of the left-hand side of (3.3) is # 0.

Proof. This can be proved by going through the proof of EVERTSE, GYORY,
STEWART, TIJDEMAN [9, Theorem 1], see also BERCZES [1]. By expanding
(3.3) we obtain

(3.5) T11T92 — T12T21 + To1 — Too + T12 — 211 = 0.

Notice that the summands of (3.5) lie in the group generated by —1,1'11, 1o,
['91, I'yo, which has rank at most 4r. We have to consider all partitions of the
left-hand side of (3.5) into minimal vanishing subsums and apply Lemma
3.1 to each subsum. We consider only two cases; the other cases can be
dealt with in a similar way following [9].

First, we consider the solutions of (3.3), (3.4) such that no proper subsum
of the left-hand side of (3.5) vanishes. On dividing (3.5) by x1; we obtain

L1221 T21 T2  T12
T2 — +——-—+—=1
T11 T11 T11 T11
By Lemma 3.1 with N = 5, we have at most €30 ¢4+ possibilities for the

tuple (@2, %, %, %, %) Each such tuple determines uniquely the

4r+1

tuple (211, Z12, To1, T22). Hence (3.3), (3.4) have at most ¢4 +1) golutions

such that no proper subsum of the left-hand side of (3.5) vanishes.
Next, we consider those solutions of (3.3), (3.4) for which

(3.6) T11T22 — T12%21 + To1 =0, —Too + 12 — 211 =0
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and no proper subsum of any of these sums vanishes. By dividing the first

sum by x9; and the second sum by x1; we obtain

By Lemma 3.1 we have at most

(6126(47‘—‘,—1))2 < 2_(]5063015(47‘_’_1)

1 eqe . T11T22 T12 T22 : 3 1 _
possibilities for the tuple (12, fltz s, X ). This tuple determines unique

ly the tuple (11, X12, 21, T22). Hence (3.3), (3.4) have at most 2(1)—063015(4T+1)
solutions such that (3.6) holds, and no proper subsum of the sums in (3.6)
vanishes.

Following [9] one can show that each other partition of (3.5) into mini-

1 6:«1015(47«“
200

(3.3), (3.4). The total number of partitions of (3.5) into minimal vanishing
subsums is at most (g) + (g) + (g) (;1) = 125 (we are very generous here).

Hence the total number of solutions of (3.3), (3.4) is at most

(1 + %) e300 (4r+1) - 3015(4r42)

mal vanishing subsums also gives rise to at most ) solutions of

200

4. PROOF OF THEOREM 2.1
We shall deduce Theorem 2.1 from the following.

Lemma 4.1. Let m,n be integers with m > 2, n > 2 and m +n > 5. For
t=1,...,m, j=1,...,n, let I';; be subgroups of C* of rank at most r. If
(X1, oy Ty Y1y - - - Yn) TUNS through the tuples in C™™ for which

(4.1) x—y; €l for 1<i<m, 1<j<n,
' Tlyeeos Ty Y1y - - -, Yp are pairwise distinct,

then the mn-tuple <ﬂ> - runs through a set of cardinality at most

T1—Y1

.....

Jj=1,..., n

(4.2) 3 . 924(r+1)(m+n—4) ,18°(4r+1)
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Proof. We proceed by induction on m+mn. First suppose that m = 2,n = 3.
Let (z1,%9,y1,Y2,y3) € C° be a tuple with (4.1). For 1 < j < k < 3,
consider the identity

(4.3) (@1 = 5) + (g — w2) + (22 — ) + (o — 1) = 0.

It is easily seen that the 4-terms sum on the left-hand side of (4.3) can have
a vanishing subsum for at most one pair (j, k). We may assume that for
(7,k) = (1,2) and (1, 3) there is no vanishing subsum on the left-hand side.
For (j,k) = (1,2), identity (4.3) gives

T2 — Y1 T2 — Yo +x1—y2
T1—% T1—y 1Y

Notice that the summands of (4.4) belong to the group generated by —1,T'14,

=1.

(4.4)

I'y5, 91, I'9o which has rank at most 4r. Hence, by Lemma 3.1, there are
at most C; = e¥°¢r+D) pogsibilities for the tuple (”‘yl Za_U2 ”“_”). If

z1—y1’ T1—y1’ T1—Y1

we fix ﬁ and set a; = ii:z;, ay = —ay, then we infer from (4.3) with
(4, k) = (1,3) that
(4.5) LY T

11— I —U

— 98(3r+3

By Lemma 3.2 there are at most C, ) possibilities for the tuple

<ﬁ, ﬁ—:gﬁ) This proves the assertion for m + n = 5 with the bound
3C1Ch.

Consider now the case m +n > 5. We may assume without loss of
generality that n > 3. Suppose that Lemma 4.1 has already been proved

for m +n — 1. This means that if (z1,..., 2, y1,..., Y1) runs through
the tuples in C™*"~! with (4.1), then the tuple <%) . runs through

a set of cardinality at most 3C,C3*™ °. Fix such a tuple <§1;_Z’1> with

1<i<m,1<j<n-—1. Then ﬁ is uniquely determined. Then we

get again equation (4.5), but with y, instead of y3, and we infer as above
that there are at most Cy possibilities for the tuple (w w) If such

T1—y1’ T1—Y1

Ti—Yn

a tuple is fixed, then gl uniquely determined for each ¢ > 2. Hence

the set of tuples under consideration (;:zjl ) with1<i<m,1<j<nis

m+n—4
&

of cardinality at most 3C} which proves our assertion. OJ
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Proof of Theorem 2.1. We view Ki,...,K,,Ly,...,L, as subfields of C.
For i =1,...,u, let 0;; (j = 1,...,[K; : Q]) be the embeddings of K;
in C, and let Kj,..., K, be the sequence of fields consisting of o;;(K;)
(t=1,...,u, 7 =1,...,[K; : Q]). Likewise, we augment Li,...,L, to a
sequence of fields Lq,...,L,. Denote by T the set of primes consisting of
P1, - .., p¢ and the distinct prime factors of ¢. Fore=1,...,m,7=1,...,n,
let I';; be the unit group of the integral closure of Z; in the composi-
tum K;L; of K; and L;. Then I';; is a subgroup of C* of rank at most
mn(t+w(c) +1) — 1.

Let F,G be any pair of binary forms with coefficients in Zg satisfying
(1.1) and the other conditions of Theorem 2.1. Then

where a; € K; for ¢ = 1,...,m, 3; € L; for j = 1,...,n, the numbers

Q1y...,Qm, B1,..., [0, are pairwise distinct, and
R(F,G) =]]]]® — ) € ;.
i=1 j=1

This implies that o; — 3; € I';j fore =1,...,m, j = 1,...,n. So by Lemma
4.1 and the fact that each group I';; has rank at most mn(t +w(c) +1) — 1,

7

the mn-tuple < — BJ 1<i<m,1<5< n) belongs to a set independent
of F,G of cardmahty at most C, where C' denotes the quantity obtained by

substituting mn(t + w(c) + 1) — 1 for r in the bound in (4.2).
It follows from (1.1) that

(4.6) R(F,G) = p"™ poc

where p1, po € Z% and where py may assume at most 2(mn)* distinct values.
Any choice of py and a tuple (2‘1 b1<i< m,1<j< n) determines

uniquely the tuple <%> with 1 <7 <m, 1 <j <n and, by (4.6),
also the number (ay/py — (1/p1)™". This leaves at most mn possibilities for

ay/p1 — B1/p1. Then any choice of ay/p; — 51/p1 determines uniquely the
numbers «;/p1 — Bj/p1 and B;/pr — Bi/pr (i=1,...,m,j=1,...,n).
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By combining the above we obtain that there is a set V' of cardinality at
most 2(mn)*1C with the following property: if (F,G) is any pair of binary
forms satisfying (1.1) and the conditions of Theorem 2.1, then there are
p1 € Z% and an ordering of the zeros as,..., oy, Bi,..., 0, of F', G, such

that (ci/p1 — B1/p1, Bi/pr = Bi/p1: 1<i<m,1<j<n)eV.
If now F’, G’ is another pair of binary forms in Zg[X, Y] with (1.1) whose
zeros, say of,...,o0,,01,..., 0, yield for some p} € Z% the same tuple

(01/0h — B1/h Bk — Bi/ph = 1< i <m. 1< <n), then

o = pa; +b and B = pf;+b
hold for ¢ =1,...,mand j = 1,...,n where p € Z§ and where b is integral
over Zg. Using a1 + -+ + ay, € Q, B1 + -+ + 0, € Q we infer that b € Q.

Consequently, b € Zg. This means that the pairs (F’,G’) and (F,G) are
strongly Zg-equivalent.

It follows that the pairs of binary forms (F,G) satisfying (1.1) and the
conditions of Theoren 2.1 lie in the union of at most
z(mn)t+10 _ z(mn)tJrl .3. 224mn(t+w(c)+1)(m+n74)6189(4mn(t+w(c)+1)73)

< 617(m+n+1011)mn(t+w(c)+1)

strong Zg-equivalence classes. This completes the proof of Theorem 2.1. [

5. AUGMENTED FORMS

In the proof of Theorem 2.2 it will be more convenient to work with so-
called augmented forms F*, which are tuples consisting of a binary form F

and the zeros of F' on the projective line.

Let K be a field and PH(K) := {(£:n) : &ne K,(§,n) # (0,0)} the
projective line over K where (£ : 1) = (& : ) if and only if (&', 7') = A&, n)
for some A € K*. The projective transformation of P!(K) defined by a
matrix A = (¢}) € GLy(K) is given by (A) : (£ : 1) — (a& + by : c€ + dn).
Clearly, two matrices define the same projective transformation if and only

if they are proportional.

Let €2 be a domain with quotient field K of characteristic 0. Choose an

algebraic closure K of K. By an augmented binary form of degree m over
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) we mean a tuple

F*=(F,(fr:a1),...,(Bm am)),

where F'is a binary form in Q[X, Y], and (51 : a1), ..., (Bm : o) are distinct
points in P'(K), such that F = A[[",(a;X — 3;Y) for some A € K. So
it is part of the definition that F' does not have multiple factors. We define
deg F* := deg ' = m. We denote by A(€2, m) the collection of augmented
forms of degree m over Q. We write F* = (F,...) if I’ is the binary form
corresponding to F™*.

Given F* = (F, (01 : 1), ..., (Bm : am)) € A(Q,m), e € Q" U = (‘éfl) €
GL2(£2), we define

eF = (eFy, (U N B an), ... . (U ) (Bt aim)).

Then again, ¢F}; € A(2,m). Two augmented forms F}, Fy € A(Q,m)
are called Q-equivalent if Fy = ¢(F})y for some ¢ € Q* and U € GLy(Q).
Two pairs (F},GY), (Fy,G3) € A(Q,m) x A(Q,n) are called Q-equivalent
if I =e(F})y, G5 =n(G7)y for some e,n € Q* and U € GLy(92).

Denote by G the Galois group of K over K and for o € G, (£ : 1) €
PYK) define o((¢ : ) := (a(&) : a(n)). If F* = (F,(B1 : a1),..., (B :
am)) € A(2,m), then every o € Gk permutes (1 : a1), ..., (B : am). By
a G-action on {1,...,m} we mean a group homomorphism from Gk to
the permutation group of {1,...,m}. Given a Gk-action ¢ of {1,...,m},
we denote by A(S2, ¢) the collection of augmented forms of degree m over
Q,

Fr=(F (f1:a1). s (Bm:am)),

such that

U(ﬂl : CYZ'> = (ﬁw(g)(i) : 04<p(a)(i)) force Gk, i=1,...,m.
It is easy to check that A(€, ) is closed under Q-equivalence, and that
for any two actions ¢ on {1,...,m}, ¥ on {1,...,n}, A(Q,¢) x A(Q, ¢) is
closed under 2-equivalence.

A binary form F € Q[X,Y] is called Q-primitive if the ideal generated

by its coefficients is equal to 2. We call F' Q2-minimal if there are no binary
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form G € Q[X,Y] and matrix A € NS5(Q2) \ GL(€2) such that F' = G 4.

(These notions are meaningless if 2 is a field.)

We start with a useful lemma.

Lemma 5.1. Let K be a field of characteristic 0, K an algebraic closure of
K and L an estension of K. Further let m > 3 and let ¢ be a Gg-action
on {1,...,m}. Lastly, let Fy', Fy € A(K,p), and suppose that there are
A€ GLy(L), X\ € L* such that

Fy = A(FV)a-

(i). Let A" € GLy(L), N € L* be any other pair with Fy = N (Fy)ar. Then
A" = pA for some € L*.
(ii). There are B € GLy(K), v € L* such that A = vB.

Proof. (i) Write F = (F;, (Bi1 : @)y -+ (Bim @ qum)) for i = 1,2, By as-
sumption, m > 3 and (A1) (81, : ai;) = (B : o), (AN (B & auy) =
(Ba; : ;) for j =1,...,m. Since a projective transformation of the projec-
tive line is uniquely determined by its action on three points, this implies
(A71y = (A1) hence A’ = pA for some p € L*.

(ii) Since (Bi; : ay) € PY(K) for i = 1,2, j = 1,...,m, the projective
transformation (A~!) is defined over K. This implies that there are v € L*,
B € GLy(K) such that A = vB. Without loss of generality we assume that
one of the entries of B is equal to 1. For ¢ € Gk, denote by o(B) the
matrix obtained by applying o to the entries of B. Then for ¢ € G we
have (o(B) ) o(Bi1 : as1) = 0(Biz : auz) for i = 1,...,m and this implies
(0(B) ™) (Bin : an) = (B2 :+ aug) for i = 1,...,m since (3 : ayy) =
(Bisp(0)() * Qip(o)(j)) for i = 1,2, j = 1,...,m, 0 € Gk. Hence for each
o € G there is k, € K such that o(B) = k,B. But one of the entries of
B is equal to 1, so o(B) = B for 0 € Gk. Therefore, B € GLy(K). O

We now formulate a proposition for augmented forms over Zg and then
deduce Theorem 2.2 from this. As before, S = {pi1,...,p:} is a finite,
possibly empty set of primes, and ¢ a positive integer coprime with the
primes in S. The condition (5.2) below has been inserted for technical

convenience.
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Proposition 5.2. Let m >3, n > 3. Let ¢ be a Gg-action on {1,...,m}
and ¢ a Gg-action on {1,...,n}. Then the set of pairs of augmented forms
F*=(F,...), G*=(G,...) such that

F* e A(ZSWSO% G* e A(ZS7¢)7

F. G are Zg-primitive,

F is Zg-minimal,

R(F,G) € Zj

1s contained in the union of at most

61024(m+n)mn(t+1)2w(c) . H Ordp(c) +mn
| mn
plc

Zs-equivalence classes.

Proposition 5.2 will be proved in Sections 6 to 8.

Proof of Theorem 2.2. Let K1, ..., K, be one of the sequences of fields from
Theorem 2.2. By assumption, . [K; : Q] = m. For i = 1,...,u denote
by 0y (j = 1,...,m; := [K; : Q]) the isomorphisms of K; into Q. Pick &
with Q(&;) = K; for i = 1,...,u, such that the elements of the sequence

(771, ce 777m) = (011(51), s a017m1(51)70_21(€2)7 s ,02,m2(fz)> cee
Uul(gu)a cee 7au,mu <£u))

are distinct. Then every o € Gg permutes (71, ..., 7). We define an action
pon {1,...,m} by requiring that

o(ne) = Ne(o)(k) for 0 € Gg, k=1,...,m.

Now let F' € Zs[X,Y] be a binary form without multiple factors associ-
ated with Ky,..., K,. Then F' can be expressed as

u  my

F(X.Y)=X]]] (5(6:)X = 0:(G)Y)

i=1 j=1

where 0;,(; € K; fori =1,...,u and A € Q*. Define the augmented form

F* = (F, (51 . al),.--,(ﬁm : am))’



20 A. BERCZES, J.-H. EVERTSE, AND K. GYORY

where (B, : a1),...,(Bm : auy) is the sequence of points in P'(Q),

(UII(CI) . 0'11(91)), ey (O'Lml (Cl) . 01,m1 (91)), ey
(aul(Cu) : 0u1(9u)), - (Uu,mu(Cu) : au,mu(eu)).

Clearly, U(ﬁl : CKZ') = (@p(g)(i) : Oé(p(a)(i)) for o € GQ, t = 1,...,m. Thus,
we have defined an action ¢ on {1,...,m} depending only on K, ..., K,,
and every binary form F' € Zg[X,Y] without multiple factors associated
with Ki,..., K, can be extended to an augmented form F* € A(Zg, ).
Completely similarly, we can construct an action ¢ on {1,...,n} from the
sequence of fields Ly, ..., L,, and extend every binary form G € Zg[X,Y]
without multiple factors associated with L1, ..., L, to an augmented form

G* € A(Zs, w)

For the moment we consider pairs of binary forms (F,G) in Zg[X,Y]
which satisfy the conditions of Theorem 2.2 and in addition are Zg-primitive.
From the definitions it is clear that the corresponding pairs (F*,G*) con-
structed above satisfy (5.1)—(5.4). Further, if two pairs of augmented forms
are Zg-equivalent, then so are the corresponding pairs of binary forms. With
these observations, it follows at once that the pairs of binary forms (F,G)
which satisfy the conditions of Theorem 2.2 and which are Zg-primitive
lie in the union of at most N(c¢) Zg-equivalence classes, where N(c) is the

upper bound from Proposition 5.2.

Now let (F,G) be a pair of binary forms in Zg[X, Y] satisfying the con-
ditions of Theorem 2.2 which are not both Zg-primitive. Write F' = diF”,
G = dyG’ where dy,dy are positive integers coprime with the primes in S
and where both F’, G’ are Zg-primitive. Then by (2.1), d}dy* divides ¢ and
the pair (F’, G’) satisfies all conditions of Theorem 2.2 but with ¢/d}d}" in-
stead of ¢. It follows that the set of pairs of binary forms (F, G) in Zg[X, Y]
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satisfying the conditions of Theorem 2.2 is contained in the union of at most

> N(e/didy)

dy,da:d7dy|c

< 61024(m+n)mn(t+1)2w(c) H Z (Ordp(c) —nu —muv + mn)

mn
p|c u,v
< 102 (mtn)mn(t+1) 9w (c) H (ordp(c) +mn + 2)
- 2
olc mn +

Zs-equivalence classes, where the summation is over all pairs of non-negative
integers u,v such that nu + mv < ord,(c). This completes the proof of
Theorem 2.2. O

6. LOCAL-TO-GLOBAL ARGUMENTS

For a prime number p, let Q, denote the completion of Q at p, @p an
algebraic closure of Q,, Z, C Q, the ring of p-adic integers, and Zp the
integral closure of Z, in Q,. By |-|, we denote the standard p-adic absolute
value with |p|, = %, extended to Q,. As before, S = {p1,...,p;} is a finite,
possibly empty set of set of primes.

Lemma 6.1. Let m > 3, n > 3, ¢ a Gg-action on {1,...,m}, ¥ a
Gk-action on {1,...,n}, F' F; € A(Zs,¢), G1,G5 € A(Zs,v). Then
(Fy, GY) is Zs-equivalent to (Fy, G3) if and only if (F}, GY) is Z,-equivalent
to (Fy,G3) for every prime p & S.

Proof. The only-if part is obvious. To prove the if-part, assume that (F}*, G7)
is Z,-equivalent to (Fy, G3) for every prime p ¢ S. This means that for every
prime p € S, there are U, € GLa(Z,), €,,m, € Z;, such that

(6.1) Fy = 5p(F1*)Upa Gy = np(GT)UP-

We may assume that we have inclusions Q C @p C @p and Q c Q C @p.
Apply Lemma 5.1, (ii) with K = Q, L = @p. Thus, there are A\, € @;
and U, € GLy(Q) such that U, = \,U,. Without loss of generality, we

may assume that the entries of Up are integers in Z with ged 1. Since
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Up € GLy(Z,), this implies that A, € Z;. Together with (6.1) this gives

Fy = g;D(Fl*)(?pa Gy = ﬁp(GDUp

6.2 ]
(62 with &,,7, € QNZ:, U, € GLy(Q) N GLy(Z,).

By Lemma 5.1, (i), the matrices Up (p ¢ S) are proportional. Since we
assumed that the entries of U, have ged 1, the matrices U, (p ¢ S) are
equal up to sign. Hence there are U € NS2(Z) and £,7 € Q* such that

Fy =&(F))g, Gy =n1(GY)g,

and U = iUp, € = *£,, 1 = =%, for every prime p ¢ S. But then,
o}et U = det Up € Z, for every prime p € S, and therefore det U e Z§ and
U € GLy(Zs). Likewise, &,7) € Z; for every prime p ¢ S which implies
€,n € Zg. This proves Lemma 6.1. [

Lemma 6.2. Let F' € Zg[X,Y] be a binary form. Then F is Zg-minimal
if and only if F' is Z,-minimal for every prime p ¢ S.

Proof. If F is not Zg-minimal, then there is a matrix A € NSy(Zg) with
A & GLy(Zg) such that Fs-1 € Zg[X,Y]. There is a prime p ¢ S such that
A & GLy(Z,), while Fa-1 € Z,[X,Y]. Hence F is not Z,-minimal.

Now assume that F' is not Z,-minimal for some prime p & S. We have to
prove that F' is not Zg-minimal. By assumption, there are a binary form
G € Z,[X,Y] and a matrix A € NSy(Z,) \ GL2(Z,) such that F' = G4. We
have A = UB, where U € GLy(Z,) and B = (pgl p22 ) with 61,02 € Z>o and
beZ. Let H:= Gy. Then F = Hg. The binary form H belongs to Q[X, Y]
since B € GLy(Q). Further, H € Z,[X,Y] since H is Z,-equivalent to G,
and for every prime ¢ ¢ S U {p} we have H € Z,[X,Y] since B € GLy(Z,).

Hence H € Zg[X,Y]. This shows that indeed F is not Zg-minimal. O

7. EQUIVALENCE OVER THE ALGEBRAIC CLOSURE

Let S = {p1,...,p} be a finite set of primes, Q an algebraic closure of Q
and Zg the integral closure of Zg in Q. By a finitely generated Zg-fractional

ideal we mean a finitely generated Zg-submodule of Q. The non-zero finitely
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generated Zg-fractional ideals form a group under multiplication. Those Zg-
fractional ideals generated by finitely many elements from a number field K
form a subgroup. Every finitely generated Zg-fractional ideal is principal.
We denote by [ai, . .., a,] the fractional Zg-ideal generated by ay, .. ., a,. For
a polynomial P with coefficients in Q we denote by [P] the Zg-fractional
ideal generated by the coefficients of P.

In this section we estimate the number of Q-equivalence classes containing
the pairs of augmented forms with (5.1)-(5.4). In fact, we prove slightly
more and we use this in Section 8 to complete the proof of Proposition 5.2.

We introduce some notation. Let m > 3, n > 3, let ¢ be a Gg-action on
{1,...,m} and ¥ a Gg-action on {1,...,n}. Let

(7.1) F*=(F,(f1:01)y..,(Bm:am)), G"= (G, (61 :71), -, (0n = V)

be a pair of augmented forms with (5.1)—(5.4). Thus,

m

(7.2) F=MJ(a:X = 8Y), G=p]J(X—6Y)

i=1 j=1

where )\7 Ly O, ﬁi? Yjs 5] € @*
We define the Zg-fractional ideals

(7.3) 0 (F7, G7) = [C[Yhﬁz]_[ij/]] 6]

and the numbers

(ai15J1 611’731)(0522 J2 ﬁw’hz)
g (ai15j2 ﬁn'yh)(au J1 522’7]1)
(inyis € {1,...,m}, jija€ {1,....0}).

Both these fractional ideals and these numbers are independent of the choice
of A, p and the a;, 5;,7;, 0;

Since [a;6; — Biv;] € [ou, Bi] - [V4,65] we have 0,;(F*,G*) C Zg, i.e.,
0, (F™, G*) is a finitely generated ideal of Zg.
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By applying Gauss’ Lemma to (7.2) and using our assumption (5.2) we
obtain

(7'5) H Qs ﬁz = H 7]7 = [1]

while by (2.1), (5.4) we have

(R(F,G)] = N[ T] ] [feds = Bina = [e]
Hence
(7.6) H Ho,-jw*, G = [d.

We have some freedom to choose A, 1 and the oy, 3;, v;,d; in (7.2). By
our assumption (5.1) we can choose these numbers such that

A e QF,

(7.7) o(i) = ayo)i@)s 7(Bi) = Bpo)a), for o € Go, i =1,...,m,
o () = W)y, 0(05) = 5w<a)(y foro € G, j=1,.

For the moment we keep this choice; later we will make another choice.

We prove the following lemma:

Lemma 7.1. If (F*,G*) runs through the pairs of augmented forms with
(5.1)-(5.4), then the tuple (0,;(F*,G*) i =1,....,m, j=1,...,n) runs
through a collection of cardinality at most

ord,(c) +mn
(™)

Proof. Gg acts on {1,...,m} x{1,...,n} by means of ¢ x ¢ which is given

by (¢ x ¥)(0)(i,7) = ((0)(i),¥(0)(j)) for o € Go, i = 1,....m, j =
1,...,n. Let Cy,...,C, be the orbits of {1,...,m} x {1,...,n} under this
action and choose a representative (i, j,) € C, for w = 1,...,u. Further,
define the field M,, by

(7.8) Gal(Q/My,) = {0 € Gg : 9(0)(iw) = iw, ¥(0)(ju) = Ju}-
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Let (F*,G*) be a pair with (5.1)-(5.4). Then by (7.7),

o (05 (F", G")) = 0p(0)(i) o) () (F, )
for o0 € Gg,i=1,...,m, j =1,...,n. Hence the tuple (0,;(F*,G*) : i =
1,...,m, j = 1,...,n) is determined by the tuple (9;,;,(F*,G*) : w =
1,...,u). Further, by (7.7) 0,,,.(F*,G*) is generated by elements from

M,,, and the conjugates of v, ;, (F*,G*) over Q are precisely the ideals
0,;(F*,G*) with (4, j) € C,. Thus, we can rewrite (7.6) as

(7.9) T Maruse(0w) = [d,

where 0, is the ideal in the integral closure of Zg in M,,, determined by
Vi (F*,G*) =0, Zg for w=1,...,u.

Let p be a prime with p | c. Let py1, ..., Pu g(w) be the prime ideals of M,
above p and fy1,. .., fugw) their respective residue class degrees. Let x,;
(j=1,...,9(w)) be the exponent of p,,; in the prime ideal factorization of
0,,. Then the exponent of p in the prime number factorization of Ny, /o(0w)
is Z;J(:“i) JwjTwj. So by (7.9)

u g(w)

Z Z JwjTw; = ordy(c).

w=1 j=1
Let x(p) == (xw; :w=1,...,u, j =1,...,g9(w)). Then x(p) consists of

Yoo _glw) <>v My, Q] =>""_, #C, = mn non-negative integers and
moreover,

u g(w)
Z Z Tyj < ord,(c).

w=1 j=1
Hence for x(p) there are at most
(ordp(c) + > et g(w)) < (ordp(c) + mn) .
2 w=1 9(w) -
possibilities.
The tuples x(p) (p | ¢) determine the ideals 0,,, hence also v;,,, (£, G")

(w=1,...,u). So by what was explained above, they determine the ideals
0,;(F*,G*) (i=1,...,m,j=1,...,n) as well. This implies that if (F*, G*)
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runs through all pairs with (5.1)-(5.4), then the tuple (0,;(F*,G*) : i =
1,...,m, j = 1,...,n) runs through a collection of cardinality at most

Hp|c NP' O

We fix a tuple (0;; : i = 1,...,m, j = 1,...,n) of ideals of Zg, and

consider the set

Z({oi})

consisting of the pairs (F*, G*) that satisfy (5.1)—(5.4) and for which
(710) DZ](F*,G*) = Dij for 7= 1, oo, j = 1, o, n.
Lemma 7.2. For eachiy, iz € {1,...,m} withiy # iy and j1,jo € {1,...,n}
with ji # ja, there is a subgroup T, ;,.5, . of rank at most
(7.11) dmn(t+1) -3
such that for every pair (F*,G*) € Z({0;;}) we have
(7.12) Oirizign g (F5 G) € Ty g o
Proof. For ¢ = 1,...,m, j = 1,...,n define the number fields K;, L;, M;;
by

Gal(Q/K;) = {0 € Gg : p(0)(i) = i},

Gal(Q/L;) = {0 € Go: ¥(0)(j) = j},

Gal(Q/My;) = {0 € Gg : p(0)(i) = i, ¥(0)(j) = j}-

Let H be a positive common multiple of the class numbers of these fields.

Assume that the set Z({0,;}) is non-empty and pick a pair (F*,G*) from
this set. Let ay, 3;,7;,6; be asin (7.1), (7.2), (7.7). Then there are \; € K,
i; € Lj such that

(7.13) o, BT =[N, [, 05" =[] for i=1,....m, j=1,...,n.

By (7.7), the ideal d;; is generated by elements from M;;. Hence there are
vi; € M;; such that

(7.14) Dg:[yl-j], for i=1,...,m, j=1,...,n.
Let I';; be the unit group of the integral closure of Zg in M;;. Then
(7.15) rank[;; < [M;; - QJ(t+1)—1<mn(t+1) — 1L
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By (7.13), (7.14), (7.10) we have [(a;6; — B;7;)" /Aipj] = 08 = [v4], hence

ij
(00 — Bivi)"
(7.16) Aift

= V;jEij with 8ij€Fij
fore=1,...,m, j=1,...,n.

Then for iy, € {1,...,m}, j1,72 € {1,...,n} with iy # is, j1 # jo we have

(7 17) Q. . .. . (F* G*)H _ (yi17jlyi27j2) (81'17]'151'2,3'2)
. 11,12371,J2 ) -

Vi1 ,j2Via, g €i1,j2€i2,51

(note that the terms \;, y; cancel). Hence 6;, ;,.;, i, (F*, G*)¥ belongs to the
group generated by v;, i1V, jo / Vi1 jaVisj, and by Iy 5 (p, ¢ = 1,2), which has
rank at most 4{mn(t+1)—1}+1 < 4mn(t+1)—3. But then 0;, ;,.;, ;, (F*, G*)
belongs to the set of H-th roots of the elements of this group, which is also
a group of rank at most 4mn(t + 1) — 3. This proves Lemma 7.2. O]

Lemma 7.3. Let iy,is € {1,...,m}, j1,jo € {1,...,n} with iy # iy, j1 #
J2. Then if (F*,G*) runs through Z({0;;}), the quantity 6;, ,.;, 5, (F*, G¥)
runs through a set of cardinality at most

63015{16mn(t+1)—11}

Proof. Pick (F*,G*) € Z({vi;}), let oy, Bi,7;,6; be as in (7.1), (7.2), (7.7),
write 0;, iy, TOT Oy iy o (B, G*) and define A;; := a;0; — 3;7y;. Then
eil,iz;jhh = M
Ai17j2Ai2,j1

Choose i3 € {1, o ,m} \ {'él,iQ}, j3 € {1, ce ,n} \ {jl,jg}. Then

Ailjl AiljZ Ailjs
Nigii Digjy Digjs| =0
Ai3j1 Aia]’? Aiajs
hence
1 1 1
(7.18) 1 Oiisijrge Oivinings| = 0.
16

11,83;51.J2  V11,8351,J3
From the fact that (3; : «;) (i = i1,02,13), (&; : vj) (J = J1,J2,J3) are

distinct, it follows that each 2 x 2-subdeterminant is non-zero. Now by
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applying Lemma 3.3 to (7.18), invoking Lemma 7.2, it follows immediately,
that if (F*, G*) runs through Z({9;;}), then 6;, ;,.;, ;,(F*, G*) runs through
a set of cardinality at most

63015(4{4mn(t+1)—3}+1) _ 63015{16mn(t+1)—11}'

We now come to the main result of this section.

Lemma 7.4. There is a collection T C A(Zg, m) x A(Zg,n) of cardinality
at most

1024 (motr ) (1 ord,(c) + mn
(7.19) 1074 (m-+n) (+).1p_|£( o >
with the following property: for every pair (F*,G*) with (5.1)-(5.4), there
are (F},G3) € T, A € NSy(Zg), and e,n € Zyg, such that

(720> Fr = g(F(;k)Aa G" = n(Gé)(det A)~1A-
Proof. Our pair (F;,G§) will depend only on the data

D”(F*,G*) z'zl,...,m, jzl,...,n;
(721) 91”1;271<F*,G*) 7/22,,777/

)

010, (F*,G*) j=2,...,n.

where the ideals 0,;(F™*, G*) are given by (7.3) and the numbers

Oy jusings (F*,G*) by (7.4). By Lemmata 7.1, 7.3, if (F*,G*) runs through
all pairs with (5.1)—(5.4), the tuple given by (7.21) runs through a set of
cardinality at most

H <0fdp(c) + mn) . 3017 {16mn(t+1)~ 11} (m—14n-1)

mn
ple

< 61024(m+n)mn(t+1) . H (Ordp(c) + mn)

mn
ple

Hence the number of possibilities for (F{, G§) is bounded above by (7.19).
Let (F*,G*) be a pair with (5.1)-(5.4). Put
Oir v o = O ioigr o (F7, G7), 045 1= 055 (F", G7).
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Further, choose &;; € Zg such that 9;; = [§;;]. Thus, &;; depends only on

(7.21).
By assumption (5.2), Gauss’ Lemma and the fact that every finitely gen-

erated ideal of Zg is principal, we can express F* and G* as

F*:(F7<ﬁ1:al)a"w(ﬁm:am))v G*:(Ga(51:71)7"'7(571:’771))7

where

(7.22) F=[[1 (X =8Y), |o,B]=[1] fori=1,...,m
G =T (X = 6Y). [0 =[1] forj=1,....n.
Put

Aij = aiéj_ﬁi'yj (Z: 1,...,m, j: ]_,...,TL).
Then with the decomposition of F*, G* in (7.22), definition (7.3) becomes
05 = [Ay].
Hence
(723) Aij = 5@'5@' with €5 € Z*S fore=1,...,m, j=1,...,n.

Further, (7.4) can be rewritten as

AVRAYY, . o
(724) 01'171'2;]'1,]'2 = IR £y 11,12 € {1,...,771}, J1,72 € {1,,71}
Ai1,j2Ai27j1

Define the Q-linear subspace of @m:

[ {(oax - Py U — By | =
(7.25) V—{( AL T AL ).x,ye@}.

By substituting (z,y) = (61, 71), (x,y) = 2—1;(52, 72), respectively we obtain
a basis of V| that is

1,....1),

(1 AHAQZ A11A32 A11AmQ
IAVIVANCANACIVANTARRPAVSPASE

where the last identity follows from (7.24). This basis of V', hence V itself,
depends only on (7.21).

) = (17 81,2;1,2, 0173;1,27 oo 7017m;1,2)
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Consider the Zg-module

(7.26) M=A{(&,....&n) €V :611& € Ls, ..., 0m&n € Ls} .

Since every finitely generated ideal of Zg is principal, M is a free Zg-module
of rank 2. Choose a basis {(ai,...,am), (b1,...,by)} of M. The module
M., hence this basis, depends only on (7.21). Now define:

FO = H5Z1 . H(CLZX — bZY), F; = (F(), (bl : CL1>, ey (bm : am))
=1 =1

Then Fy§ depends only on (7.21). Further, Fy € Zg[X,Y], which implies
Fy € A(Zs,m).

By (7.23), (Au . A"‘;"l) € M. Hence there are ujq, U2, Usy, Uze € Zg
such that
(727) (f aml) = ’U,H(ah e ,CLm) — u21(b1, . ,bm)
(A_ ) :—ulg(al,...,am)—|—u22(b1,...,bm).
Set A := (1! 1i2). Thus, by (7.23),
= <H(5 > H az(ullX + U,12Y) — b (U21X + UQQY))
=1 =1

::]3

m
I3
i=1 Azl

(X — 3;Y) = (ﬁsi—;) F
=1

Further, (b; : a;) = (A1) (8 : o) fori=1,...,m. So

1

.
Il

(728) = E(FS)A with ¢ := H&l € Zg
i=1
We now construct G§. Solve ¢;,d; (7 =1,...,n) from
(729) Gldj — blcj = 1, agdj — szj = 9271;]'71 (] = 1, ce ,TL)
and define

H H X —d;Y), Gi:=(Go,(di:c1),...(dy:cn)).
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Then G is determined by (7.21). We have

a b 4 = L forj=1,...,n
ay —by ) \ ¢ 02,151 s

by (7.29) and

by (7.27). Hence

aq Bl
< I d; 1 .

<Aal21 A,Blzl) .A_l < j) = (Aszn) for J= 1,...,71.
Aot Dot Cj JAVIPANT

On the other hand,

a1 B ) JaST]
A1 IR I _ | A for j =1 n
a P2 , Azj e
Aoy 1 i Arr

2
5’1) for j =1,...,n. Now by (7.23),

=1 O
n 5 n

- H = H{(Uncj — und;) X — (—u1z¢; + ugad;)Y'}

j=1 "1 =1
= (det A) H % : H <A_11(’YJX - 6]Y)>

j=1 7 =1
= (et (JT24) @
j=1"4

ThUS, G = n(GO)(detA)*lA with n = H?zl(gll/glj) c Z; Now Go =
N 'Gaet aya-1 € Zs[X,Y], hence Gy € A(Zg,n). Further, (§; : 7;) =
(A1 (d; : ¢;) for j =1,...,n. Hence

G = n(GY)(det a)-14 With n € Zg.

Together with (7.28) this gives (7.20). This proves Lemma 7.4. O



32 A. BERCZES, J.-H. EVERTSE, AND K. GYORY

8. PROOF OF PROPOSITION 5.2

Proposition 5.2 is deduced from Lemma 7.4 above and the following local

lemma.

Lemma 8.1. Let p be a prime, ¢ € Z, with ¢ # 0, and ,, 1, Gg,-actions
of {1,...,m}, {1,...,n}, respectively. Further, let Fy € A(Z,,m), G} €
A(Zy,n). Then the collection of pairs of augmented forms F* = (F,...),
G* = (G,...) such that

(8.1) F* = e(Fy)a, G* = n(G§)(det 4)-14 for some A € NSy(Z,,), €,m € Z;,
(82) F* € A(Zy, ¢p), G* € ALy, y),

(8.3) F, G are Z,-primitive,

(8.4) F is Zy,-minimal,

(8.5)

R(F,G) € cZj,

is contained in at most one Z,-equivalence class if p { ¢, and in the union

of at most two Z,-equivalence classes if p | c
We first deduce Proposition 5.2.

Proof of Proposition 5.2. Let S = {p1,...,p}, ¢,m,n,p,1 be as in the
statement of Proposition 5.2.

Let (F§,G§) be a pair of augmented forms from the set Z from Lemma
7.4. Denote by V(F{, G}) the set of pairs of augmented forms (F*, G*) that
satisfy (5.1)-(5.4) and for which there are e,n € Zg, A € NSy(Zyg) such
that (7.20) holds. Pick (F*,G*) € V(F7,Gg). Let p be a prime outside
S. We view Q as a subfield of Q,. Clearly, (F*,G*) satisfies (8.1), (8.3),
(8.5). Further, this pair satisfies (8.2) where ¢,,, are the Gg,-actions of
{1,...,m}, {1,...,n} induced by ¢, ¢. Lastly by Lemma 6.2 it satisfies
also (8.4). So the pairs (F*,G*) € V(Fy, Gf) satisfy (8.1)—(8.5) for every
prime p & S.

Now Lemmata 8.1 and 6.1 imply that V(F,G{) is contained in the

union of at most 2¢(¢) Zg-equivalence classes. So the total number of Zg-
equivalence classes of pairs (F™*,G*) with (5.1)—(5.4) is bounded above by
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2¢(¢) multiplied with the bound from Lemma 7.4. The resulting bound is

precisely that of Proposition 5.2. O
Now we prove Lemma 8.1. Let p be a prime. Given ay,...,a, € @p, we
denote by [ay, ... ,a,] the Z,-fractional ideal generated by as, ..., a,. Every

finitely generated Zp—fractional ideal is principal. For a polynomial P with
coefficients in Zp, denote by [P] the Zp-fractional ideal generated by the
coefficients of P. By Gauss’ Lemma, we may express Fi, G as

F§ = (FOa (ﬁlo : 0410), ) (ﬁmo : Oémo)),
GS = (Go, (510 . ’)/1()), N (5110 . fYnO))

where

(.6) Fo =TI (o X — BioY),  [evio, Bio] C [1],
Go = [[j=1(vjoX = d;0Y), [0, 0] € [1]

fori=1,...,m,j=1,...,n.

The remainder of the proof of Lemma 8.1 is divided into a few lemmata.
For the moment, we work with two pairs of augmented forms (F},G?),
(Fy, G%) satisfying (8.1)—(8.5) which are not Z,-equivalent. Similarly as F{,
G§, we may express Fy, Fy, G7, G5 as

Fy = (Fi, (Bt 0an), -, (Bk © Qi)

(8.7)
GZ = (Gk’ (61k‘ : ’VUC)? SR (5nk : ’Vnk‘))

for k = 1,2, with

Fy, = H?;l(OCikX - ﬁiky)7 [aikaﬂik] = [1] )

(8.8)

G = [Im (e X = 0Y), [y 0jne] = [1]
fort =1,...,m, 5 = 1,...,n, k = 1,2, where the stronger assertions
[k, Bix) = [1], [Vjk, 051) = [1] follow from Gauss’ Lemma and our assump-

tion (8.3) that F}}, G} (k = 1,2) are Z,-primitive.

Lemma 8.2. Let (F},Gy), (Fy,GS) be two pairs of augmented forms sat-
isfying (8.1)-(8.5) which are not Z,-equivalent and suppose that they are
represented as in (8.7), (8.8).
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Then there are a matriz B € NSy(Z,) with | det Bl, = p~!, a number ¢ € Q
with 0 < ¢ <1, and numbers A\, € Qy, \; € @; (i=1,...,m) such that

(8.9) Fy =AI)p, G3=puG)wen1p with | N, =p™, |ul, =p™,

) =\ (@2> with |Ni|, = p~¢ for i=1,...,m.

67D)

Bi1
€751

(8.10) (det B)B™* (

If moreover p { ¢ then there are p; € @; (j=1,...,n) such that

Vi1 Jj2

(8.11) (det B)B™! (5j > = U <5j2> with ||, = p*~" for j=1,...,n.
7.

Proof. By (8.1), there are matrices A, Ay € NSo(Z,) and numbers 1, &3,
M, "2 € Z; such that

(812) F]: = Ek(FJ)Aky GZ = nk(Gg)(detAk)—lAk for k= 1, 2.

This implies [y = 525f1(Ff)A;1A27 G; = 77277;1(Gﬁdet(Al_lAg)*lAl_lAg' Then
by (8.2) and Lemma 5.1, there are B € GL3(Q,), k € @; such that A1 Ay =
xkB. Without loss of generality we may assume that B € NSy(Z,) and that
the entries of B have ged 1 in Z,. Define ¢, 0 by

(5.13) 6y =5, |det Bl = p™.

Then, on putting A := ege] ' K™, p := non] 'K,

(8.14) Fy =AI)p, G5 = p(GD e with [Al, =p™, |ul, =p™".
It is clear that A\, u € Q5. If 0 = 0 then B € GLy(Z,), and also A, i € Zj

since by (8.3) the binary forms Fj,, Gy, (k = 1,2) are Z,-primitive. Soif§ =0

then (Fy, GY), (F5,G3) are Zy-equivalent, contrary to our assumption. The
number @ is clearly a non-negative integer. Hence

(8.15) 0> 1.

By (8.12), (8.6), (8.8) we have

(det Ap) AL (ﬁl > = Vi <@k> for k=1,2, i=1,...,m,
Q40 Ak
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where vy, € @; Since (det Ay)A;t € NSy(Z,) and [agw, Bi] = [1] for
1=1,....,m, k=1,2 we have vy, eZp fort=1,...,m, k=1,2. Further,

(Fo)a, (X, V) = ]| (vir(oanX = BuY)) for k=1,2,
i=1

_ —%
hence [, vir = ¢}, e Z,. Therefore

(det Ak) ﬁzO = Vi ﬁm with v, € Z;
(8.16) Qg Qi

for k=1,2,i=1,...,m.

On putting \; = v, £~ and inserting A;' Ay = kB and (8.13) we obtain

(8.17) (det B)B~ (ﬁﬂ) =\ (ﬁﬂ) with [\, =p~¢ for i=1,...,m.

731 Q2

Since (det B)B™! € NSy(Z,) and since [aja, Bi2) = [1] for i = 1,...,m in
view of (8.8), we have ¢ > 0. We now show that § =1 and 0 < ¢ < 1. Here
we use that Fy, I} satisfy (8.4), i.e., that Fy, Fy are Z,-minimal.

Since Zj, is a principal ideal domain and the entries of B have ged 1, there
are Uy, Uy € GLy(Z,) such that

B = Ul <1 09> UQ.
0 p

By inserting this into (8.17) we obtain

1 /
(8.18) ( 09)(,)_)\< )wmhmp p ¢ for i=1,...,m,
0 p a;1 azQ

where

(8.19) (fl>=<detU1>Ufl (5) <§2>=<detU2>-1U2 (5)
&1 Qi1 (%) (7))

fori=1,...,m.
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By (8.18) we have | 3], = |\iBk|, <p~¢ fori=1,...,m. Suppose ¢ > 1.
Then 3}, /p € Z,, for i = 1,...,m. Hence, with C := (ég)Ul_l,

(s C)iC <ﬁ> _ (ﬁﬁ/p) 7
Qi1 Qi

Consequently, (F})c—1 € Z,[X,Y]. But then (F})c—1 € Z,[X,Y], since
(F1)c-1 € Qu[X,Y]. Hence Fy is not Z,-minimal, contrary to our assump-
tion. Thus we conclude that ¢ < 1. From (8.18) we infer also that

|aislp = ’pe)\i_loémp <p-f for i=1,...,m.

By the same argument as above, using that F is Z,-minimal, we infer that
0 <6 — (¢ < 1. Combining this with (8.15) and 0 € Z, it follows that 6 = 1
and 0 < ¢ < 1.

We have proved that (8.9), (8.10) hold for a suitable ¢ with 0 < ¢ < 1.
Further, in view of (8.13) we have |det B|, = p~'. It remains to prove
(8.11). Assume that p1{c. By (8.14) we have

Y51 52

(8.20) (det B)B™* <6j1> = Uj <5j2> with p; € @; for j=1,...,n.
By (8.8), (8.5),

LTI et = Barvinlo = |R(Fx, Gi)lp = lelp = 1 for k=1,2.

i=1 j=1
Further, cixdi — Bixvin € Zp. Hence

laindie — Bayjelp =1 fori=1,....m, j=1,...,n, k=1,2.
Now by (8.10), (8.20),

|det B, " - [aindjn — Bavilp = [Nt (izdjo — Bizviz)lps
SO
| Aiptjlp = | det Bl,

which together with the already established identities | det B|, = p~ !, |\if, =
p~¢, implies ||, = p*~! for j = 1,...,n. This proves (8.11), and completes
the proof of Lemma 8.2. O
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Lemma 8.3. Assume that p { c. Then the pairs of augmented forms
(F*,G*) with (8.1)-(8.5) lie in at most one Z,-equivalence class.

Proof. Assume there are two Z,-inequivalent pairs (Fy', G), (Fy, G5) with
(8.1)—(8.5). Let B be the matrix and ( € Q the number from Lemma
8.2. There are Uy, U, € GLy(Z,) such that B = U, (¢ p)Us. Together with
(8.10), (8.11) this implies

1 0 ), i | 10\ () _ " &,

0 p vy o 0 p 7}1 ’V§‘2
( f1> = (det U,)U; ! (5“> , ( ?) = (det Uo)Uy ! (5"2> ,

53 Qi1 ;9 (6 7))
(5 ) (det Uy) U (5 > (5{2) = (det U,)U; ™ (51'2),

7]1 Vi1 Yj2 V52

fori=1,...,m,j=1,...,n. Thus |34], = |NBhl, <p S fori=1,...,m,
0% ], = ’M; Talp < P71 for j=1,...,n. Hence

with

|aindjn — By ly =| det Ul gy 85 — Bl
:|O‘;15}1 - ﬁz{ﬂ;‘ﬂp < max(p~ CptT <1

fore=1,...,m,j=1,...,n. But then

‘R(Fk, Gk HH \azléﬂ ﬁzl'}/]l’p <1 fork = 1, 2,

=1 j=1

contradicting our assumptions that p 1 ¢ and that (F}', G;) (k = 1,2) satisfy
(8.5). O

Lemma 8.4. Assume that p | ¢. Then the pairs (F*,G*) with (8.1)-(8.5)
lie in at most two Z,-equivalence classes.

Proof. Assume there are three Z,-inequivalent pairs (F},Gy), (k = 1,2,3)
with (8.1)—(8.5). Then by Lemma 8.2, there are matrices By, B3, Bas €
NS3(Z,) with | det Bis|, = | det Bys|, = | det Bas|, = p~ ', as well as numbers
A12, A13, A2z € Q) such that

F _/\IQ(F )B127 F _Al?)(F )3137 F _A23(F )B23
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Thus Fg = )\12)\23(F1*)312323. Hence by Lemma 51, 812323 = )\Blg with
A € Q. But this implies

| det Blg|p’ det B23|p _ pil
|det Blg|p ’

Al =

which is impossible. So three pairwise Z,-inequivalent pairs with (8.1)—(8.5)
cannot exist. Lemma 8.4 follows. [

Now Lemma 8.1 is an immediate consequence of Lemmata 8.3 and 8.4. [

9. PROOF OF THEOREM 2.3

The discriminant of a binary form F' = Z?:o ap Xm kYR =
[T, (X — 3;Y) is given by

DFy= ][] (cubi—a;B)*
1<i<j<m
Recall that D(F') is a homogeneous polynomial in Z[ay,. .., a,,] of degree
2m — 2. Further, for any scalar A and any 2 x 2-matrix A we have

(9.1) D(AF4) = A 2(det A)™™ YV D(F).

Let again S = {p1, ..., p:} be a finite, possibly empty set of primes. Every
non-zero a € Zg can be expressed uniquely as a = ¢|a|g, where € € Z§ and
la|s is a positive integer coprime with the primes in S. For a binary form
F =" aX""Y" € Zs[X,Y], we define [Fls := ged(|aols, - -, |amls)-
Then for any two Zg-equivalent binary forms F}, F» we have

[Fi]s = [F2]s,  [D(F)ls = [D(F2)]s-

The first equality is obvious, while the second follows from (9.1).

Let F' € Zg[X,Y] be a binary form and consider the matrices A €
NS2(Zs) such that Fu-1 € Zg[X,Y]. If a matrix A satisfies this condition,
then so does every matrix in the left GLy(Zg)-coset GLo(Zs)A = {UA :
U e GLy(Zs)}
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Lemma 9.1. Let F € Zg[X, Y] be a binary form of degree m without multi-
ple factors. Suppose that F is associated with the number fields K1, ..., K,.

Then the set of matrices

{A € NSy (Zs) : Fy— € Zs[X, Y]}
18 a union of
(9.2) < [FI{"ID(F)LS

left GLo(Zs)-cosets for every 6 > 0, where the implied constant depends
only on Ki,...,K,, 6,5, m.

Proof. In all Vinogradov symbols < used below, the implied constant de-
pends only on Ky,..., K,, 9,5, m.

Every matrix A € NSy(Zg) can be expressed as UB, where U € GLy(Zs)
and B = (gg) with a,b,d € Z,a > 0,d > 0,0 < b < dand ged(ad, p; - - - py)
= 1 (if S # (). Therefore, it suffices to show that the number of such
matrices B with Fg-1 € Zg[X, Y] is bounded above by (9.2).

By (9.1) we have |D(F)|s = (ad)™™ Y|D(Fz-1)|s, hence (ad)™m~Y
is a divisor of |D(F')|s. The number of pairs (a,d) with this property is
< |D(F)|% for every 6 > 0. We show that for given a,d the number of
b e Zsuch that 0 < b < d and Fy1 € Zg[X,Y] is < [F]z ™ for every
§ > 0. This implies the bound (9.2), since by (9.1), [F]7"™ ™ divides
[D(F)]s.

If in the matrix B we replace b by another integer in the same residue
class mod d, we obtain a matrix in the same left GLy(Zg)-coset. There-
fore, it suffices to show that the number of residue classes b mod d in Zg
such that Fp-1 € Zg[X,Y] is < [F]j’LJﬂS for every § > 0. In view of the
Chinese Remainder Theorem, it suffices to estimate from above the number
of residue classes b mod d in Z, for every prime p | d and then take the
product. More precisely, for each prime p | d let R, denote the number of
residue classes b mod d in Z, such that

(9.3) Fp(X,Y)=F(a'X — b(ad)'Y,d"Y) € Z,[X,Y].
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Then we have to show that

1
(9.4) H R, < [F]g‘JF(S for every 6 > 0.

Let p be a prime dividing d. Denote by ord,(F') the exponent of p in
the prime factorization of [F|g. Let L, denote the splitting field of F' over
Q, and O, the integral closure of Z, in L,. For ay,...,a, € L, we de-
note by [aq,...,q,] the Op-fractional ideal generated by ai,...,a,. For
a polynomial with coefficients in L,, we denote by [P] the O,-fractional
ideal generated by the coefficients of P. There is 7 € O, such that every
O,-fractional ideal is equal to [7]" for some 7 € Z. In particular we have

(9.5) [p] =[x]® withl <e<|[L,:Q,] <ml!.

Let b € Z,, satisfy (9.3). By Gauss’ Lemma, we can factor ' in O,[X,Y]
as

(9.6) PXY) =] (X = 5Y)

=1

with [y] = [F], [as, 8] =[1] fori=1,...,m.

Then
- b(as/a) + 53;
(9.7) Fpa(X,Y) =~ ]1 <;X - TY).
Define integers r; (i =1,...,m) by
L % blag/a) + 5
(9.8) [m] =] = ¥ ]
Then since
(67 b(OéZ/CL) +ﬂl a; bozi Q;
— ] 2 | i| 2 | 0i] 2 o, Gi] = [1],
(S, TR 5 [ 224 5] 2 (28] 2 e 6] = (1
we have
(9.9) r; >0 fori=1,...,m.
Further, by Gauss’ Lemma, the product over i = 1,... m of the ideals on

the right-hand side of (9.8) is [Fg-1][F]~!. Together with (9.3), (9.5) this
implies
e+ = (F][Fpa] ™ 2 [F] = oot
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Hence
(9.10) r 4y < e-ordy(F).

(9.9), (9.10) imply that for the tuple (rq,...,7,) we have at most

(9.11) <m +e- ordp(F))

m
possibilities.
We now fix a tuple (rq, ..., 7,,) and estimate the number of residue classes
b mod d in Z, with (9.3), (9.8). For i =1,...,m define x;, \; € L, by
i - by i s
(9.12) - blaifa) + Bi _ AT
a d
This implies that for i = 1,...,m we have
(9.13) bii + 7" B = Aid,
i Aid
(9.14) b+ aﬁ = —.
(673 K;
Define integers s; (i = 1,...,m) by
(9.15) [ki, d] = [m]*.
These integers are uniquely determined by a,d, F,ry,...,r,, so they are
independent of b. We claim that
(9.16) 0<s;<r; fori=1,....,m.

Indeed, by (9.8) we have [k;, \;] = [1] for i = 1,...,m. Hence k;,d € O,
and so s; > 0 for i = 1,...,m. On the other hand, by (9.13),

[/‘i}i, d] = [lii, )\ld] = [I{Z’, b/fi + Wriﬁi]

= [ki, " 3] = " /a, 5] 2 [w]"

and therefore, s; < r; fori=1,...,m.
From (9.14) it follows that
af; s .
(9.17) b+ =0 (moddr %) fori=1,...,m.

(%)

Thus, every b € Z, with (9.3), (9.8) satisfies (9.17).
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Let by, by be two numbers in Z, with (9.3), (9.8). Then
by = by (mod dr™*),

and so by (9.5),
by = by (mod dp~ /9.

By (9.9), (9.10), there is i € {1,...,m} with r;, < e - ord,(F)/m. By
(9.16) we have for this 4, [s;/e] < [ord,(F')/m]. Hence for any two numbers
b1, by € Z,, with (9.3),(9.8), we have

by = by (mod dp_[ordP(F)/m])‘

Consequently, the numbers b € Z,, with (9.3),(9.8) lie in at most plordr(£)/m]

residue classes mod d in Z,.

This gives an upper bound for the number of residue classes b mod d
for fixed r,...,r,. Invoking the upper bound (9.11) for the number of
possibilities for (r1,...,7r,), we infer that for the number R, of residue
classes b mod d in Z, with (9.3) we have

m + e - ord, (£ or m
R, < ( o )>  plordp(F)/m],

m

1
Using that Hp|dp[°rdP(F)/m] < [F] é/m, it follows easily that [, I, < [F]gﬁM

for every 6 > 0. This proves (9.4), and completes the proof of Lemma
9.1. OJ

Lemma 9.2. Let F,G € Zs[X, Y] be binary forms of degrees m > 3, n > 3,
respectively, such that FG has no multiple factors, and suppose that F' is
associated with the number fields Ky, ..., K, and G with the number fields
Li,...,L,. Then
T 7mT) 170
[R(F,G)|s > (ID(F)|s™" - ID(G)|g )™

for every 6 > 0, where the implied constant depends only on Ki,..., K,,
Ly,...,L,, m, n, S, 9, and is not effectively computable from the method

of proof.

Proof. See EVERTSE and GYORY [8, Theorem 1]. O
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Lemma 9.3. Let F,G € Zg[X, Y] be binary forms without multiple factors.
Then there are binary forms Fy, Gy € Zs[X,Y] and a matriz A € NSy(Zs)
such that

- F=(Fy)a, G= (GO)(detA)*lAa
— Fy is Zg-minimal, R(Fy, Go) = R(F,G).

Proof. Assume that F is not Zg-minimal. Then there are a binary form
F) € Zs[X,Y] and a matrix A; € NSy(Zs)\ GLa(Zs) such that F' = (F}) 4,.
By (9.1), |D(F)|s = |det 4|2 V|D(F)|s > |D(F)|s. If Fy is not Zg-
minimal, there are a binary form F; € Zg[X, Y] and a matrix A € NSy(Zg)
such that Fy = (Fy)a, and |D(Fy)|s < |D(F1)|s. Further, F' = (F5)a,a4,-
It is clear that this argument can be repeated at most finitely many times.
So eventually, we obtain a Zg-minimal binary form Fy € Zg[X,Y] and a
matrix A € NSy(Zg) such that F' = (Fy)a. Now put Gy := G(detaya—1.
Then Gy € Zs[X, Y] and by (2.1) we have R(Fy, Go) = R(F, G). O]

Proof of Theorem 2.3. The constants implied by the Vinogradov symbols
< used below depend only on K1,...,K,, Ly,...,L,, m,n,S,0.

Let (F,G) be a pair of binary forms in Zg[X,Y] satisfying the condi-
tions of Theorem 2.3, so in particular satisfying (1.1). Let Fy, Go be a pair
of binary forms in Zg[X,Y], and A € NSy(Zs) as in Lemma 9.3. Then
(Fo, Go) satisfies (1.1). By Theorem 2.2, the pairs of binary forms (Fy, Go)
constructed in this manner lie in <« ¢’ Zg-equivalence classes for every
6 > 0.

Let F be a full system of representatives for these classes. So
(9.18) #F < & for every § > 0.

Starting with a pair of binary forms (F,G) satisfying the conditions of
Theorem 2.3, we first obtain a pair of binary forms (Fy, Gy) and a matrix
A € NSy(Zg) as in Lemma 9.3, and then a pair (Fi,G;) € F and a matrix
U € GLy(Zs) such that Fy = (F1)y, Go = (Gy)y. On putting A; =
(det A)A™'U!, we obtain

(919) F= g(Fl)(detAl)A;17 G = (Gl)Afl with € € Z*S, Al € NSQ(Zs)
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For the matrix A; we have (G]_)Al—l € Zs[X,Y]. So by Lemma 9.1, there
is a set of matrices M(G1) in NSo(Zg) depending only on G; of cardinality

(9.20) #M(G) < [Gl]}g/n|D(G1)|g for every § > 0

such that A; = UB for some B € M(G4), U € GLy(Zs). By inserting this
into (9.19), we infer that every pair of binary forms (F,G) satisfying the
conditions of Theorem 2.3, is Zg-equivalent to a pair

(9.21) ((F1)@et Bys-1, (G1)p-1)  with (Fy,G1) € F, B € M(Gy).

We estimate the number of pairs in (9.21). Every pair (F},G;) € F
satisfies (1.1). From (2.1) it follows that [G,|Z divides R(Fi,G1), hence
c as well. Therefore, [G1]s < ¢'/™. Further, by Lemma 9.2 (taking 0

sufficiently small), we have
¢ = [R(F, Gy)ls > D(GIF"™,

therefore, |D(G1)|s < ¢!™/™. By inserting this into (9.20) we obtain that
M(G4) has cardinality < c¢mn ™9 for every § > 0. Together with (9.18) this
implies that the set of pairs in (9.21) has cardinality < cmn ™0 for every
0 > 0. This completes the proof of Theorem 2.3. O
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