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1. Introduction

Denote by R(F,G) the resultant of two binary forms F,G. Let S =

{p1, . . . , pt} be a finite, possibly empty set of primes. The ring of S-integers

and group of S-units are defined by

ZS = Z[(p1 · · · pt)−1], Z∗
S = {±pw1

1 · · · pwt
t : w1, . . . , wt ∈ Z},

respectively, where ZS = Z, Z∗
S = {±1} if S = ∅. We deal with the so-called

resultant equation

(1.1) R(F,G) ∈ cZ∗
S

to be solved in binary forms F,G ∈ ZS[X, Y ], where c is a positive inte-

ger. As it turns out, the set of pairs (F,G) satisfying this equation can be

divided into equivalence classes, where two pairs of binary forms (F1, G1),

(F2, G2) are said to be equivalent, if there are ε, η ∈ Z∗
S and a matrix

U =
(
a b
c d

)
∈ GL2(ZS) such that F2(X, Y ) = εF1(aX + bY, cX + dY ),

G2(X, Y ) = ηG1(aX + bY, cX + dY ).

First Győry [11], [12] for monic binary forms F,G (i.e., with F (1, 0) =

G(1, 0) = 1) and later Evertse and Győry [8] for arbitrary binary forms

F,G, proved results which imply that there are only finitely many equiv-

alence classes of pairs of binary forms F,G ∈ ZS[X, Y ] that satisfy (1.1)

and certain additional conditions. In [12], Győry established his results on
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monic binary forms in a quantitative form, giving explicit upper bounds

for the number of equivalence classes, while the results for arbitrary binary

forms from [8] were established only in a qualitative form. In the present

paper, we improve the quantitative results from [12], and prove quantitative

versions of the finiteness results from [8].

In a simplified form, one of our results (Theorem 2.3 below) can be stated

as follows. Let m ≥ 3, n ≥ 3 be integers and L a number field. Then the

set of pairs of binary forms (F,G) in ZS[X, Y ] satisfying (1.1) such that F

has degree m, G has degree n, F , G do not have multiple factors and F,G

split into linear factors in L[X, Y ] is contained in the union of O(c
1

mn
+δ)

equivalence classes as c → ∞ for every δ > 0. Here, the implied constant

depends on L, m, n, S, δ and cannot be computed explicitly from our

method of proof. It is shown that the exponent on c cannot be improved to

something smaller than 1
mn

.

On the other hand, if we restrict ourselves to monic binary forms F,G,

we can derive an upper bound for the number of equivalence classes which

is completely explicit in terms of m,n, t and c (see Theorem 2.1 below). We

derive a similar such explicit bound for binary forms F,G that are not nec-

essarily monic, but there we have to impose a suitable minimality condition

on one of F,G. We explain that without this condition it probably becomes

very difficult to obtain a fully explicit upper bound for the number of equiv-

alence classes. As a corollary of our Theorem 2.2, we give a quantitative

version of a result by Evertse and Győry [7] on Thue-Mahler equations

(Corollary 2.4 below).

In Section 2 we state Theorems 2.1, 2.2, 2.3 and Corollary 2.4. Theorem

2.1 will be proved in Sections 3, 4 and Theorem 2.2 in Sections 5–8. The

main tools are explicit upper bounds from [5] and [10] for the number of

solutions of linear equations with unknowns from a multiplicative group.

The latter is a consequence of the Quantitative Subspace Theorem. In our

arguments we use ideas from [9], [8] and [2]. Theorem 2.3 is proved in

Section 9. Here the hard core is an inequality from [8] relating the resultant

of two binary forms to the discriminants of these forms. This inequality is

a consequence of the qualitative Subspace Theorem.
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2. Results

We introduce some terminology. The resultant of two binary forms

F = a0X
m + a1X

m−1Y + · · ·+ amY
m =

m∏
k=1

(αkX − βkY ),

G = b0X
n + b1X

n−1Y + · · ·+ bnY
n =

n∏
l=1

(γlX − δlY )

is given by

R(F,G) :=
m∏
k=1

n∏
l=1

(αkδl − βkγl).

From the well-known expression for R(F,G) as a determinant (see [15, §34])

we infer that R(F,G) is a polynomial in Z[a0, . . . , am; b0, . . . , bn] which is

homogeneous of degree n = degG in a0, . . . , am and homogeneous of degree

m = degF in b0, . . . , bn. Further, for any scalars λ, µ and any matrix

A =
(
a b
c d

)
we have

(2.1) R(λFA, µGA) = λnµm(detA)mnR(F,G) ,

where for a binary form F we define FA by

FA(X, Y ) := F (aX + bY, cX + dY ).

For a domain Ω, we denote by NS2(Ω) the set of 2 × 2-matrices with

entries in Ω and non-zero determinant, and by GL2(Ω) the group of 2× 2-

matrices with entries in Ω and determinant in the unit group Ω∗. Two

binary forms F1, F2 ∈ Ω[X, Y ] are called Ω-equivalent if there are ε ∈ Ω∗,

U ∈ GL2(Ω) such that F2 = ε(F1)U . Two pairs of binary forms (F1, G1),

(F2, G2) are called Ω-equivalent if there are ε, η ∈ Ω∗, U ∈ GL2(Ω) such

that F2 = ε(F1)U , G2 = η(G1)U . A binary form F with F (1, 0) = 1

is called monic. Two pairs of monic binary forms (F1, G1), (F2, G2) in

Ω[X, Y ] are called strongly Ω-equivalent if F2(X, Y ) = F1(X + bY, εY ),

G2(X, Y ) = G1(X + bY, εY ) for some b ∈ Ω, ε ∈ Ω∗.

We return to the resultant equation (1.1). Let S = {p1, . . . , pt} be a finite,

possibly empty set of primes. Without loss of generality we may assume

that the number c in (1.1) is a positive integer which is coprime with p1 · · · pt
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if S 6= ∅. Clearly, if (F,G) is a pair of binary forms with (1.1), then by (2.1)

every pair ZS-equivalent to (F,G) also satisfies (1.1). Therefore, the set of

solutions of (1.1) decomposes into ZS-equivalence classes. Likewise, the set

of pairs of monic binary forms F,G ∈ ZS[X,Y ] with (1.1) decomposes into

strong ZS-equivalence classes.

There were some earlier finiteness results on (1.1) in which one of the

binary forms F,G was kept fixed, but Győry was the first to obtain results

on (1.1) in which both F,G are allowed to vary. He proved [11, Theorem

7] the following result for monic binary forms. Let L be a given number

field, and m,n integers with m ≥ 2, n ≥ 2, m + n ≥ 5. Then there are

only finitely many strong ZS-equivalence classes of pairs of monic binary

forms F,G ∈ ZS[X, Y ] satisfying (1.1) such that degF = m, degG = n,

F,G have no multiple factors and F · G has splitting field L (i.e., L is the

smallest number field over which F · G splits into linear factors). Further,

in [12], Győry obtained explicit upper bounds both for degF + degG and

for the number of strong equivalence classes. In fact, by combining Győry’s

arguments from [12] with the explicit upper bound for the number of non-

degenerate solutions of S-unit equations from [6, Theorem 3], one can show

that the pairs of monic binary forms (F,G) with the properties given above

lie in at most

(2.2) {2(m+ n+ 1)421050[L:Q](t+ω(c)+1)}m+n−2

strong ZS-equivalence classes, where ω(c) is the number of distinct primes

dividing c. Note that 1 ≤ [L : Q] ≤ m!n!. 1

Evertse and Győry [8, Corollary 1] extended Győry’s qualitative result

to binary forms which are not necessarily monic. Under the slightly stronger

hypothesis m ≥ 3, n ≥ 3, they proved that there are only finitely many ZS-

equivalence classes of pairs of binary forms F,G satisfying (1.1) such that

degF = m, degG = n, F,G have no multiple factors and F ·G has splitting

field L. Further, they showed that degF + degG is bounded above in

terms of S, L and c. We mention that both Győry for monic binary forms

1The results in [11], [12] were formulated in terms of monic polynomials instead of
monic binary forms. The formulation in terms of monic binary forms fits more conve-
niently into the present paper.
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and Evertse and Győry for not necessarily monic binary forms proved more

general results for binary forms with coefficients in the ring of S-integers of

a number field. 2

Győry [12] and Evertse and Győry [8] showed also that their finiteness

results do not remain valid if the conditions on m,n are relaxed, or if neither

F nor G is required to split into linear factors over a prescribed number

field. It is not known whether the finiteness results can be extended to the

case that only one of F,G is required to split over a given number field,

see [3] for a discussion on this. Probably the condition that F ,G have no

multiple factors can be removed if we assume that F ,G have sufficiently

many distinct factors in C[X, Y ] (see [12] in the monic case).

Below we give precise quantitative versions of our results mentioned

above. In contrast to the above discussion, we do not deal with binary

forms F,G such that F · G has a given splitting field but instead with bi-

nary forms associated with certain given number fields. We say that a binary

form F ∈ Q[X, Y ] is associated with a number field K if F is irreducible in

Q[X, Y ] and if there is θ such that F (θ, 1) = 0 and K = Q(θ). We agree

that the binary forms aY (a ∈ Q∗) are associated with Q. A binary form

F ∈ Q[X, Y ] is said to be associated with the sequence of number fields

K1, . . . , Ku if it can be factored as
∏u

i=1 Fi where Fi ∈ Q[X,Y ] is an irre-

ducible binary form associated with Ki, for i = 1, . . . , u. It is easy to check

that a binary form F associated with K1, . . . , Ku has degree
∑u

i=1[Ki : Q].

For a non-zero integer d, we denote by ω(d) the number of distinct primes

dividing d, and by ordp(d) the exponent of the prime number p in the prime

factorization of d.

Our first theorem gives a quantitative result on (1.1) for monic binary

forms which is better than (2.2) if the degrees of the number fields with

which F,G are associated are not too small.

2In the monic case, the results of [11], [12] were established in the even more general
situation when the ground ring is an integrally closed and finitely generated domain over
Z.
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Theorem 2.1. Let m,n be integers with m ≥ 2, n ≥ 2, m + n ≥ 5 and

K1, . . . , Ku, L1, . . . , Lv number fields with
u∑
i=1

[Ki : Q] = m,

v∑
i=1

[Li : Q] = n.

Further, let S = {p1, . . . , pt} be a finite, possibly empty set of primes and c

a positive integer, coprime with p1 · · · pt if S 6= ∅. Then the set of pairs of

monic binary forms F,G ∈ ZS[X, Y ] with

(1.1) R(F,G) ∈ cZ∗
S

for which

– F is associated with K1, . . . , Ku, G is associated with L1, . . . , Lv,

– F , G do not have multiple factors,

is contained in the union of at most

e17(m+n+1011)mn(t+ω(c)+1)

strong ZS-equivalence classes.

Clearly, our bound can be replaced by e18(m+n)mn(t+ω(c)+1) if m + n is

sufficiently large. We note that from Theorem 2.2 below one can derive a

result similar to 2.1 but with a larger bound.

In Theorem 2.2 below, we give an explicit upper bound for the number of

equivalence classes for not necessarily monic binary forms, but instead we

have to assume that one of the binary forms satisfies a certain minimality

condition. More precisely, a binary form F ∈ ZS[X, Y ] is called ZS-minimal

if there are no binary form G ∈ ZS[X, Y ] and matrix A ∈ NS2(ZS)\GL2(ZS)

such that F = GA.

Theorem 2.2. Let m,n be integers with m ≥ 3, n ≥ 3. Further, let

K1, . . . , Ku, L1, . . . , Lv, S and c be as in Theorem 2.1. Then the set of

pairs of binary forms F,G ∈ ZS[X,Y ] satisfying (1.1) for which

– F is associated with K1, . . . , Ku, G is associated with L1, . . . , Lv,

– F , G do not have multiple factors,

– F is ZS-minimal
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is contained in the union of at most

e1024(m+n)mn(t+1)ψ(c)

ZS-equivalence classes, where

ψ(c) := 2ω(c)
∏
p|c

(
ordp(c) +mn+ 2

mn+ 2

)
.

Using the arguments of the proof of Theorem 2.2 we could also give an

explicit upper bound for degF + degG. We will not work this out in our

paper.

If in Theorem 2.2 we drop the condition that F be ZS-minimal, the

number of ZS-equivalence classes remains finite, but we are no longer able

to give an explicit upper bound for it. In fact, we believe that to give

an explicit upper bound for the number of equivalence classes without the

minimality constraint is a difficult problem, and at the end of this section we

give an example to illustrate this. We managed only to prove the following

asymptotic result.

Theorem 2.3. Let again m,n be integers with m ≥ 3, n ≥ 3, and let

K1, . . . , Ku, L1, . . . , Lv, S and c be as in Theorem 2.1. Then the number

of ZS-equivalence classes of pairs of binary forms F,G ∈ ZS[X, Y ] which

satisfy (1.1) and for which

– F is associated with K1, . . . , Ku, G is associated with L1, . . . , Lv,

– F , G do not have multiple factors,

is, for every δ > 0, at most

O
(
c

1
mn

+δ
)

as c→∞,

where the implied constant depends on K1, . . . , Ku, L1, . . . , Lv, m,n, S and

δ. This constant cannot be computed effectively from our method of proof.

The following example shows that the exponent of c cannot be replaced

by something smaller than 1
mn

. Fix two binary forms F,G ∈ Z[X, Y ] of

degrees m ≥ 3, n ≥ 3, respectively, without multiple factors, and hav-

ing resultant R(F,G) =: r 6= 0. Suppose that F is associated with the
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number fields K1, . . . , Ku and G with the number fields L1, . . . , Lv. Let p

be any prime number. Then the pairs of binary forms (Fb, Gb) given by

Fb(X, Y ) = F (pX, bX + Y ), Gb(X,Y ) = G(pX, bX + Y ) (b = 0, . . . , p− 1)

are pairwise Z-inequivalent. Further, Fb is associated with K1, . . . , Ku and

Gb with L1, . . . , Lv and Fb, Gb do not have multiple factors. By (2.1) we

have R(Fb, Gb) = rpmn. So if we take c := |r|pmn and let p → ∞, we

obtain infinitely many integers c such that the set of pairs of binary forms

(F,G) satisfying the conditions of Theorem 2.3 with S = ∅ lie in � c
1

mn

Z-equivalence classes.

We give a consequence for Thue-Mahler equations of the shape

(2.3) F (x, y) ∈ cZ∗
S in (x, y) ∈ ZS × ZS, with gcd(x, y) = 1,

where F is a binary form in ZS[X, Y ] and c a positive integer coprime

with the primes in S. Two solutions (x1, y1), (x2, y2) of (2.3) are called

proportional if (x2, y2) = λ(x1, y1) for some λ ∈ Q∗. Evertse and Győry

[7] proved the following. Let m ≥ 3 and let L be a given number field.

Then the binary forms F ∈ ZS[X,Y ] of degree m such that F has no

multiple factors, F splits into linear factors over L and such that (2.3)

has at least three pairwise non-proportional solutions, lie in finitely many

ZS-equivalence classes.

We prove the following quantitative result:

Corollary 2.4. Let m be an integer with m ≥ 3, K1, . . . , Ku number fields

with
∑u

i=1[Ki : Q] = m, S = {p1, . . . , pt} a finite, possibly empty set of

primes, and c a positive integer coprime with p1 · · · pt if S 6= ∅. Then the

set of binary forms F ∈ ZS[X, Y ] such that

– (2.3) has three pairwise non-proportional solutions,

– F is associated with (K1, . . . , Ku), F has no multiple factors,

– F is ZS-minimal

is contained in the union of at most

e3×1024m(m+3)(t+1) · 2ω(c)
∏
p|c

(
3 ordp(c) + 3m+ 2

3m+ 2

)
ZS-equivalence classes.
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We derive Corollary 2.4 from Theorem 2.2. Let F ∈ ZS[X,Y ] be a binary

form satisfying the conditions of Corollary 2.4. Let (x1, y1), (x2, y2), (x3, y3)

be pairwise non-proportional solutions of (2.3). Define the binary form

G(X, Y ) =
∏3

i=1(yiX − xiY ). Then

R(F,G) =
3∏
i=1

F (xi, yi) ∈ c3Z∗
S.

Hence the pair (F,G) satisfies the conditions of Theorem 2.2 with n = 3,

(L1, . . . , Lv) = (Q,Q,Q), and with c3 instead of c. By applying Theorem 2.2

with these data, we see that the pairs (F,G) lie in at most N ZS-equivalence

classes, where N is the quantity obtained by substituting n = 3 and c3 for

c in the upper bound in Theorem 2.2. Hence the binary forms F lie in at

most N ZS-equivalence classes. �

We return to the problem, addressed to above, to give a fully explicit

upper bound for the number of equivalence classes of pairs (F,G) satisfying

the conditions of Theorem 2.3 without the constraint that F be ZS-minimal.

In Lemma 9.3 in Section 9 we prove that for every pair of binary forms (F,G)

in ZS[X, Y ] with (1.1) there are a pair of binary forms (F0, G0) in ZS[X,Y ]

with (1.1) such that F0 is ZS-minimal, and a matrix A ∈ NS2(ZS), such

that

(2.4) F = (F0)A, G = (G0)(detA)−1A.

Now Theorem 2.2 gives an explicit upper bound for the number of ZS-

equivalence classes of pairs (F0, G0), so what we would like is to give an

explicit upper bound for the number of ZS-equivalence classes of pairs (F,G)

corresponding to a given pair (F0, G0) as in (2.4). But for this we would need

some “effective information” about the pair (F0, G0) that is not provided

by our method of proof.

We illustrate more concretely the problems that arise by considering a

special case. Let S = {p1, . . . , pt} be a finite set of primes. Consider binary

forms

(2.5) F = X(X − a1Y )(X − a2Y ), G = Y (b1X − Y )(b2X − Y ),
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where a1, a2, b1, b2 ∈ Z, a1 > 0, a2, b1, b2 6= 0, a1 6= a2, b1 6= b2. These

constraints on a1, a2, b1, b2 imply that any two distinct pairs of binary forms

of type (2.5) are ZS-inequivalent. We have

(2.6) R(F,G) = −
2∏
i=1

2∏
j=1

(1− aibj).

We consider

(2.7) R(F,G) ∈ Z∗
S in binary forms of type (2.5).

From (2.6), (2.7) it follows that

(2.8) εij := 1− aibj ∈ Z∗
S for i, j = 1, 2.

Further,

(2.9)

∣∣∣∣∣∣∣
1 1 1

1 ε11 ε12

1 ε21 ε22

∣∣∣∣∣∣∣ = 0.

Lemma 3.3 in Section 3 of the present paper gives an explicit upper bound

for the number of solutions ε11, ε12, ε21, ε22 ∈ Z∗
S of (2.9) such that

(2.10) each 2× 2-subdeterminant of the left-hand side is 6= 0.

Notice that this is satisfied by the numbers of the type (2.8).

Let ε11, ε12, ε21, ε22 ∈ Z ∩ Z∗
S be any solution of (2.9),(2.10). Define the

quantities

b′1 := ±gcd(1− ε11, 1− ε21), a
′
1 :=

1− ε11

b′1
, a′2 :=

1− ε21

b′1
, b′2 :=

1− ε12

a′1
,

where we choose the sign of b′1 such that a′1 > 0. Then a′1, a
′
2, b

′
1 ∈ Z and

moreover b′2 ∈ Z since a′1/a
′
2 = (1− ε11)/(1− ε21) = (1− ε12)/(1− ε22) and

gcd(a′1, a
′
2) = 1. Further, ε11 = 1 − a′1b

′
1, ε21 = 1 − a′2b

′
1, ε12 = 1 − a′1b

′
2,

ε22 = 1− a′2b
′
2.

If we require that F be ZS-minimal then gcd(a1, a2) = 1. In that case

we have a1 = a′1, a2 = a′2, b1 = b′1, b2 = b′2 and so a1, a2, b1, b2 are uniquely

determined by ε11, ε12, ε21, ε22. Thus, we obtain an explicit upper bound for

the number of solutions (F,G) of (2.7) for which F is ZS-minimal.
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If we do not require that F be ZS-minimal, we obtain for every solution

ε11, ε21, ε12, ε22 ∈ Z ∩ Z∗
S of (2.9), (2.10) and every positive divisor d of

gcd(b′1, b
′
2) = gcd(1− ε11, 1− ε21, 1− ε12, 1− ε22)

a solution (F,G) of (2.7), given by

a1 = da′1, a2 = da′2, b1 = b′1/d, b2 = b′2/d.

Thus, to obtain an explicit upper bound for the total number of solutions

(F,G) of (2.7), we need for every solution ε11, ε12, ε21, ε22 ∈ Z∗
S ∩ Z of (2.9)

an explicit upper bound for the number of divisors of the quantity

gcd(1− ε11, 1− ε21, 1− ε12, 1− ε22). We have no clue how to determine such

a bound.

3. Auxiliary results

Let (C∗)N be the N -fold direct product of C∗ with coordinatewise mul-

tiplication (x1, . . . , xN)(y1, . . . , yN) = (x1y1, . . . , xNyN). We say that a sub-

group Γ of (C∗)N has rank r if Γ has a free subgroup Γ0 of rank r such that

for every u ∈ Γ there is s ∈ Z>0 with us ∈ Γ0.

Lemma 3.1. Let Γ be a subgroup of (C∗)N of rank r and a1, . . . , aN ∈ C∗.

Then the equation

(3.1) a1x1 + · · ·+ aNxN = 1 in x = (x1, . . . , xN) ∈ Γ

has at most e(6N)3N (r+1) solutions with

(3.2)
∑
i∈I

aixi 6= 0 for each non-empty subset I of {1, . . . , N} .

Proof. See Evertse, Schlickewei, and Schmidt [10, Theorem 1.1]. �

For N = 2, the following lemma gives a sharper result.

Lemma 3.2. Let N = 2 and let Γ, a1, a2 be as in Lemma 3.1. Then the

equation (3.1) has at most

28(r+2)

solutions.



12 A. BÉRCZES, J.-H. EVERTSE, AND K. GYŐRY

Proof. This is an immediate consequence of Theorem 1.1 of Beukers and

Schlickewei [5]. �

Lemma 3.3. For i, j = 1, 2, let Γij be a subgroup of C∗ of rank r. Then

the equation

(3.3)

∣∣∣∣∣∣∣
1 1 1

1 x11 x12

1 x21 x22

∣∣∣∣∣∣∣ = 0 in xij ∈ Γij for i, j = 1, 2

has at most e3015(4r+2) solutions such that

(3.4) each 2× 2-subdeterminant of the left-hand side of (3.3) is 6= 0.

Proof. This can be proved by going through the proof of Evertse, Győry,

Stewart, Tijdeman [9, Theorem 1], see also Bérczes [1]. By expanding

(3.3) we obtain

(3.5) x11x22 − x12x21 + x21 − x22 + x12 − x11 = 0.

Notice that the summands of (3.5) lie in the group generated by −1,Γ11,Γ12,

Γ21,Γ22, which has rank at most 4r. We have to consider all partitions of the

left-hand side of (3.5) into minimal vanishing subsums and apply Lemma

3.1 to each subsum. We consider only two cases; the other cases can be

dealt with in a similar way following [9].

First, we consider the solutions of (3.3), (3.4) such that no proper subsum

of the left-hand side of (3.5) vanishes. On dividing (3.5) by x11 we obtain

x22 −
x12x21

x11

+
x21

x11

− x22

x11

+
x12

x11

= 1.

By Lemma 3.1 with N = 5, we have at most e30
15(4r+1) possibilities for the

tuple
(
x22,

x12x21

x11
, x21

x11
, x22

x11
, x12

x11

)
. Each such tuple determines uniquely the

tuple (x11, x12, x21, x22). Hence (3.3), (3.4) have at most e30
15(4r+1) solutions

such that no proper subsum of the left-hand side of (3.5) vanishes.

Next, we consider those solutions of (3.3), (3.4) for which

(3.6) x11x22 − x12x21 + x21 = 0, −x22 + x12 − x11 = 0
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and no proper subsum of any of these sums vanishes. By dividing the first

sum by x21 and the second sum by x11 we obtain

x12 −
x11x22

x21

= 1,
x12

x11

− x22

x11

= 1.

By Lemma 3.1 we have at most

(e126(4r+1))2 <
1

200
e30

15(4r+1)

possibilities for the tuple (x12,
x11x22

x21
, x12

x11
, x22

x11
). This tuple determines unique-

ly the tuple (x11, x12, x21, x22). Hence (3.3), (3.4) have at most 1
200
e30

15(4r+1)

solutions such that (3.6) holds, and no proper subsum of the sums in (3.6)

vanishes.

Following [9] one can show that each other partition of (3.5) into mini-

mal vanishing subsums also gives rise to at most 1
200
e30

15(4r+1) solutions of

(3.3), (3.4). The total number of partitions of (3.5) into minimal vanishing

subsums is at most
(
6
2

)
+
(
6
3

)
+
(
6
2

)(
4
2

)
= 125 (we are very generous here).

Hence the total number of solutions of (3.3), (3.4) is at most(
1 +

125

200

)
e3015(4r+1) < e30

15(4r+2).

�

4. Proof of Theorem 2.1

We shall deduce Theorem 2.1 from the following.

Lemma 4.1. Let m,n be integers with m ≥ 2, n ≥ 2 and m + n ≥ 5. For

i = 1, . . . ,m, j = 1, . . . , n, let Γij be subgroups of C∗ of rank at most r. If

(x1, . . . , xm, y1, . . . , yn) runs through the tuples in Cm+n for which

(4.1)

{
xi − yj ∈ Γij for 1 ≤ i ≤ m, 1 ≤ j ≤ n,

x1, . . . , xm, y1, . . . , yn are pairwise distinct,

then the mn-tuple
(
xi−yj

x1−y1

)
i=1,...,m
j=1,...,n

runs through a set of cardinality at most

(4.2) 3 · 224(r+1)(m+n−4)e18
9(4r+1).
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Proof. We proceed by induction on m+n. First suppose that m = 2, n = 3.

Let (x1, x2, y1, y2, y3) ∈ C5 be a tuple with (4.1). For 1 ≤ j < k ≤ 3,

consider the identity

(4.3) (x1 − yj) + (yj − x2) + (x2 − yk) + (yk − x1) = 0.

It is easily seen that the 4-terms sum on the left-hand side of (4.3) can have

a vanishing subsum for at most one pair (j, k). We may assume that for

(j, k) = (1, 2) and (1, 3) there is no vanishing subsum on the left-hand side.

For (j, k) = (1, 2), identity (4.3) gives

(4.4)
x2 − y1

x1 − y1

− x2 − y2

x1 − y1

+
x1 − y2

x1 − y1

= 1.

Notice that the summands of (4.4) belong to the group generated by−1,Γ11,

Γ12,Γ21,Γ22 which has rank at most 4r. Hence, by Lemma 3.1, there are

at most C1 = e189(4r+1) possibilities for the tuple
(
x2−y1
x1−y1 ,

x2−y2
x1−y1 ,

x1−y2
x1−y1

)
. If

we fix x2−y1
x1−y1 and set a1 = x1−y1

x1−x2
, a2 = −a1, then we infer from (4.3) with

(j, k) = (1, 3) that

(4.5) a1
x1 − y3

x1 − y1

+ a2
x2 − y3

x1 − y1

= 1.

By Lemma 3.2 there are at most C2 = 28(3r+3) possibilities for the tuple(
x1−y3
x1−y1 ,

x2−y3
x1−y1

)
. This proves the assertion for m + n = 5 with the bound

3C1C2.

Consider now the case m + n > 5. We may assume without loss of

generality that n ≥ 3. Suppose that Lemma 4.1 has already been proved

for m + n − 1. This means that if (x1, . . . , xm, y1, . . . , yn−1) runs through

the tuples in Cm+n−1 with (4.1), then the tuple
(
xi−yj

x1−y1

)
i=1,...,m
j=1,...,n

runs through

a set of cardinality at most 3C1C
m+n−5
2 . Fix such a tuple

(
xi−yj

x1−y1

)
with

1 ≤ i ≤ m, 1 ≤ j ≤ n − 1. Then x1−x2

x1−y1 is uniquely determined. Then we

get again equation (4.5), but with yn instead of y3, and we infer as above

that there are at most C2 possibilities for the tuple
(
x1−yn

x1−y1 ,
x2−yn

x1−y1

)
. If such

a tuple is fixed, then xi−yn

x1−y1 is uniquely determined for each i > 2. Hence

the set of tuples under consideration
(
xi−yj

x1−y1

)
with 1 ≤ i ≤ m, 1 ≤ j ≤ n is

of cardinality at most 3C1C
m+n−4
2 which proves our assertion. �
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Proof of Theorem 2.1. We view K1, . . . , Ku, L1, . . . , Lv as subfields of C.

For i = 1, . . . , u, let σij (j = 1, . . . , [Ki : Q]) be the embeddings of Ki

in C, and let K1, . . . , Km be the sequence of fields consisting of σij(Ki)

(i = 1, . . . , u, j = 1, . . . , [Ki : Q]). Likewise, we augment L1, . . . , Lv to a

sequence of fields L1, . . . , Ln. Denote by T the set of primes consisting of

p1, . . . , pt and the distinct prime factors of c. For i = 1, . . . ,m, j = 1, . . . , n,

let Γij be the unit group of the integral closure of ZT in the composi-

tum KiLj of Ki and Lj. Then Γij is a subgroup of C∗ of rank at most

mn(t+ ω(c) + 1)− 1.

Let F,G be any pair of binary forms with coefficients in ZS satisfying

(1.1) and the other conditions of Theorem 2.1. Then

F (X, Y ) =
m∏
i=1

(X − αiY ), G(X, Y ) =
n∏
j=1

(X − βjY )

where αi ∈ Ki for i = 1, . . . ,m, βj ∈ Lj for j = 1, . . . , n, the numbers

α1, . . . , αm, β1, . . . , βn are pairwise distinct, and

R(F,G) =
m∏
i=1

n∏
j=1

(βj − αi) ∈ Z∗
T .

This implies that αi−βj ∈ Γij for i = 1, . . . ,m, j = 1, . . . , n. So by Lemma

4.1 and the fact that each group Γij has rank at most mn(t+ω(c) + 1)− 1,

the mn-tuple
(
αi−βj

α1−β1
: 1 ≤ i ≤ m, 1 ≤ j ≤ n

)
belongs to a set independent

of F,G of cardinality at most C, where C denotes the quantity obtained by

substituting mn(t+ ω(c) + 1)− 1 for r in the bound in (4.2).

It follows from (1.1) that

(4.6) R(F,G) = ρmn1 ρ0c

where ρ1, ρ0 ∈ Z∗
S and where ρ0 may assume at most 2(mn)t distinct values.

Any choice of ρ0 and a tuple
(
αi−βj

α1−β1
: 1 ≤ i ≤ m, 1 ≤ j ≤ n

)
determines

uniquely the tuple
(
αi/ρ1−βj/ρ1
α1/ρ1−β1/ρ1

)
with 1 ≤ i ≤ m, 1 ≤ j ≤ n and, by (4.6),

also the number (α1/ρ1−β1/ρ1)
mn. This leaves at most mn possibilities for

α1/ρ1 − β1/ρ1. Then any choice of α1/ρ1 − β1/ρ1 determines uniquely the

numbers αi/ρ1 − βj/ρ1 and βj/ρ1 − β1/ρ1 (i = 1, . . . ,m, j = 1, . . . , n).
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By combining the above we obtain that there is a set V of cardinality at

most 2(mn)t+1C with the following property: if (F,G) is any pair of binary

forms satisfying (1.1) and the conditions of Theorem 2.1, then there are

ρ1 ∈ Z∗
S and an ordering of the zeros α1, . . . , αm, β1, . . . , βn of F , G, such

that (αi/ρ1 − β1/ρ1, βj/ρ1 − β1/ρ1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n) ∈ V .

If now F ′, G′ is another pair of binary forms in ZS[X,Y ] with (1.1) whose

zeros, say α′1, . . . , α
′
m, β

′
1, . . . , β

′
n yield for some ρ′1 ∈ Z∗

S the same tuple(
α′i/ρ

′
1 − β′1/ρ

′
1, β

′
j/ρ

′
1 − β′1/ρ

′
1 : 1 ≤ i ≤ m, 1 ≤ j ≤ n

)
, then

α′i = ραi + b and β′j = ρβj + b

hold for i = 1, . . . ,m and j = 1, . . . , n where ρ ∈ Z∗
S and where b is integral

over ZS. Using α1 + · · · + αm ∈ Q, β1 + · · · + βn ∈ Q we infer that b ∈ Q.

Consequently, b ∈ ZS. This means that the pairs (F ′, G′) and (F,G) are

strongly ZS-equivalent.

It follows that the pairs of binary forms (F,G) satisfying (1.1) and the

conditions of Theoren 2.1 lie in the union of at most

2(mn)t+1C = 2(mn)t+1 · 3 · 224mn(t+ω(c)+1)(m+n−4)e18
9(4mn(t+ω(c)+1)−3)

≤ e17(m+n+1011)mn(t+ω(c)+1)

strong ZS-equivalence classes. This completes the proof of Theorem 2.1. �

5. Augmented forms

In the proof of Theorem 2.2 it will be more convenient to work with so-

called augmented forms F ∗, which are tuples consisting of a binary form F

and the zeros of F on the projective line.

Let K be a field and P1(K) := {(ξ : η) : ξ, η ∈ K, (ξ, η) 6= (0, 0)} the

projective line over K where (ξ : η) = (ξ′ : η′) if and only if (ξ′, η′) = λ(ξ, η)

for some λ ∈ K∗. The projective transformation of P1(K) defined by a

matrix A =
(
a b
c d

)
∈ GL2(K) is given by 〈A〉 : (ξ : η) 7→ (aξ + bη : cξ + dη).

Clearly, two matrices define the same projective transformation if and only

if they are proportional.

Let Ω be a domain with quotient field K of characteristic 0. Choose an

algebraic closure K of K. By an augmented binary form of degree m over
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Ω we mean a tuple

F ∗ = (F, (β1 : α1), . . . , (βm : αm)),

where F is a binary form in Ω[X, Y ], and (β1 : α1), . . . , (βm : αm) are distinct

points in P1(K), such that F = λ
∏m

i=1(αiX − βiY ) for some λ ∈ K
∗
. So

it is part of the definition that F does not have multiple factors. We define

degF ∗ := degF = m. We denote by A(Ω,m) the collection of augmented

forms of degree m over Ω. We write F ∗ = (F, . . .) if F is the binary form

corresponding to F ∗.

Given F ∗ = (F, (β1 : α1), . . . , (βm : αm)) ∈ A(Ω,m), ε ∈ Ω∗, U =
(
a b
c d

)
∈

GL2(Ω), we define

εF ∗
U =

(
εFU , 〈U−1〉(β1 : α1), . . . , 〈U−1〉(βm : αm)

)
.

Then again, εF ∗
U ∈ A(Ω,m). Two augmented forms F ∗

1 , F
∗
2 ∈ A(Ω,m)

are called Ω-equivalent if F ∗
2 = ε(F ∗

1 )U for some ε ∈ Ω∗ and U ∈ GL2(Ω).

Two pairs (F ∗
1 , G

∗
1), (F

∗
2 , G

∗
2) ∈ A(Ω,m) × A(Ω, n) are called Ω-equivalent

if F ∗
2 = ε(F ∗

1 )U , G∗
2 = η(G∗

1)U for some ε, η ∈ Ω∗ and U ∈ GL2(Ω).

Denote by GK the Galois group of K over K and for σ ∈ GK , (ξ : η) ∈
P1(K) define σ((ξ : η)) := (σ(ξ) : σ(η)). If F ∗ = (F, (β1 : α1), . . . , (βm :

αm)) ∈ A(Ω,m), then every σ ∈ GK permutes (β1 : α1), . . . , (βm : αm). By

a GK-action on {1, . . . ,m} we mean a group homomorphism from GK to

the permutation group of {1, . . . ,m}. Given a GK-action ϕ of {1, . . . ,m},
we denote by A(Ω, ϕ) the collection of augmented forms of degree m over

Ω,

F ∗ = (F, (β1 : α1), . . . , (βm : αm)),

such that

σ(βi : αi) = (βϕ(σ)(i) : αϕ(σ)(i)) for σ ∈ GK , i = 1, . . . ,m.

It is easy to check that A(Ω, ϕ) is closed under Ω-equivalence, and that

for any two actions ϕ on {1, . . . ,m}, ψ on {1, . . . , n}, A(Ω, ϕ)×A(Ω, φ) is

closed under Ω-equivalence.

A binary form F ∈ Ω[X, Y ] is called Ω-primitive if the ideal generated

by its coefficients is equal to Ω. We call F Ω-minimal if there are no binary
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form G ∈ Ω[X, Y ] and matrix A ∈ NS2(Ω) \ GL2(Ω) such that F = GA.

(These notions are meaningless if Ω is a field.)

We start with a useful lemma.

Lemma 5.1. Let K be a field of characteristic 0, K an algebraic closure of

K and L an extension of K. Further let m ≥ 3 and let ϕ be a GK-action

on {1, . . . ,m}. Lastly, let F ∗
1 , F

∗
2 ∈ A(K,ϕ), and suppose that there are

A ∈ GL2(L), λ ∈ L∗ such that

F ∗
2 = λ(F ∗

1 )A.

(i). Let A′ ∈ GL2(L), λ′ ∈ L∗ be any other pair with F ∗
2 = λ′(F ∗

1 )A′. Then

A′ = µA for some µ ∈ L∗.

(ii).There are B ∈ GL2(K), ν ∈ L∗ such that A = νB.

Proof. (i) Write F ∗
i = (Fi, (βi1 : αi1), . . . , (βim : αim)) for i = 1, 2. By as-

sumption, m ≥ 3 and 〈A−1〉(β1j : α1j) = (β2j : α2j), 〈A′−1〉(β1j : α1j) =

(β2j : α2j) for j = 1, . . . ,m. Since a projective transformation of the projec-

tive line is uniquely determined by its action on three points, this implies

〈A−1〉 = 〈A′−1〉, hence A′ = µA for some µ ∈ L∗.

(ii) Since (βij : αij) ∈ P1(K) for i = 1, 2, j = 1, . . . ,m, the projective

transformation 〈A−1〉 is defined over K. This implies that there are ν ∈ L∗,

B ∈ GL2(K) such that A = νB. Without loss of generality we assume that

one of the entries of B is equal to 1. For σ ∈ GK , denote by σ(B) the

matrix obtained by applying σ to the entries of B. Then for σ ∈ GK we

have 〈σ(B)−1〉σ(βi1 : αi1) = σ(βi2 : αi2) for i = 1, . . . ,m and this implies

〈σ(B)−1〉(βi1 : αi1) = (βi2 : αi2) for i = 1, . . . ,m since σ(βij : αij) =

(βi,ϕ(σ)(j) : αi,ϕ(σ)(j)) for i = 1, 2, j = 1, . . . ,m, σ ∈ GK . Hence for each

σ ∈ GK there is κσ ∈ K
∗

such that σ(B) = κσB. But one of the entries of

B is equal to 1, so σ(B) = B for σ ∈ GK . Therefore, B ∈ GL2(K). �

We now formulate a proposition for augmented forms over ZS and then

deduce Theorem 2.2 from this. As before, S = {p1, . . . , pt} is a finite,

possibly empty set of primes, and c a positive integer coprime with the

primes in S. The condition (5.2) below has been inserted for technical

convenience.
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Proposition 5.2. Let m ≥ 3, n ≥ 3. Let ϕ be a GQ-action on {1, . . . ,m}
and ψ a GQ-action on {1, . . . , n}. Then the set of pairs of augmented forms

F ∗ = (F, . . .), G∗ = (G, . . .) such that

F ∗ ∈ A(ZS, ϕ), G∗ ∈ A(ZS, ψ),(5.1)

F,G are ZS-primitive,(5.2)

F is ZS-minimal,(5.3)

R(F,G) ∈ cZ∗
S(5.4)

is contained in the union of at most

e1024(m+n)mn(t+1)2ω(c) ·
∏
p|c

(
ordp(c) +mn

mn

)
ZS-equivalence classes.

Proposition 5.2 will be proved in Sections 6 to 8.

Proof of Theorem 2.2. Let K1, . . . , Ku be one of the sequences of fields from

Theorem 2.2. By assumption,
∑u

i=1[Ki : Q] = m. For i = 1, . . . , u denote

by σij (j = 1, . . . ,mi := [Ki : Q]) the isomorphisms of Ki into Q. Pick ξi
with Q(ξi) = Ki for i = 1, . . . , u, such that the elements of the sequence

(η1, . . . , ηm) := (σ11(ξ1), . . . , σ1,m1(ξ1), σ21(ξ2), . . . , σ2,m2(ξ2), . . . ,

σu1(ξu), . . . , σu,mu(ξu))

are distinct. Then every σ ∈ GQ permutes (η1, . . . , ηm). We define an action

ϕ on {1, . . . ,m} by requiring that

σ(ηk) = ηϕ(σ)(k) for σ ∈ GQ, k = 1, . . . ,m.

Now let F ∈ ZS[X,Y ] be a binary form without multiple factors associ-

ated with K1, . . . , Ku. Then F can be expressed as

F (X, Y ) = λ
u∏
i=1

mi∏
j=1

(σij(θi)X − σij(ζi)Y )

where θi, ζi ∈ Ki for i = 1, . . . , u and λ ∈ Q∗. Define the augmented form

F ∗ :=
(
F, (β1 : α1), . . . , (βm : αm)

)
,
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where (β1 : α1), . . . , (βm : αm) is the sequence of points in P1(Q),

(
σ11(ζ1) : σ11(θ1)

)
, . . . ,

(
σ1,m1(ζ1) : σ1,m1(θ1)

)
, . . . ,(

σu1(ζu) : σu1(θu)
)
, . . . ,

(
σu,mu(ζu) : σu,mu(θu)

)
.

Clearly, σ(βi : αi) = (βϕ(σ)(i) : αϕ(σ)(i)) for σ ∈ GQ, i = 1, . . . ,m. Thus,

we have defined an action ϕ on {1, . . . ,m} depending only on K1, . . . , Ku,

and every binary form F ∈ ZS[X, Y ] without multiple factors associated

with K1, . . . , Ku can be extended to an augmented form F ∗ ∈ A(ZS, ϕ).

Completely similarly, we can construct an action ψ on {1, . . . , n} from the

sequence of fields L1, . . . , Lv, and extend every binary form G ∈ ZS[X, Y ]

without multiple factors associated with L1, . . . , Lv to an augmented form

G∗ ∈ A(ZS, ψ).

For the moment we consider pairs of binary forms (F,G) in ZS[X, Y ]

which satisfy the conditions of Theorem 2.2 and in addition are ZS-primitive.

From the definitions it is clear that the corresponding pairs (F ∗, G∗) con-

structed above satisfy (5.1)–(5.4). Further, if two pairs of augmented forms

are ZS-equivalent, then so are the corresponding pairs of binary forms. With

these observations, it follows at once that the pairs of binary forms (F,G)

which satisfy the conditions of Theorem 2.2 and which are ZS-primitive

lie in the union of at most N(c) ZS-equivalence classes, where N(c) is the

upper bound from Proposition 5.2.

Now let (F,G) be a pair of binary forms in ZS[X, Y ] satisfying the con-

ditions of Theorem 2.2 which are not both ZS-primitive. Write F = d1F
′,

G = d2G
′ where d1, d2 are positive integers coprime with the primes in S

and where both F ′, G′ are ZS-primitive. Then by (2.1), dn1d
m
2 divides c and

the pair (F ′, G′) satisfies all conditions of Theorem 2.2 but with c/dn1d
m
2 in-

stead of c. It follows that the set of pairs of binary forms (F,G) in ZS[X, Y ]
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satisfying the conditions of Theorem 2.2 is contained in the union of at most∑
d1,d2: dn

1 d
m
2 |c

N(c/dn1d
m
2 )

≤ e1024(m+n)mn(t+1)2ω(c)
∏
p|c

∑
u,v

(
ordp(c)− nu−mv +mn

mn

)

≤ e1024(m+n)mn(t+1)2ω(c)
∏
p|c

(
ordp(c) +mn+ 2

mn+ 2

)
ZS-equivalence classes, where the summation is over all pairs of non-negative

integers u, v such that nu + mv ≤ ordp(c). This completes the proof of

Theorem 2.2. �

6. Local-to-global arguments

For a prime number p, let Qp denote the completion of Q at p, Qp an

algebraic closure of Qp, Zp ⊂ Qp the ring of p-adic integers, and Zp the

integral closure of Zp in Qp. By | · |p we denote the standard p-adic absolute

value with |p|p = 1
p
, extended to Qp. As before, S = {p1, . . . , pt} is a finite,

possibly empty set of set of primes.

Lemma 6.1. Let m ≥ 3, n ≥ 3, ϕ a GK-action on {1, . . . ,m}, ψ a

GK-action on {1, . . . , n}, F ∗
1 , F

∗
2 ∈ A(ZS, ϕ), G∗

1, G
∗
2 ∈ A(ZS, ψ). Then

(F ∗
1 , G

∗
1) is ZS-equivalent to (F ∗

2 , G
∗
2) if and only if (F ∗

1 , G
∗
1) is Zp-equivalent

to (F ∗
2 , G

∗
2) for every prime p 6∈ S.

Proof. The only-if part is obvious. To prove the if-part, assume that (F ∗
1 , G

∗
1)

is Zp-equivalent to (F ∗
2 , G

∗
2) for every prime p 6∈ S. This means that for every

prime p 6∈ S, there are Up ∈ GL2(Zp), εp, ηp ∈ Z∗
p such that

(6.1) F ∗
2 = εp(F

∗
1 )Up , G

∗
2 = ηp(G

∗
1)Up .

We may assume that we have inclusions Q ⊂ Qp ⊂ Qp and Q ⊂ Q ⊂ Qp.

Apply Lemma 5.1, (ii) with K = Q, L = Qp. Thus, there are λp ∈ Q∗
p

and Ũp ∈ GL2(Q) such that Up = λpŨp. Without loss of generality, we

may assume that the entries of Ũp are integers in Z with gcd 1. Since
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Up ∈ GL2(Zp), this implies that λp ∈ Z∗
p. Together with (6.1) this gives

F ∗
2 = ε̃p(F

∗
1 )Ũp

, G∗
2 = η̃p(G

∗
1)Ũp

with ε̃p, η̃p ∈ Q ∩ Z∗
p, Ũp ∈ GL2(Q) ∩GL2(Zp).

(6.2)

By Lemma 5.1, (i), the matrices Ũp (p 6∈ S) are proportional. Since we

assumed that the entries of Ũp have gcd 1, the matrices Ũp (p 6∈ S) are

equal up to sign. Hence there are Ũ ∈ NS2(Z) and ε̃, η̃ ∈ Q∗ such that

F ∗
2 = ε̃(F ∗

1 )Ũ , G
∗
2 = η̃(G∗

1)Ũ ,

and Ũ = ±Ũp, ε̃ = ±ε̃p, η̃ = ±η̃p for every prime p 6∈ S. But then,

det Ũ = det Ũp ∈ Z∗
p for every prime p 6∈ S, and therefore det Ũ ∈ Z∗

S and

Ũ ∈ GL2(ZS). Likewise, ε̃, η̃ ∈ Z∗
p for every prime p 6∈ S which implies

ε̃, η̃ ∈ Z∗
S. This proves Lemma 6.1. �

Lemma 6.2. Let F ∈ ZS[X,Y ] be a binary form. Then F is ZS-minimal

if and only if F is Zp-minimal for every prime p 6∈ S.

Proof. If F is not ZS-minimal, then there is a matrix A ∈ NS2(ZS) with

A 6∈ GL2(ZS) such that FA−1 ∈ ZS[X, Y ]. There is a prime p 6∈ S such that

A 6∈ GL2(Zp), while FA−1 ∈ Zp[X, Y ]. Hence F is not Zp-minimal.

Now assume that F is not Zp-minimal for some prime p 6∈ S. We have to

prove that F is not ZS-minimal. By assumption, there are a binary form

G ∈ Zp[X, Y ] and a matrix A ∈ NS2(Zp) \GL2(Zp) such that F = GA. We

have A = UB, where U ∈ GL2(Zp) and B =
(
pθ1 b

0 pθ2

)
with θ1, θ2 ∈ Z≥0 and

b ∈ Z. LetH := GU . Then F = HB. The binary formH belongs to Q[X,Y ]

since B ∈ GL2(Q). Further, H ∈ Zp[X, Y ] since H is Zp-equivalent to G,

and for every prime q 6∈ S ∪ {p} we have H ∈ Zq[X, Y ] since B ∈ GL2(Zq).

Hence H ∈ ZS[X,Y ]. This shows that indeed F is not ZS-minimal. �

7. Equivalence over the algebraic closure

Let S = {p1, . . . , pt} be a finite set of primes, Q an algebraic closure of Q
and ZS the integral closure of ZS in Q. By a finitely generated ZS-fractional

ideal we mean a finitely generated ZS-submodule of Q. The non-zero finitely
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generated ZS-fractional ideals form a group under multiplication. Those ZS-

fractional ideals generated by finitely many elements from a number field K

form a subgroup. Every finitely generated ZS-fractional ideal is principal.

We denote by [a1, . . . , ar] the fractional ZS-ideal generated by a1, . . . , ar. For

a polynomial P with coefficients in Q we denote by [P ] the ZS-fractional

ideal generated by the coefficients of P .

In this section we estimate the number of Q-equivalence classes containing

the pairs of augmented forms with (5.1)–(5.4). In fact, we prove slightly

more and we use this in Section 8 to complete the proof of Proposition 5.2.

We introduce some notation. Let m ≥ 3, n ≥ 3, let ϕ be a GQ-action on

{1, . . . ,m} and ψ a GQ-action on {1, . . . , n}. Let

(7.1) F ∗ = (F, (β1 : α1), . . . , (βm : αm)), G∗ = (G, (δ1 : γ1), . . . , (δn : γn))

be a pair of augmented forms with (5.1)–(5.4). Thus,

(7.2) F = λ
m∏
i=1

(αiX − βiY ), G = µ
n∏
j=1

(γjX − δjY )

where λ, µ, αi, βi, γj, δj ∈ Q∗
.

We define the ZS-fractional ideals

(7.3) dij(F
∗, G∗) :=

[αiδj − βiγj]

[αi, βi] · [γj, δj]
(i = 1, . . . ,m, j = 1, . . . , n)

and the numbers

θi1,i2;j1,j2(F
∗, G∗) :=

(αi1δj1 − βi1γj1)(αi2δj2 − βi2γj2)

(αi1δj2 − βi1γj2)(αi2δj1 − βi2γj1)
(7.4)

(i1, i2 ∈ {1, . . . ,m}, j1, j2 ∈ {1, . . . , n}).

Both these fractional ideals and these numbers are independent of the choice

of λ, µ and the αi, βi, γj, δj.

Since [αiδj − βiγj] ⊆ [αi, βi] · [γj, δj] we have dij(F
∗, G∗) ⊆ ZS, i.e.,

dij(F
∗, G∗) is a finitely generated ideal of ZS.
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By applying Gauss’ Lemma to (7.2) and using our assumption (5.2) we

obtain

(7.5) [λ]
m∏
i=1

[αi, βi] = [F ] = [1], [µ]
n∏
j=1

[γj, δj] = [G] = [1]

while by (2.1), (5.4) we have

[R(F,G)] = [λ]n[µ]m
m∏
i=1

n∏
j=1

[αiδj − βiγj] = [c].

Hence

(7.6)
m∏
i=1

n∏
j=1

dij(F
∗, G∗) = [c].

We have some freedom to choose λ, µ and the αi, βi, γj, δj in (7.2). By

our assumption (5.1) we can choose these numbers such that

(7.7)


λ, µ ∈ Q∗,

σ(αi) = αϕ(σ)(i), σ(βi) = βϕ(σ)(i), for σ ∈ GQ, i = 1, . . . ,m,

σ(γj) = γψ(σ)(j), σ(δj) = δψ(σ)(j), for σ ∈ GQ, j = 1, . . . , n.

For the moment we keep this choice; later we will make another choice.

We prove the following lemma:

Lemma 7.1. If (F ∗, G∗) runs through the pairs of augmented forms with

(5.1)–(5.4), then the tuple (dij(F
∗, G∗) : i = 1, . . . ,m, j = 1, . . . , n) runs

through a collection of cardinality at most∏
p|c

(
ordp(c) +mn

mn

)
.

Proof. GQ acts on {1, . . . ,m}×{1, . . . , n} by means of ϕ×ψ which is given

by (ϕ × ψ)(σ)(i, j) = (ϕ(σ)(i), ψ(σ)(j)) for σ ∈ GQ, i = 1, . . . ,m, j =

1, . . . , n. Let C1, . . . , Cu be the orbits of {1, . . . ,m} × {1, . . . , n} under this

action and choose a representative (iw, jw) ∈ Cw for w = 1, . . . , u. Further,

define the field Mw by

(7.8) Gal(Q/Mw) = {σ ∈ GQ : ϕ(σ)(iw) = iw, ψ(σ)(jw) = jw}.
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Let (F ∗, G∗) be a pair with (5.1)–(5.4). Then by (7.7),

σ(dij(F
∗, G∗)) = dϕ(σ)(i),ψ(σ)(j)(F

∗, G∗)

for σ ∈ GQ, i = 1, . . . ,m, j = 1, . . . , n. Hence the tuple (dij(F
∗, G∗) : i =

1, . . . ,m, j = 1, . . . , n) is determined by the tuple (diwjw(F ∗, G∗) : w =

1, . . . , u). Further, by (7.7) diwjw(F ∗, G∗) is generated by elements from

Mw, and the conjugates of diwjw(F ∗, G∗) over Q are precisely the ideals

dij(F
∗, G∗) with (i, j) ∈ Cw. Thus, we can rewrite (7.6) as

(7.9)
u∏

w=1

NMw/Q(dw) = [c],

where dw is the ideal in the integral closure of ZS in Mw, determined by

diwjw(F ∗, G∗) = dwZS for w = 1, . . . , u.

Let p be a prime with p | c. Let pw1, . . . , pw,g(w) be the prime ideals of Mw

above p and fw1, . . . , fw,g(w) their respective residue class degrees. Let xwj
(j = 1, . . . , g(w)) be the exponent of pwj in the prime ideal factorization of

dw. Then the exponent of p in the prime number factorization of NMw/Q(dw)

is
∑g(w)

j=1 fwjxwj. So by (7.9)

u∑
w=1

g(w)∑
j=1

fwjxwj = ordp(c).

Let x(p) := (xwj : w = 1, . . . , u, j = 1, . . . , g(w)). Then x(p) consists of∑u
w=1 g(w) ≤

∑u
w=1[Mw : Q] =

∑u
w=1 #Cw = mn non-negative integers and

moreover,
u∑

w=1

g(w)∑
j=1

xwj ≤ ordp(c).

Hence for x(p) there are at most(
ordp(c) +

∑u
w=1 g(w)∑u

w=1 g(w)

)
≤
(

ordp(c) +mn

mn

)
=: Np

possibilities.

The tuples x(p) (p | c) determine the ideals dw, hence also diwjw(F ∗, G∗)

(w = 1, . . . , u). So by what was explained above, they determine the ideals

dij(F
∗, G∗) (i = 1, . . . ,m, j = 1, . . . , n) as well. This implies that if (F ∗, G∗)
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runs through all pairs with (5.1)–(5.4), then the tuple (dij(F
∗, G∗) : i =

1, . . . ,m, j = 1, . . . , n) runs through a collection of cardinality at most∏
p|cNp. �

We fix a tuple (dij : i = 1, . . . ,m, j = 1, . . . , n) of ideals of ZS, and

consider the set

I({dij})
consisting of the pairs (F ∗, G∗) that satisfy (5.1)–(5.4) and for which

(7.10) dij(F
∗, G∗) = dij for i = 1, . . . ,m, j = 1, . . . , n.

Lemma 7.2. For each i1, i2 ∈ {1, . . . ,m} with i1 6= i2 and j1, j2 ∈ {1, . . . , n}
with j1 6= j2, there is a subgroup Γi1,i2;j1,j2 of rank at most

(7.11) 4mn(t+ 1)− 3

such that for every pair (F ∗, G∗) ∈ I({dij}) we have

(7.12) θi1,i2;j1,j2(F
∗, G∗) ∈ Γi1,i2;j1,j2 .

Proof. For i = 1, . . . ,m, j = 1, . . . , n define the number fields Ki, Lj,Mij

by

Gal(Q/Ki) = {σ ∈ GQ : ϕ(σ)(i) = i},
Gal(Q/Lj) = {σ ∈ GQ : ψ(σ)(j) = j},

Gal(Q/Mij) = {σ ∈ GQ : ϕ(σ)(i) = i, ψ(σ)(j) = j}.
Let H be a positive common multiple of the class numbers of these fields.

Assume that the set I({dij}) is non-empty and pick a pair (F ∗, G∗) from

this set. Let αi, βi, γj, δj be as in (7.1), (7.2), (7.7). Then there are λi ∈ Ki,

µi ∈ Lj such that

(7.13) [αi, βi]
H = [λi], [γj, δj]

H = [µj] for i = 1, . . . ,m, j = 1, . . . , n.

By (7.7), the ideal dij is generated by elements from Mij. Hence there are

νij ∈Mij such that

(7.14) dHij = [νij], for i = 1, . . . ,m, j = 1, . . . , n.

Let Γij be the unit group of the integral closure of ZS in Mij. Then

(7.15) rank Γij ≤ [Mij : Q](t+ 1)− 1 ≤ mn(t+ 1)− 1.
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By (7.13), (7.14), (7.10) we have [(αiδj − βiγj)
H/λiµj] = dHij = [νij], hence

(αiδj − βiγj)
H

λiµj
= νijεij with εij ∈ Γij

for i = 1, . . . ,m, j = 1, . . . , n.

(7.16)

Then for i1, i2 ∈ {1, . . . ,m}, j1, j2 ∈ {1, . . . , n} with i1 6= i2, j1 6= j2 we have

(7.17) θi1,i2;j1,j2(F
∗, G∗)H =

(
νi1,j1νi2,j2
νi1,j2νi2,j1

)(
εi1,j1εi2,j2
εi1,j2εi2,j1

)
(note that the terms λi, µj cancel). Hence θi1,i2;j1,j2(F

∗, G∗)H belongs to the

group generated by νi1,j1νi2,j2/νi1,j2νi2,j1 and by Γip,jq (p, q = 1, 2), which has

rank at most 4{mn(t+1)−1}+1 ≤ 4mn(t+1)−3. But then θi1,i2;j1,j2(F
∗, G∗)

belongs to the set of H-th roots of the elements of this group, which is also

a group of rank at most 4mn(t+ 1)− 3. This proves Lemma 7.2. �

Lemma 7.3. Let i1, i2 ∈ {1, . . . ,m}, j1, j2 ∈ {1, . . . , n} with i1 6= i2, j1 6=
j2. Then if (F ∗, G∗) runs through I({dij}), the quantity θi1,i2;j1,j2(F

∗, G∗)

runs through a set of cardinality at most

e3015{16mn(t+1)−11}.

Proof. Pick (F ∗, G∗) ∈ I({dij}), let αi, βi, γj, δj be as in (7.1), (7.2), (7.7),

write θi1,i2;j1,j2 for θi1,i2;j1,j2(F
∗, G∗) and define ∆ij := αiδj − βiγj. Then

θi1,i2;j1,j2 =
∆i1,j1∆i2,j2

∆i1,j2∆i2,j1

.

Choose i3 ∈ {1, . . . ,m} \ {i1, i2}, j3 ∈ {1, . . . , n} \ {j1, j2}. Then∣∣∣∣∣∣∣
∆i1j1 ∆i1j2 ∆i1j3

∆i2j1 ∆i2j2 ∆i2j3

∆i3j1 ∆i3j2 ∆i3j3

∣∣∣∣∣∣∣ = 0

hence

(7.18)

∣∣∣∣∣∣∣
1 1 1

1 θi1,i2;j1,j2 θi1,i2;j1,j3

1 θi1,i3;j1,j2 θi1,i3;j1,j3

∣∣∣∣∣∣∣ = 0.

From the fact that (βi : αi) (i = i1, i2, i3), (δj : γj) (j = j1, j2, j3) are

distinct, it follows that each 2 × 2-subdeterminant is non-zero. Now by
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applying Lemma 3.3 to (7.18), invoking Lemma 7.2, it follows immediately,

that if (F ∗, G∗) runs through I({dij}), then θi1,i2;j1,j2(F
∗, G∗) runs through

a set of cardinality at most

e3015(4{4mn(t+1)−3}+1) = e30
15{16mn(t+1)−11}.

�

We now come to the main result of this section.

Lemma 7.4. There is a collection I ⊂ A(ZS,m)×A(ZS, n) of cardinality

at most

(7.19) e1024(m+n)mn(t+1) ·
∏
p|c

(
ordp(c) +mn

mn

)
with the following property: for every pair (F ∗, G∗) with (5.1)–(5.4), there

are (F ∗
0 , G

∗
0) ∈ I, A ∈ NS2(ZS), and ε, η ∈ Z∗

S, such that

(7.20) F ∗ = ε(F ∗
0 )A, G∗ = η(G∗

0)(detA)−1A.

Proof. Our pair (F ∗
0 , G

∗
0) will depend only on the data

(7.21)


dij(F

∗, G∗) i = 1, . . . ,m, j = 1, . . . , n;

θi,1;2,1(F
∗, G∗) i = 2, . . . ,m;

θ1,2;1,j(F
∗, G∗) j = 2, . . . , n.

where the ideals dij(F
∗, G∗) are given by (7.3) and the numbers

θi1,j1;i2,j2(F
∗, G∗) by (7.4). By Lemmata 7.1, 7.3, if (F ∗, G∗) runs through

all pairs with (5.1)–(5.4), the tuple given by (7.21) runs through a set of

cardinality at most∏
p|c

(
ordp(c) +mn

mn

)
· e3015{16mn(t+1)−11}(m−1+n−1)

< e1024(m+n)mn(t+1) ·
∏
p|c

(
ordp(c) +mn

mn

)
.

Hence the number of possibilities for (F ∗
0 , G

∗
0) is bounded above by (7.19).

Let (F ∗, G∗) be a pair with (5.1)–(5.4). Put

θi1,i2;j1,j2 := θi1,i2;j1,j2(F
∗, G∗), dij := dij(F

∗, G∗).
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Further, choose δij ∈ ZS such that dij = [δij]. Thus, δij depends only on

(7.21).

By assumption (5.2), Gauss’ Lemma and the fact that every finitely gen-

erated ideal of ZS is principal, we can express F ∗ and G∗ as

F ∗ = (F, (β1 : α1), . . . , (βm : αm)), G∗ = (G, (δ1 : γ1), . . . , (δn : γn)),

where

(7.22)

 F =
∏m

i=1(αiX − βiY ), [αi, βi] = [1] for i = 1, . . . ,m

G =
∏n

j=1(γjX − δjY ), [γj, δj] = [1] for j = 1, . . . , n.

Put

∆ij := αiδj − βiγj (i = 1, . . . ,m, j = 1, . . . , n).

Then with the decomposition of F ∗, G∗ in (7.22), definition (7.3) becomes

dij = [∆ij].

Hence

(7.23) ∆ij = δijεij with εij ∈ Z∗
S for i = 1, . . . ,m, j = 1, . . . , n.

Further, (7.4) can be rewritten as

(7.24) θi1,i2;j1,j2 =
∆i1,j1∆i2,j2

∆i1,j2∆i2,j1

for i1, i2 ∈ {1, . . . ,m}, j1, j2 ∈ {1, . . . , n}.

Define the Q-linear subspace of Qm
:

(7.25) V =

{(
α1x− β1y

∆11

, . . . ,
αmx− βmy

∆m1

)
: x, y ∈ Q

}
.

By substituting (x, y) = (δ1, γ1), (x, y) = ∆11

∆12
(δ2, γ2), respectively we obtain

a basis of V , that is

(1, . . . , 1),(
1,

∆11∆22

∆21∆12

,
∆11∆32

∆31∆12

, . . . ,
∆11∆m2

∆m1∆12

)
= (1, θ1,2;1,2, θ1,3;1,2, . . . , θ1,m;1,2)

where the last identity follows from (7.24). This basis of V , hence V itself,

depends only on (7.21).
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Consider the ZS-module

(7.26) M =
{
(ξ1, . . . , ξm) ∈ V : δ11ξ1 ∈ ZS, . . . , δm1ξm ∈ ZS

}
.

Since every finitely generated ideal of ZS is principal, M is a free ZS-module

of rank 2. Choose a basis {(a1, . . . , am), (b1, . . . , bm)} of M. The module

M, hence this basis, depends only on (7.21). Now define:

F0 :=
m∏
i=1

δi1 ·
m∏
i=1

(aiX − biY ), F ∗
0 := (F0, (b1 : a1), . . . , (bm : am)).

Then F ∗
0 depends only on (7.21). Further, F0 ∈ ZS[X,Y ], which implies

F ∗
0 ∈ A(ZS,m).

By (7.23),
(
α1

∆11
, . . . , αm

∆m1

)
∈ M. Hence there are u11, u12, u21, u22 ∈ ZS

such that

(7.27)


(
α1

∆11
, . . . , αm

∆m1

)
= u11(a1, . . . , am)− u21(b1, . . . , bm)(

β1

∆11
, . . . , βm

∆m1

)
= −u12(a1, . . . , am) + u22(b1, . . . , bm).

Set A :=
(
u11 u12
u21 u22

)
. Thus, by (7.23),

(F0)A =
( m∏
i=1

δi1

)
·
m∏
i=1

(ai(u11X + u12Y )− bi(u21X + u22Y ))

=
m∏
i=1

δi1
∆i1

·
m∏
i=1

(αiX − βiY ) =
( m∏
i=1

ε−1
i1

)
· F.

Further, (bi : ai) = 〈A−1〉(βi : αi) for i = 1, . . . ,m. So

(7.28) F ∗ = ε(F ∗
0 )A with ε :=

m∏
i=1

εi1 ∈ Z∗
S.

We now construct G∗
0. Solve cj, dj (j = 1, . . . , n) from

(7.29) a1dj − b1cj = 1, a2dj − b2cj = θ2,1;j,1 (j = 1, . . . , n)

and define

G0 :=
n∏
j=1

δ1j
δ11

·
n∏
j=1

(cjX − djY ), G∗
0 := (G0, (d1 : c1), . . . , (dn : cn)).
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Then G∗
0 is determined by (7.21). We have(

a1 −b1
a2 −b2

)(
dj
cj

)
=

(
1

θ2,1;j,1

)
for j = 1, . . . , n

by (7.29) and (
a1 −b1
a2 −b2

)
A =

(
α1

∆11
− β1

∆11

α2

∆21
− β2

∆21

)
by (7.27). Hence(

α1

∆11
− β1

∆11

α2

∆21
− β2

∆21

)
· A−1

(
dj
cj

)
=

(
1

∆2j∆11

∆21∆1j

)
for j = 1, . . . , n.

On the other hand,(
α1

∆11
− β1

∆11

α2

∆21
− β2

∆21

)
·

(
δj
γj

)
=

(
∆1j

∆11

∆2j

∆11

)
for j = 1, . . . , n.

Hence A−1
(
dj
cj

)
= ∆11

∆1j

(
δj
γj

)
for j = 1, . . . , n. Now by (7.23),

(G0)A =
n∏
j=1

δ1j
δ11

·
n∏
j=1

(cj(u11X + u12Y )− dj(u21X + u22Y ))

=
n∏
j=1

δ1j
δ11

·
n∏
j=1

{(u11cj − u21dj)X − (−u12cj + u22dj)Y }

= (detA)n ·
n∏
j=1

δ1j
δ11

·
n∏
j=1

(∆11

∆1j

(γjX − δjY )
)

= (detA)n ·
( n∏
j=1

ε11

ε1j

)
·G.

Thus, G = η(G0)(detA)−1A with η :=
∏n

j=1(ε11/ε1j) ∈ Z∗
S. Now G0 =

η−1G(detA)A−1 ∈ ZS[X, Y ], hence G∗
0 ∈ A(ZS, n). Further, (δj : γj) =

〈A−1〉(dj : cj) for j = 1, . . . , n. Hence

G∗ = η(G∗
0)(detA)−1A with η ∈ Z∗

S.

Together with (7.28) this gives (7.20). This proves Lemma 7.4. �
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8. Proof of Proposition 5.2

Proposition 5.2 is deduced from Lemma 7.4 above and the following local

lemma.

Lemma 8.1. Let p be a prime, c ∈ Zp with c 6= 0, and ϕp, ψp GQp-actions

of {1, . . . ,m}, {1, . . . , n}, respectively. Further, let F ∗
0 ∈ A(Zp,m), G∗

0 ∈
A(Zp, n). Then the collection of pairs of augmented forms F ∗ = (F, . . .),

G∗ = (G, . . .) such that

F ∗ = ε(F ∗
0 )A, G

∗ = η(G∗
0)(detA)−1A for some A ∈ NS2(Zp), ε, η ∈ Z∗

p,(8.1)

F ∗ ∈ A(Zp, ϕp), G
∗ ∈ A(Zp, ψp),(8.2)

F,G are Zp-primitive,(8.3)

F is Zp-minimal,(8.4)

R(F,G) ∈ cZ∗
p(8.5)

is contained in at most one Zp-equivalence class if p - c, and in the union

of at most two Zp-equivalence classes if p | c.

We first deduce Proposition 5.2.

Proof of Proposition 5.2. Let S = {p1, . . . , pt}, c,m, n, ϕ, ψ be as in the

statement of Proposition 5.2.

Let (F ∗
0 , G

∗
0) be a pair of augmented forms from the set I from Lemma

7.4. Denote by V(F ∗
0 , G

∗
0) the set of pairs of augmented forms (F ∗, G∗) that

satisfy (5.1)–(5.4) and for which there are ε, η ∈ Z∗
S, A ∈ NS2(Z

∗
S) such

that (7.20) holds. Pick (F ∗, G∗) ∈ V(F ∗
0 , G

∗
0). Let p be a prime outside

S. We view Q as a subfield of Qp. Clearly, (F ∗, G∗) satisfies (8.1), (8.3),

(8.5). Further, this pair satisfies (8.2) where ϕp, ψp are the GQp-actions of

{1, . . . ,m}, {1, . . . , n} induced by ϕ, ψ. Lastly by Lemma 6.2 it satisfies

also (8.4). So the pairs (F ∗, G∗) ∈ V(F ∗
0 , G

∗
0) satisfy (8.1)–(8.5) for every

prime p 6∈ S.

Now Lemmata 8.1 and 6.1 imply that V(F ∗
0 , G

∗
0) is contained in the

union of at most 2ω(c) ZS-equivalence classes. So the total number of ZS-

equivalence classes of pairs (F ∗, G∗) with (5.1)–(5.4) is bounded above by
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2ω(c) multiplied with the bound from Lemma 7.4. The resulting bound is

precisely that of Proposition 5.2. �

Now we prove Lemma 8.1. Let p be a prime. Given a1, . . . , ar ∈ Qp, we

denote by [a1, . . . , ar] the Zp-fractional ideal generated by a1, . . . , ar. Every

finitely generated Zp-fractional ideal is principal. For a polynomial P with

coefficients in Zp, denote by [P ] the Zp-fractional ideal generated by the

coefficients of P . By Gauss’ Lemma, we may express F ∗
0 , G

∗
0 as

F ∗
0 = (F0, (β10 : α10), . . . , (βm0 : αm0)),

G∗
0 = (G0, (δ10 : γ10), . . . , (δn0 : γn0))

where

(8.6)

F0 =
∏m

i=1(αi0X − βi0Y ), [αi0, βi0] ⊆ [1],

G0 =
∏n

j=1(γj0X − δj0Y ), [γj0, δj0] ⊆ [1]

for i = 1, . . . ,m, j = 1, . . . , n.

The remainder of the proof of Lemma 8.1 is divided into a few lemmata.

For the moment, we work with two pairs of augmented forms (F ∗
1 , G

∗
1),

(F ∗
2 , G

∗
2) satisfying (8.1)–(8.5) which are not Zp-equivalent. Similarly as F ∗

0 ,

G∗
0, we may express F ∗

1 , F ∗
2 , G∗

1, G
∗
2 as

(8.7)

 F ∗
k = (Fk, (β1k : α1k), . . . , (βmk : αmk)),

G∗
k = (Gk, (δ1k : γ1k), . . . , (δnk : γnk))

for k = 1, 2, with

(8.8)

 Fk =
∏m

i=1(αikX − βikY ), [αik, βik] = [1] ,

Gk =
∏n

j=1(γjkX − δjkY ), [γjk, δjk] = [1]

for i = 1, . . . ,m, j = 1, . . . , n, k = 1, 2, where the stronger assertions

[αik, βik] = [1], [γjk, δjk] = [1] follow from Gauss’ Lemma and our assump-

tion (8.3) that F ∗
k , G

∗
k (k = 1, 2) are Zp-primitive.

Lemma 8.2. Let (F ∗
1 , G

∗
1), (F ∗

2 , G
∗
2) be two pairs of augmented forms sat-

isfying (8.1)–(8.5) which are not Zp-equivalent and suppose that they are

represented as in (8.7), (8.8).



34 A. BÉRCZES, J.-H. EVERTSE, AND K. GYŐRY

Then there are a matrix B ∈ NS2(Zp) with | detB|p = p−1, a number ζ ∈ Q
with 0 < ζ < 1, and numbers λ, µ ∈ Q∗

p, λi ∈ Q∗
p (i = 1, . . . ,m) such that

(8.9) F ∗
2 = λ(F ∗

1 )B, G∗
2 = µ(G∗

1)(detB)−1B with |λ|p = pmζ , |µ|p = p−nζ ,

(8.10) (detB)B−1

(
βi1

αi1

)
= λi

(
βi2
αi2

)
with |λi|p = p−ζ for i = 1, . . . ,m.

If moreover p - c then there are µj ∈ Q∗
p (j = 1, . . . , n) such that

(8.11) (detB)B−1

(
δj1

γj1

)
= µj

(
δj2
γj2

)
with |µj|p = pζ−1 for j = 1, . . . , n.

Proof. By (8.1), there are matrices A1, A2 ∈ NS2(Zp) and numbers ε1, ε2,

η1, η2 ∈ Z∗
p such that

(8.12) F ∗
k = εk(F

∗
0 )Ak

, G∗
k = ηk(G

∗
0)(detAk)−1Ak

for k = 1, 2.

This implies F ∗
2 = ε2ε

−1
1 (F ∗

1 )A−1
1 A2

, G∗
2 = η2η

−1
1 (G∗

1)det(A−1
1 A2)−1A−1

1 A2
. Then

by (8.2) and Lemma 5.1, there are B ∈ GL2(Qp), κ ∈ Q∗
p such that A−1

1 A2 =

κB. Without loss of generality we may assume that B ∈ NS2(Zp) and that

the entries of B have gcd 1 in Zp. Define ζ, θ by

(8.13) |κ|p = pζ , | detB|p = p−θ.

Then, on putting λ := ε2ε
−1
1 κm, µ := η2η

−1
1 κ−n,

(8.14) F ∗
2 = λ(F ∗

1 )B, G∗
2 = µ(G∗

1)(detB)−1B with |λ|p = pmζ , |µ|p = p−nζ .

It is clear that λ, µ ∈ Q∗
p. If θ = 0 then B ∈ GL2(Zp), and also λ, µ ∈ Z∗

p

since by (8.3) the binary forms Fk, Gk (k = 1, 2) are Zp-primitive. So if θ = 0

then (F ∗
1 , G

∗
1), (F ∗

2 , G
∗
2) are Zp-equivalent, contrary to our assumption. The

number θ is clearly a non-negative integer. Hence

(8.15) θ ≥ 1.

By (8.12), (8.6), (8.8) we have

(detAk)A
−1
k

(
βi0
αi0

)
= νik

(
βik

αik

)
for k = 1, 2, i = 1, . . . ,m,
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where νik ∈ Q∗
p. Since (detAk)A

−1
k ∈ NS2(Zp) and [αik, βik] = [1] for

i = 1, . . . ,m, k = 1, 2 we have νik ∈ Zp for i = 1, . . . ,m, k = 1, 2. Further,

(F0)Ak
(X, Y ) =

m∏
i=1

(
νik(αikX − βikY )

)
for k = 1, 2,

hence
∏m

i=1 νik = ε−1
k ∈ Z∗

p. Therefore

(detAk)A
−1
k

(
βi0

αi0

)
= νik

(
βik
αik

)
with νik ∈ Z∗

p

for k = 1, 2, i = 1, . . . ,m.

(8.16)

On putting λi = νi2ν
−1
i1 κ

−1 and inserting A−1
1 A2 = κB and (8.13) we obtain

(8.17) (detB)B−1

(
βi1
αi1

)
= λi

(
βi2
αi2

)
with |λi|p = p−ζ for i = 1, . . . ,m.

Since (detB)B−1 ∈ NS2(Zp) and since [αi2, βi2] = [1] for i = 1, . . . ,m in

view of (8.8), we have ζ ≥ 0. We now show that θ = 1 and 0 < ζ < 1. Here

we use that F1, F2 satisfy (8.4), i.e., that F1, F2 are Zp-minimal.

Since Zp is a principal ideal domain and the entries of B have gcd 1, there

are U1, U2 ∈ GL2(Zp) such that

B = U1

(
1 0

0 pθ

)
U2.

By inserting this into (8.17) we obtain

(8.18)

(
1 0

0 pθ

)(
β′i1
α′i1

)
= λi

(
β′i2
α′i2

)
with |λi|p = p−ζ for i = 1, . . . ,m,

where

(8.19)

(
β′i1
α′i1

)
= (detU1)U

−1
1

(
βi1

αi1

)
,

(
β′i2
α′i2

)
= (detU2)

−1U2

(
βi2

αi2

)

for i = 1, . . . ,m.
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By (8.18) we have |β′i1|p = |λiβ′i2|p ≤ p−ζ for i = 1, . . . ,m. Suppose ζ ≥ 1.

Then β′i1/p ∈ Zp for i = 1, . . . ,m. Hence, with C :=
(

1 0
0 p

)
U−1

1 ,

(detC)−1C

(
βi1
αi1

)
=

(
β′i1/p

α′i1

)
∈ Z2

p.

Consequently, (F1)C−1 ∈ Zp[X, Y ]. But then (F1)C−1 ∈ Zp[X,Y ], since

(F1)C−1 ∈ Qp[X, Y ]. Hence F1 is not Zp-minimal, contrary to our assump-

tion. Thus we conclude that ζ < 1. From (8.18) we infer also that

|α′i2|p = |pθλ−1
i α′i1|p ≤ pζ−θ for i = 1, . . . ,m.

By the same argument as above, using that F2 is Zp-minimal, we infer that

0 ≤ θ − ζ < 1. Combining this with (8.15) and θ ∈ Z, it follows that θ = 1

and 0 < ζ < 1.

We have proved that (8.9), (8.10) hold for a suitable ζ with 0 < ζ < 1.

Further, in view of (8.13) we have | detB|p = p−1. It remains to prove

(8.11). Assume that p - c. By (8.14) we have

(8.20) (detB)B−1

(
δj1
γj1

)
= µj

(
δj2
γj2

)
with µj ∈ Q∗

p for j = 1, . . . , n.

By (8.8), (8.5),

m∏
i=1

n∏
j=1

|αikδjk − βikγjk|p = |R(Fk, Gk)|p = |c|p = 1 for k = 1, 2.

Further, αikδjk − βikγjk ∈ Zp. Hence

|αikδjk − βikγjk|p = 1 for i = 1, . . . ,m, j = 1, . . . , n, k = 1, 2.

Now by (8.10), (8.20),

| detB|−1
p · |αi1δj1 − βi1γj1|p = |λiµj(αi2δj2 − βi2γj2)|p,

so

|λiµj|p = | detB|p
which together with the already established identities | detB|p = p−1, |λi|p =

p−ζ , implies |µj|p = pζ−1 for j = 1, . . . , n. This proves (8.11), and completes

the proof of Lemma 8.2. �
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Lemma 8.3. Assume that p - c. Then the pairs of augmented forms

(F ∗, G∗) with (8.1)–(8.5) lie in at most one Zp-equivalence class.

Proof. Assume there are two Zp-inequivalent pairs (F ∗
1 , G

∗
1), (F ∗

2 , G
∗
2) with

(8.1)–(8.5). Let B be the matrix and ζ ∈ Q the number from Lemma

8.2. There are U1, U2 ∈ GL2(Zp) such that B = U1

(
1 0
0 p

)
U2. Together with

(8.10), (8.11) this implies(
1 0

0 p

)(
β′i1
α′i1

)
= λi

(
β′i2
α′i2

)
,

(
1 0

0 p

)(
δ′j1
γ′j1

)
= µj

(
δ′j2
γ′j2

)
with (

β′i1
α′i1

)
= (detU1)U

−1
1

(
βi1
αi1

)
,

(
β′i2
α′i2

)
= (detU2)U

−1
2

(
βi2
αi2

)
,

(
δ′j1
γ′j1

)
= (detU1)U

−1
1

(
δj1
γj1

)
,

(
δ′j2
γ′j2

)
= (detU2)U

−1
2

(
δj2
γj2

)
,

for i = 1, . . . ,m, j = 1, . . . , n. Thus |β′i1|p = |λiβ′i2|p ≤ p−ζ for i = 1, . . . ,m,

|δ′j1|p = |µjδ′j2|p ≤ pζ−1 for j = 1, . . . , n. Hence

|αi1δj1 − βi1γj1|p =| detU1|−1
p |α′i1δ′j1 − β′i1γ

′
j1|p

=|α′i1δ′j1 − β′i1γ
′
j1|p ≤ max(p−ζ , pζ−1) < 1

for i = 1, . . . ,m, j = 1, . . . , n. But then

|R(Fk, Gk)|p =
m∏
i=1

n∏
j=1

|αi1δj1 − βi1γj1|p < 1 for k = 1, 2,

contradicting our assumptions that p - c and that (F ∗
k , G

∗
k) (k = 1, 2) satisfy

(8.5). �

Lemma 8.4. Assume that p | c. Then the pairs (F ∗, G∗) with (8.1)–(8.5)

lie in at most two Zp-equivalence classes.

Proof. Assume there are three Zp-inequivalent pairs (F ∗
k , G

∗
k), (k = 1, 2, 3)

with (8.1)–(8.5). Then by Lemma 8.2, there are matrices B12, B13, B23 ∈
NS2(Zp) with | detB12|p = | detB13|p = | detB23|p = p−1, as well as numbers

λ12, λ13, λ23 ∈ Q∗
p such that

F ∗
2 = λ12(F

∗
1 )B12 , F ∗

3 = λ13(F
∗
1 )B13 , F ∗

3 = λ23(F
∗
2 )B23 .
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Thus F ∗
3 = λ12λ23(F

∗
1 )B12B23 . Hence by Lemma 5.1, B12B23 = λB13 with

λ ∈ Q∗
p. But this implies

|λ|2p =
| detB12|p| detB23|p

| detB13|p
= p−1,

which is impossible. So three pairwise Zp-inequivalent pairs with (8.1)–(8.5)

cannot exist. Lemma 8.4 follows. �

Now Lemma 8.1 is an immediate consequence of Lemmata 8.3 and 8.4. �

9. Proof of Theorem 2.3

The discriminant of a binary form F =
∑m

k=0 akX
m−kY k =∏m

i=1(αiX − βiY ) is given by

D(F ) =
∏

1≤i<j≤m

(αiβj − αjβi)
2.

Recall that D(F ) is a homogeneous polynomial in Z[a0, . . . , am] of degree

2m− 2. Further, for any scalar λ and any 2× 2-matrix A we have

(9.1) D(λFA) = λ2m−2(detA)m(m−1)D(F ).

Let again S = {p1, . . . , pt} be a finite, possibly empty set of primes. Every

non-zero a ∈ ZS can be expressed uniquely as a = ε|a|S, where ε ∈ Z∗
S and

|a|S is a positive integer coprime with the primes in S. For a binary form

F =
∑m

i=0 aiX
m−iY i ∈ ZS[X, Y ], we define [F ]S := gcd(|a0|S, . . . , |am|S).

Then for any two ZS-equivalent binary forms F1, F2 we have

[F1]S = [F2]S, |D(F1)|S = |D(F2)|S.

The first equality is obvious, while the second follows from (9.1).

Let F ∈ ZS[X, Y ] be a binary form and consider the matrices A ∈
NS2(ZS) such that FA−1 ∈ ZS[X,Y ]. If a matrix A satisfies this condition,

then so does every matrix in the left GL2(ZS)-coset GL2(ZS)A = {UA :

U ∈ GL2(ZS)}.
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Lemma 9.1. Let F ∈ ZS[X, Y ] be a binary form of degree m without multi-

ple factors. Suppose that F is associated with the number fields K1, . . . , Ku.

Then the set of matrices

{A ∈ NS2(ZS) : FA−1 ∈ ZS[X, Y ]}

is a union of

(9.2) � [F ]
1/m
S [D(F )]δS

left GL2(ZS)-cosets for every δ > 0, where the implied constant depends

only on K1, . . . , Ku, δ, S,m.

Proof. In all Vinogradov symbols � used below, the implied constant de-

pends only on K1, . . . , Ku, δ, S,m.

Every matrix A ∈ NS2(ZS) can be expressed as UB, where U ∈ GL2(ZS)

and B =
(
a b
0 d

)
with a, b, d ∈ Z, a > 0, d > 0, 0 ≤ b < d and gcd(ad, p1 · · · pt)

= 1 (if S 6= ∅). Therefore, it suffices to show that the number of such

matrices B with FB−1 ∈ ZS[X,Y ] is bounded above by (9.2).

By (9.1) we have |D(F )|S = (ad)m(m−1)|D(FB−1)|S, hence (ad)m(m−1)

is a divisor of |D(F )|S. The number of pairs (a, d) with this property is

� |D(F )|δS for every δ > 0. We show that for given a, d the number of

b ∈ Z such that 0 ≤ b < d and FB−1 ∈ ZS[X, Y ] is � [F ]
1
m

+δ

S for every

δ > 0. This implies the bound (9.2), since by (9.1), [F ]
m(m−1)
S divides

[D(F )]S.

If in the matrix B we replace b by another integer in the same residue

class mod d, we obtain a matrix in the same left GL2(ZS)-coset. There-

fore, it suffices to show that the number of residue classes b mod d in ZS

such that FB−1 ∈ ZS[X, Y ] is � [F ]
1
m

+δ

S for every δ > 0. In view of the

Chinese Remainder Theorem, it suffices to estimate from above the number

of residue classes b mod d in Zp for every prime p | d and then take the

product. More precisely, for each prime p | d let Rp denote the number of

residue classes b mod d in Zp such that

(9.3) FB−1(X, Y ) = F (a−1X − b(ad)−1Y, d−1Y ) ∈ Zp[X,Y ].
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Then we have to show that

(9.4)
∏
p|d

Rp � [F ]
1
m

+δ

S for every δ > 0.

Let p be a prime dividing d. Denote by ordp(F ) the exponent of p in

the prime factorization of [F ]S. Let Lp denote the splitting field of F over

Qp and Op the integral closure of Zp in Lp. For α1, . . . , αr ∈ Lp we de-

note by [α1, . . . , αr] the Op-fractional ideal generated by α1, . . . , αr. For

a polynomial with coefficients in Lp, we denote by [P ] the Op-fractional

ideal generated by the coefficients of P . There is π ∈ Op such that every

Op-fractional ideal is equal to [π]r for some r ∈ Z. In particular we have

(9.5) [p] = [π]e with 1 ≤ e ≤ [Lp : Qp] ≤ m! .

Let b ∈ Zp satisfy (9.3). By Gauss’ Lemma, we can factor F in Op[X,Y ]

as

F (X, Y ) = γ
m∏
i=1

(αiX − βiY )(9.6)

with [γ] = [F ], [αi, βi] = [1] for i = 1, . . . ,m.

Then

(9.7) FB−1(X, Y ) = γ
m∏
i=1

(αi
a
X − b(αi/a) + βi

d
Y
)
.

Define integers ri (i = 1, . . . ,m) by

(9.8) [π]−ri =
[αi
a
,
b(αi/a) + βi

d

]
.

Then since[αi
a
,
b(αi/a) + βi

d

]
⊇
[αi
a
,
bαi
a

+ βi
]
⊇
[αi
a
, βi
]
⊇ [αi, βi] = [1],

we have

(9.9) ri ≥ 0 for i = 1, . . . ,m.

Further, by Gauss’ Lemma, the product over i = 1, . . . ,m of the ideals on

the right-hand side of (9.8) is [FB−1 ][F ]−1. Together with (9.3), (9.5) this

implies

[π]r1+···+rm = [F ][FB−1 ]−1 ⊇ [F ] = [π]e·ordp(F ).
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Hence

(9.10) r1 + · · ·+ rm ≤ e · ordp(F ).

(9.9), (9.10) imply that for the tuple (r1, . . . , rm) we have at most

(9.11)

(
m+ e · ordp(F )

m

)
possibilities.

We now fix a tuple (r1, . . . , rm) and estimate the number of residue classes

b mod d in Zp with (9.3), (9.8). For i = 1, . . . ,m define κi, λi ∈ Lp by

(9.12)
αi
a

= κiπ
−ri ,

b(αi/a) + βi
d

= λiπ
−ri .

This implies that for i = 1, . . . ,m we have

bκi + πriβi = λid,(9.13)

b+ a
βi
αi

=
λid

κi
.(9.14)

Define integers si (i = 1, . . . ,m) by

(9.15) [κi, d] = [π]si .

These integers are uniquely determined by a, d, F, r1, . . . , rm, so they are

independent of b. We claim that

(9.16) 0 ≤ si ≤ ri for i = 1, . . . ,m.

Indeed, by (9.8) we have [κi, λi] = [1] for i = 1, . . . ,m. Hence κi, d ∈ Op

and so si ≥ 0 for i = 1, . . . ,m. On the other hand, by (9.13),

[κi, d] = [κi, λid] = [κi, bκi + πriβi]

= [κi, π
riβi] = πri [αi/a, βi] ⊇ [π]ri

and therefore, si ≤ ri for i = 1, . . . ,m.

From (9.14) it follows that

(9.17) b+
aβi
αi

≡ 0 (mod dπ−si) for i = 1, . . . ,m.

Thus, every b ∈ Zp with (9.3), (9.8) satisfies (9.17).
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Let b1, b2 be two numbers in Zp with (9.3), (9.8). Then

b1 ≡ b2 (mod dπ−si),

and so by (9.5),

b1 ≡ b2 (mod dp−[si/e]).

By (9.9), (9.10), there is i ∈ {1, . . . ,m} with ri ≤ e · ordp(F )/m. By

(9.16) we have for this i, [si/e] ≤ [ordp(F )/m]. Hence for any two numbers

b1, b2 ∈ Zp with (9.3),(9.8), we have

b1 ≡ b2 (mod dp−[ordp(F )/m]).

Consequently, the numbers b ∈ Zp with (9.3),(9.8) lie in at most p[ordp(F )/m]

residue classes mod d in Zp.

This gives an upper bound for the number of residue classes b mod d

for fixed r1, . . . , rm. Invoking the upper bound (9.11) for the number of

possibilities for (r1, . . . , rm), we infer that for the number Rp of residue

classes b mod d in Zp with (9.3) we have

Rp ≤
(
m+ e · ordp(F )

m

)
· p[ordp(F )/m].

Using that
∏

p|d p
[ordp(F )/m] ≤ [F ]

1/m
S , it follows easily that

∏
p|dRp � [F ]

1
m

+δ

S

for every δ > 0. This proves (9.4), and completes the proof of Lemma

9.1. �

Lemma 9.2. Let F,G ∈ ZS[X,Y ] be binary forms of degrees m ≥ 3, n ≥ 3,

respectively, such that FG has no multiple factors, and suppose that F is

associated with the number fields K1, . . . , Ku and G with the number fields

L1, . . . , Lv. Then

|R(F,G)|S �
(
|D(F )|

n
m−1

S · |D(G)|
m

n−1

S

) 1
17
−δ

for every δ > 0, where the implied constant depends only on K1, . . . , Ku,

L1, . . . , Lv, m, n, S, δ, and is not effectively computable from the method

of proof.

Proof. See Evertse and Győry [8, Theorem 1]. �



PAIRS OF BINARY FORMS WITH GIVEN RESULTANT 43

Lemma 9.3. Let F,G ∈ ZS[X,Y ] be binary forms without multiple factors.

Then there are binary forms F0, G0 ∈ ZS[X, Y ] and a matrix A ∈ NS2(ZS)

such that

– F = (F0)A, G = (G0)(detA)−1A,

– F0 is ZS-minimal, R(F0, G0) = R(F,G).

Proof. Assume that F is not ZS-minimal. Then there are a binary form

F1 ∈ ZS[X,Y ] and a matrix A1 ∈ NS2(ZS)\GL2(ZS) such that F = (F1)A1 .

By (9.1), |D(F )|S = | detA1|m(m−1)
S |D(F1)|S > |D(F1)|S. If F1 is not ZS-

minimal, there are a binary form F2 ∈ ZS[X,Y ] and a matrix A2 ∈ NS2(ZS)

such that F1 = (F2)A2 and |D(F2)|S < |D(F1)|S. Further, F = (F2)A2A1 .

It is clear that this argument can be repeated at most finitely many times.

So eventually, we obtain a ZS-minimal binary form F0 ∈ ZS[X, Y ] and a

matrix A ∈ NS2(ZS) such that F = (F0)A. Now put G0 := G(detA)A−1 .

Then G0 ∈ ZS[X, Y ] and by (2.1) we have R(F0, G0) = R(F,G). �

Proof of Theorem 2.3. The constants implied by the Vinogradov symbols

� used below depend only on K1, . . . , Ku, L1, . . . , Lv, m,n, S, δ.

Let (F,G) be a pair of binary forms in ZS[X, Y ] satisfying the condi-

tions of Theorem 2.3, so in particular satisfying (1.1). Let F0, G0 be a pair

of binary forms in ZS[X, Y ], and A ∈ NS2(ZS) as in Lemma 9.3. Then

(F0, G0) satisfies (1.1). By Theorem 2.2, the pairs of binary forms (F0, G0)

constructed in this manner lie in � cδ ZS-equivalence classes for every

δ > 0.

Let F be a full system of representatives for these classes. So

(9.18) #F � cδ for every δ > 0.

Starting with a pair of binary forms (F,G) satisfying the conditions of

Theorem 2.3, we first obtain a pair of binary forms (F0, G0) and a matrix

A ∈ NS2(ZS) as in Lemma 9.3, and then a pair (F1, G1) ∈ F and a matrix

U ∈ GL2(ZS) such that F0 = (F1)U , G0 = (G1)U . On putting A1 :=

(detA)A−1U−1, we obtain

(9.19) F = ε(F1)(detA1)A−1
1
, G = (G1)A−1

1
with ε ∈ Z∗

S, A1 ∈ NS2(ZS).
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For the matrix A1 we have (G1)A−1
1
∈ ZS[X,Y ]. So by Lemma 9.1, there

is a set of matrices M(G1) in NS2(ZS) depending only on G1 of cardinality

(9.20) #M(G1) � [G1]
1/n
S |D(G1)|δS for every δ > 0

such that A1 = UB for some B ∈ M(G1), U ∈ GL2(ZS). By inserting this

into (9.19), we infer that every pair of binary forms (F,G) satisfying the

conditions of Theorem 2.3, is ZS-equivalent to a pair

(9.21)
(
(F1)(detB)B−1 , (G1)B−1

)
with (F1, G1) ∈ F , B ∈M(G1).

We estimate the number of pairs in (9.21). Every pair (F1, G1) ∈ F
satisfies (1.1). From (2.1) it follows that [G1]

m
S divides R(F1, G1), hence

c as well. Therefore, [G1]S � c1/m. Further, by Lemma 9.2 (taking δ

sufficiently small), we have

c = |R(F1, G1)|S � |D(G1)|m/17nS ,

therefore, |D(G1)|S � c17n/m. By inserting this into (9.20) we obtain that

M(G1) has cardinality � c
1

mn
+δ for every δ > 0. Together with (9.18) this

implies that the set of pairs in (9.21) has cardinality � c
1

mn
+δ for every

δ > 0. This completes the proof of Theorem 2.3. �
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[4] A. Bérczes, K. Győry, On the number of solutions of decomposable polynomial
equations, Acta Arith. 101 (2002), 171–187.

[5] F. Beukers, H.P. Schlickewei, The equation x + y = 1 in finitely generated
groups, Acta Arith. 78 (1996), 189–199.

[6] J.-H. Evertse, The number of solutions of decomposable form equations, Invent.
math. 122 (1995), 559–601.
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[12] K. Győry, On the number of pairs of polynomials with given resultant or given
semi-resultant, Acta Sci. Math., 57 (1993), 519–529.
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A. Bérczes

Institute of Mathematics, University of Debrecen

Number Theory Research Group, Hungarian Academy of Sciences and

University of Debrecen

H-4010 Debrecen, P.O. Box 12, Hungary

E-mail address: berczesa@math.klte.hu

J.-H. Evertse

Mathematical Institute, Universiteit Leiden

P.O. Box 9512, NL-2300 RA Leiden, The Netherlands

E-mail address: evertse@math.leidenuniv.nl

K. Győry
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