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APPROXIMATION BY RATIONALS

Let € € C.

Denote by k1(£) the supremum of all Kk € R
such that

€ — 2| < (max|z|, [y])~" in coprime z,y € Z
Y

has infinitely many solutions.

So it has finitely many solutions if kK > k1(&)
and infinitely many solutions if Kk < k1(&).

Facts:

e k1(§) =0 for £ € C\ R;

o k1(§) =22 for e R\ Q
(Dirichlet, 1842);

e k1(&) = 2 for almost all £ € R;

o K1(&) =2 for £ e R\ Q algebraic
(Roth, 1955)



APPROXIMATION BY ALGEBRAIC
NUMBERS OF HIGHER DEGREE

For an algebraic number «, denote by P,
its minimal polynomial in Z[X], i.e., Py, =

i—oa; X7 with gcd(ag,...,an) = 1, and de-
fine its height

H(a) = H(Py) := max|a;|.

Definition. For £ € C, n € Z>;, denote by
kn(€) the supremum of all reals x such that

€ —al < H(a)™

has infinitely many solutions in algebraic num-
bers a« € C of degree at most n.

Remark. x«,(§) = w;(£)+1, where w (&) was
introduced by Koksma (1939) for a classifi-
cation of transcendental numbers.



THE CASE £ € R

Let n € Z}l-

Theorem (Sprindzhuk, 1966). For almost
all £ e R we have kn(§) =n+ 1.

Theorem (Schmidt, 1971). Let £ be a real
algebraic number of degree d > 2.
Then kn(§) = min(n 4+ 1,d).

Real algebraic numbers of degree d >n + 1
are equally well approximable by algebraic num-
bers of degree at most n as almost all real
numbers.



THE CASE£ € C\ R
Let n € Z}Q.

Theorem (Sprindzhuk, 1966). For almost
all £ € C we have kp(§) = (n+1)/2.

Lemma (Liouville’s inequality). If¢ € C\R
is algebraic of degree d < n+ 1 then

kn(§) = d/2.

Not considered so far: Computation of
kn(&) for £ € C\ R algebraic of degree
d>n—+ 2.

Is it true that complex algebraic numbers & of
degree d > n—+2 are equally well approximable
by algebraic numbers of degree at most n
as almost all complex numbers, i.e., kn(§) =

(n+4+1)/27



A COUNTEREXAMPLE

Let n > 2 be an even integer, and n a positive
real algebraic number of degree d/2 where d
IS even and d > n + 2.

Let ¢ =+/—7. Then degé =d > n+ 2.

By Schmidt's Theorem in the real case, we
have H;n/Q(n) = (n/2) + 1.

Hence for every k < (n/2) + 1, there are in-
finitely many algebraic numbers (3 of degree

at most n/2 such that |n — 38| < H(B)™".

Taking a = /—03, we get infinitely many al-
gebraic numbers o of degree at most n such
that

E —o| < |n—pFl << HB) " < H(a)™".

Hence kn(§) > (n 4+ 2)/2.



THE CASE £ € C \ R ALGEBRAIC

Theorem 1. (Bugeaud, E.)
Let n € Z>5, £ € C\ R algebraic of degree
d>n—+ 2.

(i). Suppose that n is odd. Then

_n+1
""Jn(f) — >
(ii). Suppose that n is even. Then
n+1 n4+2
Fn(€) € { > ' o }

Further, for every even n > 2, both cases may
occur.

Proof. Schmidt's Subspace Theorem + ele-
mentary algebra.



THE CASE " EVEN

Let n € Z>5 even, £ € C\R algebraic of degree
d>n-—+ 2.

Theorem 2 (Bugeaud, E.)
We have kn(€) =

degé > n + 2,

n¥2 1 1,6+ € ¢- €} Q-linearly dependent
deg{ =n+2, [Q(E) : Q) NR] =2
deg¢é > 2n — 2,

n¥l | 1,6+ € ¢ €} Q-linearly independent

[Q(€) - Q) NR] >3

Fele remaining cases

We can determine kn(£) in all cases, except
neven, n>6, n+ 3 <degé < 2n— 2.



ANOTHER THEOREM

For( € C, n € Zso, n € C* define the Q-vector
space

V(&) '={f € Q[X] : deg f < n, pf(§) € R}.
Let

tn(§) := max{dimg Vn(u, &) : p € C*}.

Theorem 3 (Bugeaud, E.)
Let £ € C\ R algebraic of degree d > n + 2.
Then

rkn(§) = max (n Tl

 tn(8)).

Proof. Schmidt’'s Subspace Theorem. [ ]



IDEA OF PROOF

Let Po = Y% 5 z;X* denote the minimal poly-

nomial of a. Put x = (zg,...,zn). Then
H(a) = max;|x;| =: ||x||. Notice
[ Pa(6)]
£ — a| >K .
[ Pe.(8)|

Define linear forms

Ll(X) = Re Poz<'£>a L2(X) =1Im P&(§)7
M1(x) = Re PL(€), Max(x) =1Im P (¢).

Use the Subspace Theorem and Minkowski’'s
Theorem to decide for which u,v the follow-
ing system has finitely or infinitely many so-
lutions in x € Znt1:

L1 < Ix[[", (L2 < (x|,
(MGl < [, [Ma(x)] < Ix]]°
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PROPERTIES OF t(&)
Let £ € C\R algebraic, degé > n+2, n € Z>o.
Lemma 1. t,(¢) < [(n+2)/2].

Lemma 2. Suppose n is even. Then

tnh(§) | degé>n+ 2,
=142 | [1,6 +€,¢- €} Q-linearly dependent

degé =n—+2, [Q) Q) NR]=2

tn(§) | degé >2n—2,
<L V{1,664 € ¢ €} Q-linearly independent

[Q(€) : Q) NR] >3

Fals remaining cases
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Proof of t,(&) < [(n + 2)/2].

Recall £ € C\ R, deg€&¢ > n + 2.
Choose p € C* such that dimg Vih(u,&) =

tn(§).
Put X - Vp(u,8) :={X-f: feValp,§)}.

Then Vp(u,8) N X - Va(p, §) = (0).

Otherwise, there is non-zero f € Vi, (i, &) such
that also X - f € Vi,(u, &).

Then puf(€¢) € R* and péf(€) € R*, implying
¢ € R, which is impossible.

Now

2t (&)

dimg (Va(u, €) 4+ X - Vi (1, €))
dimg{f € Q[X] : deg f < n + 1}
n -+ 2.

[N

]
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APPROXIMATION BY ALGEBRAIC
INTEGERS

Instead of approximation by algebraic num-
bers of degree at most n we consider ap-
proximation by algebraic integers of degree
at most n+ 1.

Let £ € C, TLEZ)L

Define A\, (&) to be the supremum of all A € R
such that

0<|¢—al < H(a)™

has infinitely many solutions in algebraic in-
tegers o of degree < n + 1.
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Theorem (Bugeaud, Teulié).

Let £ € R be algebraic of degree d > 2 and
n € ZZl-

Then A\p(§) = min(n4 1,d).

Theorem 4 (Bugeaud, E.)
Let £ € C\R be algebraic of degree d > 2 and

n e Lxo.

T hen
| g ifd<n+1,

w@© =14 "TE ifdz 42, m©="7",
| g ifd>n+2,/<;n(§)=n_;2-
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NUMBER OF APPROXIMANTS

Let n € Z>o, K > 0, and £ € C algebraic of
degree d > n. Consider

(1) € —al < H(a)™

in algebraic numbers o of degree at most n.

Theorem (E.)
Let 6 > 0. Suppose that

[ 2on+45 if€ER,
"TY n4+5 ifE€C\R.

Then (1) has at most

227(10n)?9%(1 4+ §~*) log 4d log log 4d
solutions with H(a) > max (23“2/5, H(g)).

Proof. Quantitative Subspace Theorem.
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VERY DIFFICULT OPEN PROBLEM:

let £ € C be algebraic of degree d.

Recall

(

= min(n+ 1,d) if £ € R,
()4 =5 if ¢ € C\R,
Ce{ft 22y ifgeC\R,

The number of solutions of

(1) € —a| < H(a)™"

in algebraic numbers o« of degree < n is finite
if kK > kn(&).

Give an explicit upper bound for this number
if

o kn(é) < k< 2n if £ e R,

o kn(§) <k <nif £ € C\R.
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