
ON THE QUANTITATIVE SUBSPACE THEOREM

JAN-HENDRIK EVERTSE

Abstract. In this survey we give an overview of recent improvements
upon the Quantitative Subspace Theorem, obtained jointly with R. Fer-
retti, which follow from work in [9]. Further, we give a new gap princi-
ple with which we can estimate the number of subspaces containing the
“small solutions” of the systems of inequalities being considered. As an
introduction, we start with a quantitative version of Roth’s Theorem.

1. A quantitative Roth’s Theorem

Recall that the (absolute) height of an algebraic number ξ of degree d is

given by

H(ξ) :=
(
a ·

d∏
i=1

max(1, |ξ(i)|)
)1/d

,

where ξ(1), . . . , ξ(d) are the conjugates of ξ in C and where a is the positive

integer such that the polynomial a ·
∏d

i=1(X − ξ(i)) has rational integral

coefficients with gcd 1. In particular, if ξ ∈ Q, then H(ξ) = max(|x|, |y|),
where x, y are coprime integers such that ξ = x/y.

Roth’s celebrated theorem from 1955 (see [17]) states that if ξ is any real

algebraic number and δ any real with δ > 0, then the inequality

(1.1) |ξ − α| 6 H(α)−2−δ in α ∈ Q

has only finitely many solutions. Already in 1955, Davenport and Roth [3]

computed an upper bound for the number of solutions of (1.1), and their

bound was subsequently improved by Mignotte [16], Bombieri and van der

Poorten [1], and the author [7]. We formulate a slight improvement of the

Date: June 18, 2010.
2000 Mathematics Subject Classification: 11J68, 11J25.
Keywords and Phrases: Diophantine approximation, Subspace Theorem.

1



2 J.-H. EVERTSE

latter result which follows from the Appendix of [2]. We mention that this

improvement is obtained by simply going through the existing methods; its

proof did not involve anything new. We distinguish between large and small

solutions α of (1.1), where a rational number α is called large if

(1.2) H(α) > max
(
H(ξ), 2

)
and small otherwise.

Theorem 1.1. Let ξ be a real algebraic number of degree d and 0 < δ 6 1.

Then the number of large solutions of (1.1) is at most

225δ−3 log(2d) log
(
δ−1 log(2d)

)
and the number of small solutions at most

10δ−1 log log max
(
H(ξ), 4

)
.

The proof of this result can be divided into two parts: a so-called interval

result and a gap principle. The interval result may be stated as follows.

Proposition 1.2. Let

m := 1 + [25600δ−2 log(2d)], ω := 162m2δ−1,

C := exp
(

3m

(
d

2

)
δ−1
(
240m2δ−1

)m · log
(
36H(ξ)

))
.

Then there are reals Q1, . . . , Qm−1 with

C 6 Q1 < Q2 < · · · < Qm−1

such that if α ∈ Q is a solution of (1.1) with H(α) > C, then

H(α) ∈
m−1⋃
i=1

[
Qi, Q

ω
i

)
.

The proof is by means of the usual “Roth machinery.” Assume Theorem

1.2 is false. Then (1.1) has solutions α1, . . . , αm such that H(α1) > C

and H(αi) > H(αi−1)
ω for i = 1, . . . ,m. One constructs a polynomial

F (X1, . . . , Xm) which has integer coefficients of small absolute value, and

which is of degree di in the variable Xi for i = 1, . . . ,m, such that H(α1)
d1 ≈

· · · ≈ H(αm)dm , and such that F has large “index” (some sort of weighted

multiplicity) at the point (α1, . . . , αm). Then one applies Roth’s Lemma



ON THE QUANTITATIVE SUBSPACE THEOREM 3

(a non-vanishing result for polynomials) to conclude that F cannot have

large index at (α1, . . . , αm). In fact, we use a refinement of Roth’s original

Lemma from 1955 (see [5]) which was proved by means of the techniques

going into the proof of Faltings’ Product Theorem [14].

The second ingredient is the following very basic gap principle.

Proposition 1.3. Let Q > 2. Then (1.1) has at most one solution α such

that Q 6 H(α) < Q1+δ/2 and α > ξ, and also at most one solution α such

that Q 6 H(α) < Q1+δ/2 and α < ξ.

Proof. Suppose for instance that (1.1) has two solutions α1, α2 which are

both larger than ξ, and Q 6 H(α1) 6 H(α2) < Q1+δ/2 for i = 1, 2. Then

Q−2(1+δ/2) <
(
H(α1)H(α2)

)−1
6 |α1 − α2|

6 max
i
|ξ − αi| 6 H(α1)

−2−δ 6 Q−2−δ

which is obviously impossible. �

An immediate consequence of this gap principle is that for any Q > 2,

E > 1, inequality (1.1) has at most 1+ 2 logE/ log(1+δ/2) solutions α ∈ Q
with Q 6 H(α) < QE. Using this fact in combination with Proposition 1.2,

the deduction of Theorem 1.1 is straightforward.

Also in more advanced situations, the general pattern to obtain explicit

upper bounds for the number of solutions of certain Diophantine equations

or inequalities, is first to prove that the number of solutions is finite by

means of an involved Diophantine approximation method, and second to

estimate from above the number of solutions using a more or less elementary

gap principle. However, there are also many situations where we do have at

our disposal a method to prove finiteness for the number of solutions but

where we do not have a gap principle. So in these situations we know that

there are only finitely many solutions, but we are not able to estimate their

number.

2. The quantitative Subspace Theorem

We generalize the results from Section 1 to higher dimensions.
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Let n > 2 be an integer. We denote by ‖ · ‖ the maximum norm on Rn.

Let

Li = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be linearly forms with algebraic coefficients αij ∈ C which are linearly in-

dependent, that is, their coefficient determinant det(L1, . . . , Ln) = det(αij)

is non-zero. Further, let δ > 0 and consider the inequality

(2.1) |L1(x) · · ·Ln(x)| 6 ‖x‖−δ in x ∈ Zn.

W. Schmidt’s celebrated Subspace Theorem from 1972 (see [21]) states that

the set of solutions of (2.1) lies in a union of finitely many proper linear

subspaces of Qn. In 1989, Schmidt proved [23] a quantitative result, which

in a slightly modified form reads as follows.

Suppose that the algebraic numbers αij have height at most H and degree at

most D and that 0 < δ 6 1. Then the solutions of

|L1(x) · · ·Ln(x)| 6 | det(L1, . . . , Ln)| · ‖x‖−δ in x ∈ Zn

with ‖x‖ > max(2H,n2n/δ) lie in a union of at most 2227nδ−2

proper linear

subspaces of Qn.

This quantitative result has been improved and generalized in various di-

rections, mainly due to work of Schlickewei and the author.

We now discuss versions of the Subspace Theorem which involve non-

archimedean absolute values and which take their unknowns from algebraic

number fields. All our algebraic number fields considered below are con-

tained in a given algebraic closure Q of Q.

Let MQ := {∞}∪ {primes} denote the set of places of Q. We write | · |∞
for the ordinary absolute value on Q and | · |p (p prime number) for the

p-adic absolute value, normalized such that |p|p = p−1. Further, we denote

by Qp the completion of Q at p; in particular, Q∞ = R.

Let K be an algebraic number field and denote by MK the set of places

of K. To every place v ∈ MK , we associate an absolute value | · |v which

is such that if v lies above p ∈ MQ, then the restriction of | · |v to Q is

| · |[Kv :Qp]/[K:Q]
p , where Kv is the completion of K at v. The absolute value

| · |v can be continued uniquely to the algebraic closure Kv of Kv. The
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place v is called finite if v -∞, infinite if v|∞, real if Kv = R and complex

if Kv = C. The absolute values thus chosen satisfy the product formula∏
v∈MK

|x|v = 1 for x ∈ K∗.
We define the height (not the standard definition) of x = (x1, . . . , xn) ∈

Kn by

H(x) :=
∏
v∈MK

max(1, |x1|v, . . . , |xn|v).

Let S be a finite subset of MK , containing all infinite places. Denote by

OS = {x ∈ K : |x|v 6 1 for v ∈MK \ S} the ring of S-integers. For v ∈ S,

let

L
(v)
i = α

(v)
i1 X1 + · · ·+ α

(v)
in Xn (i = 1, . . . , n)

be linearly independent linear forms with coefficients α
(v)
ij ∈ Kv that are

algebraic over K.

In 1977, Schlickewei [18] proved that the set of solutions of the inequality

(2.2)
∏
v∈S

|L(v)
1 (x) · · ·L(v)

n (x)|v 6 H(x)−δ in x ∈ On
S

is contained in a union of finitely many proper linear subspaces of Kn.

By an elementary combinatorial argument (see for instance [12, Section

21]), one can show that every solution x of (2.2) satisfies one of a finite

number of systems of inequalities

(2.3) |L(v)
i (x)|v 6 CvH(x)civ (v ∈ S, i = 1, . . . , n) in x ∈ On

S

where Cv > 0 for v ∈ S and
∑

v∈S
∑n

i=1 civ < 0. Thus, an equivalent version

of Schlickewei’s extension of the Subspace Theorem is the following result

which we state for reference purposes:

Theorem A. Suppose Cv > 0 for v ∈ S and
∑

v∈S
∑n

i=1 civ < 0. Then the

solutions of (2.3) lie in finitely many proper linear subspaces of Kn.

Put

s(v) := 1/[K : Q] if v is real, s(v) := 2/[K : Q] if v is complex,

s(v) := 0 if v is finite.
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The following technical conditions on the linear forms L
(v)
i , the constants

Cv and the exponents civ will be kept throughout:

(2.4)



H(α
(v)
ij ) 6 H, [K(α

(v)
ij ) : K] 6 D for v ∈ S, i, j = 1, . . . , n;

#
⋃
v∈S

{L(v)
1 , . . . , L(v)

n } 6 R;

0 <
∏
v∈S

Cv 6
∏
v∈S

| det(L
(v)
1 , . . . , L(v)

n )|1/nv ;

∑
v∈S

n∑
i=1

civ ≤ −δ with 0 < δ 6 1;

max(c1v, . . . , cnv) = s(v) for v ∈ S.

The following result is an easy consequence of a general result of Schlickewei

and the author [12, Theorem 2.1]:

Theorem B. Assume (2.4). Then the set of solutions x ∈ On
S of (2.3) with

H(x) > max(2H,n2n/δ)

is contained in a union of at most

4(n+9)2δ−n−4 log(2RD) log log(2RD)

proper linear subspaces of Kn.

In fact, Schlickewei and the author proved a more general “absolute” version

where the unknowns may be algebraic numbers not necessarily belonging

to a fixed number field.

For applications it is important that the upper bound for the number of

subspaces is independent of the field K. The quantity R may be replaced

by ns, where s is the cardinality of S. But in many cases, R can be taken

independently of s. For instance in applications to linear equations with

unknowns from a finitely generated multiplicative group and to linear re-

currence sequences (see [20], [13], [26]) one has to apply the above Theorem

with L
(v)
i ∈ {X1, . . . , Xn, X1 + · · ·+Xn} for v ∈ S, i = 1, . . . , n, and in that

case, one may take R = n+ 1.
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Theorem B was the outcome of a development resulting from Schmidt’s

quantitative version of the Subspace Theorem mentioned above and subse-

quent improvements and generalizations by Schlickewei and the author [19],

[20], [7], [12].

The proof of Theorem B is basically a quantification of Schmidt’s method

of proof of his Subspace Theorem from 1972 (see [21], [22]). It consists of

geometry of numbers, a construction of an auxiliary polynomial, and an

application of Roth’s Lemma. In 1994, Faltings and Wüstholz [15] gave a

totally new proof of the Subspace Theorem. In their proof they did not use

geometry of numbers, and instead of Roth’s Lemma they applied the much

more powerful Faltings’ Product Theorem. Another important ingredient

of the proof of Faltings and Wüstholz is a stability theory for multi-filtered

vector spaces. The method of Faltings and Wüstholz also allows to compute

an upper bound for the number of subspaces containing the solutions of

(2.3), but this is much larger than the one from Theorem B. In fact, in

the proof of Faltings and Wüstholz one has to construct global line bundle

sections on products of algebraic varieties of very large degrees (as opposed

to Schmidt’s proof where one encounters only linear varieties) and this leads

to poor estimates for the number of subspaces.

However, the upper bound from Theorem B can be improved further if

one combines ideas from Schmidt’s method of proof with ideas from Faltings

and Wüstholz. Essentially, one may follow Schmidt’s method of proof, but

replace Schmidt’s construction of an auxiliary polynomial by that of Faltings

and Wüstholz, see Section 6 for more details.

In this way, Ferretti and the author [9] obtained the following. A solution

x of (2.3) is called large if

H(x) > max(H,n2n/δ)

and small otherwise.

Theorem 2.1. Assume (2.4). Then the set of large solutions of (2.3) lies

in a union of at most

10922nn14δ−3 log(3δ−1RD) · log(δ−1 log 3RD)

proper linear subspaces of Kn.
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So compared with Theorem B, the dependence on n has been brought

down from cn
2

to cn, while the dependence on δ has been improved from

δ−n−4 to δ−3(log δ−1)2. With this improvement, the dependence on δ is

almost as good as that in the quantitative Roth’s Theorem from the previous

section. One might still hope for a further improvement in terms of n, for

instance to something polynomial in n, but probably this would require a

new method of proof for the Subspace Theorem.

For the small solutions we have the following elementary result which is

proved in Section 4 of the present paper. Here, in contrast to the large

solutions, we do get a dependence on the field K.

Theorem 2.2. Assume (2.4). Let d := [K : Q]. Then the set of small

solutions of (2.3) lies in a union of at most

δ−1
(

(103n)nd + 4n log log 4H
)

proper linear subspaces of Kn.

In the case K = Q this bound can be replaced by

δ−1
(

103n + 4n log log 4H
)
.

It is an open problem whether the bounds in Theorem 2.2 can be replaced

by something depending only polynomially on n and/or d. Recent work

by Schmidt [27] on Roth’s Theorem over number fields suggests that a

polynomial dependence on d should be possible.

3. A refinement of the Subspace Theorem and an interval

result

We keep the notation and assumptions from the previous section. So K,

S, L
(v)
i (v ∈ S, i = 1, . . . , n), δ, have the same meaning as before, and they

satisfy (2.4). The following refinement of the Subspace Theorem follows

from work of Faltings and Wüstholz [15] and Vojta [28] but there is a heavy

overlap with ideas of Schmidt [25].

Theorem C. There is a proper linear subspace U0 of Kn, such that (2.3)

has only finitely many solutions outside U0.

This space U0 can be determined effectively. Moreover, it can be chosen
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from a finite collection, which depends only on the linear forms L
(v)
i (v ∈ S,

i = 1, . . . , n) and is independent of the constants Cv and the exponents civ.

The first part giving the mere existence of U0 is Theorem 9.1 of [15]. The

second part follows from [28].

We first give a description of the space U0 occurring in Theorem 9.1 of

[15], where we have translated Faltings’ and Wüstholz’ terminology into

ours. Let v ∈ MK . Two linear forms L =
∑n

i=1 αiXi and M =
∑n

i=1 βiXi

with coefficients in Kv are said to be conjugate over Kv if there is an au-

tomorphism σ of Kv over Kv such that σ(αi) = βi for i = 1, . . . , n. Given

v ∈MK and a system of linear forms L1, . . . , Lr with coefficients in Kv, this

system is called v-symmetric if with any linear form in the system, also all

its conjugates over Kv belong to this system.

Given a linear subspace U of Kn and linear forms L1, . . . , Lr with co-

efficients generating a field extension F of K, we say that L1, . . . , Lr are

linearly independent on U if there is no non-trivial linear combination of

L1, . . . , Lr with coefficients in F that vanishes identically on U .

For each v ∈ S, we obtain a v-symmetric system L
(v)
1 , . . . , L

(v)
nv , consisting

of the linear forms L
(v)
1 , . . . , L

(v)
n from (2.3) and their conjugates over Kv.

Using |L(x)|v = |M(x)|v for any x ∈ Kn and any linear forms L,M with

coefficients in Kv which are conjugate over Kv, we see that (2.3) is equivalent

to the system of inequalities

(3.1) |L(v)
i (x)|v 6 CvH(x)civ (v ∈ S, i = 1, . . . , nv) in x ∈ On

S.

Now for any linear subspace U of Kn and any v ∈ S, define νv(U) = 0 if

U = (0) and

νv(U) := min ci1,v + · · ·+ ciu,v

if U 6= (0), where u = dimU , and the minimum is taken over all subsets

{i1, . . . , iu} of {1, . . . , nv} of cardinality u such that L
(v)
i1
, . . . , L

(v)
iu

are linearly

independent on U . Further, define

ν(U) :=
∑
v∈S

νv(U),
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and, if U 6= Kn,

µ(U) :=
ν(Kn)− ν(U)

n− dimU
.

Let µ0 be the mimimum of the quantities ν(U), taken over all proper linear

subspaces U of Kn.

Now one can show that there is a unique proper linear subspace U0 of

Kn, which is the one from Theorem C, such that

(3.2)

{
µ(U0) = µ0;

U0 ⊆ U for every linear subspace U of Kn with µ(U) = µ0.

It is important to remark, that Theorem C can be deduced from the

apparently weaker Theorem A. The argument is roughly as follows. First

assume that U0 = (0). (In this case, following the terminology of Faltings

and Wüstholz, system (2.3) is called semistable.) This assumption implies

that if U is any linear subspace of Kn of dimension at least 2, then Theorem

A is applicable to the restriction of (2.3) to U , and thus, the solutions of

(2.3) in U lie in a finite union of proper linear subspaces of U . Now by

induction, it follows easily that (2.3) has only finitely many solutions.

If U0 6= (0), one may derive from (2.3) a semistable system of inequalities,

with solutions from the quotient vector space Kn/U0. We infer that the

solutions of (2.3) outside U0 lie in finitely many cosets modulo U0. Then

one completes the proof by showing that each coset contains only finitely

many solutions.

The space U0 can be determined effectively in principle using a combina-

torial algorithm based on ideas of Vojta [28]. In fact, let M1, . . . ,Mt be the

conjugates in Q[X1, . . . , Xn] of the linear forms L
(v)
i (v ∈ S, i = 1, . . . , n).

Let F be the extension of K generated by the coefficients of M1, . . . ,Mt.

Define the F -vector spaces Hi := {x ∈ Ln : Mi(x) = 0} (i = 1, . . . , t).

From ideas of Vojta [28] it follows that U0 ⊗K F can be obtained by an al-

gorithm taking as input the spaces H1, . . . , Ht and applying repeatedly the

operations + (sum of two vector spaces) and ∩ (intersection) to two previ-

ously obtained spaces. The number of steps of this algorithm is bounded

above effectively in terms of t only.
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Alternatively, from an auxiliary result in [9] it follows that U0 has a

basis, consisting of vectors of which the coordinates have heights at most(√
nH
)4n

, where H is given by (2.4).

The special case that L
(v)
i ∈ {X1, . . . , Xn, X1 + · · · + Xn} for v ∈ S,

i = 1, . . . , n is of particular importance for applications. It is shown in [9]

that in this case we have

U0 =

{
x = (x1, . . . , xn) ∈ Kn :

∑
j∈Ii

xj = 0 for i = 1, . . . , t

}
where I1, . . . , It are certain pairwise disjoint subsets of {1, . . . , n}.

The solutions of (2.3) outside U0 can not be determined effectively. More-

over, it is also beyond reach to estimate the number of solutions outside U0.

But Ferretti and the author [9] proved the following more precise version of

Theorem C which may be considered as an analogue of the interval result

Proposition 1.2.

Theorem 3.1. Assume (2.4). Put

m :=
[
10822nn14δ−2 log(3δ−1RD)

]
, ω := 3nδ−1 log 3RD.

Then there are reals Q1, . . . , Qm with

max(2H,n2n/δ) 6 Q1 < Q2 < · · · < Qm

such that for every solution x ∈ On
S of (2.3) outside U0 we have

H(x) < max(2H,n2n/δ) or H(x) ∈
m⋃
i=1

[
Qi, Q

ω
i

)
.

In [9] we proved a more general absolute result where the unknowns are

taken from Q instead of K.

4. Gap principles

In this section we state and prove two gap principles. Further, we deduce

Theorems 2.1 and 2.2. Theorem 2.1 is a consequence of Theorem 3.1 and our

first gap principle, while Theorem 2.2 follows from our second gap principle.
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We keep the notation introduced before. Further, we put

∆v := | det(L
(v)
1 , . . . , L(v)

n )|v for v ∈ S.

We state our first gap principle. This result is well-known but we have

included a proof for convenience of the reader.

Proposition 4.1. Assume (2.4). Let Q > n2n/δ. Then the set of solutions

x ∈ On
S of (2.3) with

Q 6 ‖x‖ < Q1+δ/2n

is contained in a single proper linear subspace of Kn.

Proof. Let T denote the set of solutions x ∈ On
S to (2.3) with

Q 6 H(x) < Q1+δ/2n for i = 1, . . . , n.

Notice that for x ∈ T we have, by the last condition of (2.4),

(4.1) |L(v)
i (x)|v 6 CvH(x)s(v)+(civ−s(v)) 6 CvQ

civ+s(v)δ/2n for i = 1, . . . , n.

Take x1, . . . ,xn ∈ T . First let v be an infinite place of K. Then | · |v can

be extended to Kv = C and for this extension we have | · |v = | · |s(v). Now

by Hadamard’s inequality,

| det(x1, . . . ,xn)|v = ∆−1
v · | det

(
L

(v)
i (xj)

)
i,j
|v(4.2)

6 (nn/2)s(v)∆−1
v

n∏
i=1

n
max
j=1
|L(v)

i (xj)|v

6 (nn/2)s(v)∆−1
v Cn

vQ
(
Pn
i=1 civ)+s(v)δ/2.

For finite v ∈ S we have by a similar argument, but now using s(v) = 0 and

the ultrametric inequality instead of Hadamard’s inequality,

(4.3) | det(x1, . . . ,xn)|v 6 ∆−1
v Cn

vQ
Pn
i=1 civ ,

while for the places v outside S we have, trivially,

(4.4) | det(x1, . . . ,xn)|v 6 1.
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Now taking the product over v ∈ MK and using (2.4),
∑

v|∞ s(v) = 1,

(4.2)–(4.4) and our assumption Q > n2n/δ we obtain∏
v∈MK

| det(x1, . . . ,xn)|v 6 nn/2
∏
v∈S

(∆−1
v Cn

v ) ·Q(δ/2)+
P
v∈S

Pn
i=1 civ

6 nn/2Q−δ/2 < 1,

and so, det(x1, . . . ,xn) = 0 by the product formula. Hence x1, . . . ,xn are

linearly dependent. This holds for arbitrary x1, . . . ,xn ∈ T . Therefore, T
is contained in a single proper linear subspace of Kn. �

Proof of Theorem 2.1. According to Theorem 3.1, for the large solutions x

of (2.3) outside U0 we have H(x) ∈ U :=
⋃m
i=1[Qi, Q

ω
i ). We have to cover

U by intervals of the shape [Q,Q1+δ/2n) and then apply Proposition 4.1. It

is not difficult to show that U is contained in a union of not more than

m

(
1 +

[
logω

log(1 + δ/2n)

])
intervals of the shape [Q,Q1+δ/2n). By Proposition 4.1, this quantity, with

one added to it to take care of the space U0, is then an upper bound for

the number of subspaces containing the large solutions of (2.3). This is

bounded above by the quantity in Theorem 2.1. �

We now deduce a gap principle to deal with the small solutions of (2.3)

which is more intricate than the one deduced above.

Proposition 4.2. Let d := [K : Q] and Q > 1. Then the set of solutions

x ∈ On
S of (2.3) with

Q 6 H(x) < 2Q1+δ/2n

is contained in a union of at most

(90n)nd

proper linear subspaces of Kn.

If K = Q this upper bound can be replaced by

200n.

In the proof we need a number of lemmas. For y = (y1, . . . , yn) ∈ Cn,

define ‖y‖ := max(|y1|, . . . , |yn|).
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Lemma 4.3. Let M > 1. We can partition Cn into at most (20n)nM2

subsets, such that for any y1, . . . ,yn ∈ Cn belonging to the same subset,

(4.5) | det(y1, . . . ,yn)| 6M−1‖y1‖ · · · ‖yn‖.

Proof. We can express any non-zero y ∈ Cn uniquely as λ · z, where λ is

a complex number with |λ| = ‖y‖, and where z = (z1, . . . , zn) ∈ Cn with

‖z‖ = 1 and with |zj| < 1 for j < i and zi = 1 for some i ∈ {1, . . . , n}.
For j = 1, . . . , n, j 6= i we write zj = uj +

√
−1vj with uj, vj ∈ R. Further,

we express 0 as 0 · z with z = (1, 0, . . . , 0), and put uj = 0, vj = 0 for

j = 2, . . . , n. Thus, with every y ∈ Cn we associate a unique index i ∈
{1, . . . , n} and a unique vector w = (uj, vj : j 6= i) ∈ [−1, 1]2n−2.

Let K :=
(
M · nn/2

)1/(n−1)
. We divide the (2n − 2)-dimensional cube

[−1, 1]2n−2 into at most ([2
√

2K]+1)2n−2 subcubes of size at most (
√

2·K)−1.

Then we divide Cn into at most n([2
√

2 ·K] + 1)2n−2 classes such that two

vectors y belong to the same class if the indices i associated with them are

equal, and the vectors w associated with them belong to the same subcube.

Notice that the number of classes is bounded above by

n
(

2
√

2 ·
(
M · nn/2

)1/(n−1)
+ 1
)2n−2

6 (20n)nM2.

Now let y1, . . . ,yn belong to the same class. For k = 1, . . . , n, write

yk = λkzk as above and let wk be the corresponding vector from [−1, 1]2n−2.

Since w1, . . . ,wn belong to the same subcube we have

‖zk − z1‖ 6
√

2 · ‖wk −w1‖ 6 K−1

for k = 2, . . . , n. Hence, using Hadamard’s inequality,

| det(z1, . . . , zn)| = | det(z1, z2 − z1, . . . , zn − z1)|

6 nn/2(K−1)n−1 = M−1

which implies

| det(y1, . . . ,yn)| = |λ1 · · ·λn| · | det(z1, . . . , zn)|

6 M−1‖y1‖ · · · ‖yn‖.

This completes our proof. �
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Lemma 4.4. Let D be a positive real, and let S be a subset of Zn such that

| det(x1, . . . ,xn)| 6 D for x1, . . . ,xn ∈ S.

Then S is contained in a union of at most

100nD1/(n−1)

proper linear subspaces of Qn.

Proof. This is Lemma 5 of [8]. �

We deduce the following consequence.

Lemma 4.5. Let Dv (v ∈ MQ) be positive reals such that Dv = 1 for all

but finitely many v and put D :=
∏

v∈MQ
Dv. Let T be a subset of Qn such

that

(4.6) | det(x1, . . . ,xn)|v 6 Dv for v ∈MQ, x1, . . . ,xn ∈ T .

Then T is contained in a union of at most

(4.7) 100nD1/(n−1)

proper linear subspaces of Qn.

Proof. Without loss of generality we assume that T is not contained in a

proper linear subspace of Qn. Further, without loss of generality we assume

that for every finite place v of Q,

Dv = max{| det(x1, . . . ,xn)|v : x1, . . . ,xn ∈ T }.

Indeed, if the maximum were D′v < Dv, we could replace Dv by D′v without

strengthening (4.6), and replace (4.7) by a smaller upper bound.

Fix a finite place v and let Zv := {x ∈ Q : |x|v 6 1}, i.e., Zv is the

localization of Z at v. Choose y1, . . . ,yn ∈ T such that | det(y1, . . . ,yn)|v =

Dv, and letMv denote the Zv-module generated by y1, . . . ,yn. Now if x ∈
T , then x =

∑n
i=1 uiyi with u1, . . . , un ∈ Q. We can express ui as a quotient

of two determinants, where in the denominator we have det(y1, . . . ,yn), and

in the numerator the determinant obtained by replacing yi by x. Using

(4.6), this implies that |ui|v 6 1 for i = 1, . . . , n. Hence T is contained in

Mv.
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Applying this for every finite place v, we infer that T is contained in

M :=
⋂
v 6=∞Mv, where the intersection is over all finite places. The setM

is a lattice of rank n in Qn of determinant ∆ :=
(∏

v 6=∞Dv

)−1
. Choose a

basis z1, . . . , zn of M. Then | det(z1, . . . , zn)| = ∆. Define the linear map

ϕ : u = (u1, . . . , un) 7→
∑n

i=1 uizi and let S := ϕ−1(T ). Then S ⊆ Zn and

for any u1, . . . ,un ∈ S we have

| det(u1, . . . ,un)| = ∆−1 · | det(ϕ(u1), . . . , ϕ(un))|

6 ∆−1D∞ =
∏
v∈MQ

Dv = D.

Now by Lemma 4.4, the set S, and hence also T , is contained in a union of

not more than 100nD1/(n−1) proper linear subspaces of Qn. �

We leave as an open problem to generalize the above Lemma to arbitrary

algebraic number fields.

Proof of Proposition 4.2. We start with the case that K is an arbitrary

number field. Let T ′ be the set of solutions x ∈ On
S of (2.3) with Q 6

H(x) < 2Q1+δ/2n. Completely analogously to (4.1) we have for x ∈ T ′,
v ∈ S, i = 1, . . . , n,

(4.8) |L(v)
i (x)|v 6 2s(v)CvQ

civ+s(v)δ/2n.

For x ∈ T ′ and any infinite place v of K, define the vector

ϕv(x) :=
(
Q−c1v/s(v)L

(v)
1 (x), . . . , Q−cnv/s(v)L(v)

n (x)
)
.

Notice that for each infinite place v of K we have ϕv(x) ∈ Cn. Put M :=

(9/2)n/2. By Lemma 4.3, and since K has at most d infinite places, we can

partition T ′ into at most

(20n)ndM2d 6 (90n)nd

classes, such that if x1, . . . ,xn belong to the same class, then for each infinite

place v,

| det
(
ϕv(x1), . . . , ϕv(xn)

)
| 6M−1

n∏
i=1

‖ϕv(x)‖.

We show that the set of elements of T ′ from a given class is contained

in a proper linear subspace of Kn, that is, that any n elements of T ′ from
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the same class have determinant 0. So let x1, . . . ,xn be elements of T ′ from

the same class. Then by (4.8) and what we just proved, we have for every

infinite place v of K, using | · |v = | · |s(v)v on Kv = C,

| det(x1, . . . ,xn)|v = ∆−1
v Q

Pn
i=1 civ · | det

(
ϕv(x1), . . . , ϕv(xn)

)
|s(v)

6 ∆−1
v Q

Pn
i=1 civM−s(v)

n∏
i=1

‖ϕv(x)‖s(v)

6 ∆−1
v Q

Pn
i=1 civM−s(v)Cn

v 2ns(v)Qs(v)δ/2,

which, thanks to our choice of M , yields

| det(x1, . . . ,xn)|v < ∆−1
v CvQ

(
Pn
i=1 civ)+s(v)δ/2.

For the finite places v ∈ S we have (4.3) and for the places v outside S,

(4.4). By taking the product over v ∈MK , using (2.4), we obtain∏
v∈MK

| det(x1, . . . ,xn)|v <
∏
v∈S

(∆−1
v Cn

v )Q
P
v∈S

Pn
i=1 civ+(δ/2) 6 Q−δ/2 6 1.

Now the product formula implies indeed that for any x1, . . . ,xn in the same

class we have det(x1, . . . ,xn) = 0. This proves Proposition 4.2 in the case

that K is an arbitrary algebraic number field.

Now let K = Q. Let x1, . . . ,xn ∈ T ′. First let v = ∞ be the infinite

place of Q. Notice that s(∞) = 1. Then using (4.8) we obtain in a similar

manner as (4.2),

| det(x1, . . . ,xn)|∞ 6 nn/2∆−1
∞ C

n
∞ · 2Q(

Pn
i=1 ci∞)+δ/2.

For the finite places in S and for the places outside S we have (4.3), (4.4).

Now using Lemma 4.5, (2.4), we infer that T ′ is contained in a union of at

most

100n
(

2nn/2
∏
v∈S

(∆−1
v Cn

v ) · Q
P
v∈S

Pn
i=1 civ+(δ/2)

)1/(n−1)

6 100n
(
2nn/2

)1/(n−1)
< 200n

proper linear subspaces of Qn. This completes our proof. �
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Proof of Theorem 2.2. Let K be an arbitrary algebraic number field of de-

gree d. We divide the solutions into consideration into those with H(x) ∈ I1
and those with H(x) ∈ I2, where

I1 =
[
n2n/δ,max(2H,n2n/δ)

)
, I2 =

[
1, n2n/δ

)
.

We have I1 ⊆
⋃A−1
h=0

[
Qh, Q

1+δ/2n
h

)
, where

Qh = (n2n/δ)(1+δ/2n)h (h = 0, 1, 2, . . .),

A = 1 +

 log
(

log max(2H,n2n/δ)/ log n2n/δ
)

log(1 + δ/2n)

 6 4nδ−1 log log 4H.

So by Proposition 4.1, the solutions x ∈ On
S of (2.3) with H(x) ∈ I1 lie in

a union of at most A proper linear subspaces of Kn.

Next, we have I2 ⊆
⋃B−1
h=0

[
Qh, 2Q

1+δ/2n
h

)
, where

Qh = 2γh with γh =
2n

δ

(
(1 + (δ/2n))h − 1

)
(h = 0, 1, 2, . . .),

B = 1 +

[
log(1 + log n/ log 2)

log(1 + δ/2n)

]
6 4nδ−1 log(3 log n).

So by Proposition 4.2, the solutions x ∈ On
S of (2.3) with H(x) ∈ I2 lie in

a union of at most (90n)ndB proper linear subspaces of Kn.

We conclude that the number of subspaces containing the solutions x ∈
On
S of (2.3) with H(x) 6 max(2H,n2n/δ) is bounded above by

A+ (90n)ndB 6 δ−1
(
(103n)nd + 4n log log 4H

)
.

In the case K = Q we have a similar computation, replacing (90n)nd by

200n. �

5. On the number of solutions outside the exceptional

subspace U0

It seems to be a very difficult open problem to give an upper bound for

the number of solutions of (2.3) lying outside the exceptional subspace U0

from Theorem C. To obtain such a bound we would have to combine the

interval result Theorem 3.1 with some strengthening of the gap principle

Proposition 4.1 giving an upper bound for the number of solutions x with
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Q 6 H(x) < Q1+δ/2n instead of the number of subspaces containing these

solutions. But this seems to be totally out of reach. However, such a strong

gap principle may exist in certain applications where one considers solutions

x with additional constraints, and then it may be possible to estimate from

above the number of such restricted solutions.

In 1990, Schmidt [24] gave an example of a system of inequalities (2.3)

which is known to have finitely many solutions, but which is such that from

any explicit upper bound for the number of solutions of this system one

can derive a very strong effective finiteness result for some related system

of Diophantine inequalities.

We give another such example, which is a modification of a result from

Hirata-Kohno and the author [10]. We consider the inequality

|x1 + x2ξ + x3ξ
2| 6 H(x)−2−δ(5.1)

in x = (x1, x2, x3) ∈ Z3 with gcd(x1, x2, x3) = 1,

where ξ is a real algebraic number of degree > 3 and where δ > 0. By

augmenting this single inequality with the two trivial inequalities

|x2| 6 H(x), |x3| 6 H(x)

we obtain a system of type (2.3). Since ξ has degree at least 3, the linear

form X1 + X2ξ + X3ξ
2 does not vanish identically on any non-zero non-

linear subspace U of Q3. Consequently, if U is a linear subspace of Q3 of

dimension k > 0 we have ν(U) = −2− δ + k − 1. Hence

µ(U) =
ν(Q3)− ν(U)

3− dimU
= 1

if U 6= (0) and µ((0)) = −δ/3 < 1. So according to the description of U0

in Section 3, we have U0 = (0) and by Theorem C, (5.1) has only finitely

many solutions. (This can also be deduced directly from Theorem A).

We prove the following Proposition.

Proposition 5.1. Let N be an upper bound for the number of solutions of

(5.1). Then for every α ∈ Q we have

(5.2) |ξ − α| > 2−2−δ(1 + |ξ|)−1N−3−δ ·H(α)−3−δ.
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One of the most wanted achievements in Diophantine approximation

would be to prove an effective version of Roth’s Theorem, i.e., an inequality

of the shape

|ξ − α| > C(ξ, δ)H(α)−2−δ for α ∈ Q

with some effectively computable constant C(ξ, δ) > 0. Our Proposition

implies that from an explicit upper bound for the number of solutions of

(5.1) one would be able to deduce an effective inequality with instead of an

exponent 2 + δ an exponent 3 + δ. Save some special cases, such a result

is much stronger than any of the effective results on the approximation of

algebraic numbers by rationals that have been obtained so far.

Proof. Let α be a rational number. We can express α as α = r/s, where r, s

are rational integers with s > 0, gcd(r, s) = 1. Thus, H(α) = max(|r|, |s|).
Let u be an integer with

(5.3) |u| 6
(

22+δ(1 + |ξ|) · |ξ − α| ·H(α)3+δ
)−1/(3+δ)

.

We assume that the right-hand side is at least 1; otherwise (5.2) follows at

once.

Define the vector x = (x1, x2, x3) by x1 +x2X+x3X
2 = (u+X)(r−sX).

Then x ∈ Z3, gcd(x1, x2, x3) = 1 and by (5.3),

|x1 + x2ξ + x3ξ
2| = |u+ ξ| · |r − sξ|

6 (1 + |ξ|) max(1, |u|) max(|r|, |s|) · |ξ − α|

6
(

2 max(1, |u|) max(|r|, |s|)
)−2−δ

6 H(x)−2−δ.

Thus, each integer u with (5.3) gives rise to a solution of (5.1). Conse-

quently, the number of solutions of (5.1), and hence N , is bounded from

below by the right-hand side of (5.3). Now (5.2) follows by a straightforward

computation. �

6. About the proofs of Theorems 2.1 and 3.1

We discuss in somewhat more detail the new ideas leading to the im-

proved bound for the number of subspaces in Theorem 2.1 as compared

with Theorem B. For simplicity, we consider only the special case K = Q,
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S = {∞}, OS = Z. Notice that H(x) = ‖x‖ = max(|x1|, . . . , |xn|) for

x ∈ Zn \ {0}. Thus, we consider systems of inequalities

(6.1) |Li(x)| 6 C · ‖x‖ci (i = 1, . . . , n) in x ∈ Zn,

where L1, . . . , Ln are linearly independent linear forms in X1, . . . , Xn with

coefficients in C that are algebraic over Q, 0 < C 6 | det(L1, . . . , Ln)|1/n,

and c1 + · · ·+ cn 6 −δ with 0 < δ 6 1.

With a solution x ∈ Zn we associate a convex body Π(x), consisting of

those y ∈ Rn such that

|Li(y)| 6 C‖x‖ci for i = 1, . . . , n.

Denote by λi(x) (i = 1, . . . , n) the successive minima of this body. Then

λ1(x) 6 1, and by Minkowski’s theorem,
∏n

i=1 λi(x) � vol
(
Π(x)

)−1 �
‖x‖δ, where here and below, the constants implied by �, � depend on n,

L1, . . . , Ln and δ.

There is an index k ∈ {1, . . . , n−1} such that λk(x)/λk+1(x)� ‖x‖−δ/n.

To apply the approximation techniques going into the Subspace Theorem,

one needs that the one but last minimum λn−1(x) is � 1. In general, this

need not be the case. Schmidt’s ingenious idea was, to construct from Π(x)

a new convex body Π̂(x) in ∧n−kRn ∼= RN with N :=
(
n
k

)
of which the one

but last minimum is indeed � 1. The body Π̂(x) may be described as the

set of ŷ ∈ RN such that

(6.2) |Mi(ŷ)| � ‖x‖ei(x) for i = 1, . . . , N ,

where M1, . . . ,MN are linearly independent linear forms in N variables with

real algebraic coefficients, and e1(x), . . . , eN(x) are exponents, which unfor-

tunately may depend on x, such that
∑N

i=1 ei(x) < −δ/2n2, say, see [22]

or [4] for more details on Schmidt’s construction. As mentioned before, the

one but last minimum of Π̂(x) is � 1. Then by Minkowski’s Theorem, the

last minimum is � ‖x‖δ/2n2
. This implies that Π̂(x) ∩ ZN spans a linear

subspace T (x) of QN of dimension N − 1.

In their proof of Theorem B, Schlickewei and the author had to partition

the set of solutions of (6.1) into classes in such a way, that for any two
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solutions x, x′ in the same class, we have ei(x) ≈ ei(x
′) for i = 1, . . . , N .

Then they proceeded further with solutions from the same class.

The continuation of the proof of Schlickewei and the author is then as

follows. Suppose there are solutions x1, . . . ,xM in the same class such that

‖x1‖ is large and log ‖xi+1‖/ log ‖xi‖ are large for i = 1, . . . ,M − 1, where

M and “large” depend on δ, n and L1, . . . , Ln. Then one constructs an

auxiliary multihomogeneous polynomial P (Y1, . . . ,YM) in M blocks of N

variables with integer coefficients, which is of degree di in block Yi for

i = 1, . . . ,M , where ‖x1‖d1 ≈ · · · ≈ ‖xM‖dM . The polynomial P is such

that |PI(ŷ1, . . . , ŷM)| < 1 for all ŷh ∈ Π̂(xh) ∩ ZN , h = 1, . . . ,M , and

all partial derivatives PI of P of not too large order. Then for these I,

ŷ1, . . . , ŷM we have that PI(ŷ1, . . . , ŷM) = 0. By extrapolation it then

follows that all PI vanish identically on T (x1)× · · · × T (xM). On the other

hand, using an extension of Roth’s Lemma, proved also by Schmidt, one

shows that such a polynomial cannot exist.

This contradiction shows that solutions x1, . . . ,xM as above cannot ex-

ist. This leads to an upper bound depending on n, δ,D for the number of

subspaces containing the solutions of (6.1) belonging to a given class. We

have to multiply this with the number of classes to get our final bound for

the number of subspaces containing the solutions from all classes together.

As it turns out, the number of classes is at most γn
2

1 δ−γ2n with absolute

constants γ1, γ2 and in terms of n, δ, this dominates the resulting bound for

the number of subspaces.

In their proof of Theorem 2.1, Ferretti and the author used, instead of

Schmidt’s multi-homogeneous polynomial, the one constructed by Faltings

and Wüstholz [15]. The latter polynomial has the great advantage, that the

argument sketched above works also for solutions x1, . . . ,xM not necessarily

belonging to the same class. Thus, a subdivision of the solutions of (6.1)

into classes is not necessary, and we can save a factor γn
2

1 δ−γ2n in the final

upper bound for the number of subspaces.

The proof of the interval result Theorem 3.1 follows the same lines. First

one proves Theorem 3.1 in the special case that the exceptional subspace

U0 = (0). Assuming that Theorem 3.1 is false, one arrives at a contradiction
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using Schmidt’s construction of Π̂(x), Faltings’ and Wüstholz’ construction

of an auxiliary polynomial, and Schmidt’s extension of Roth’s Lemma. Then

one proves the result for arbitrary U0 by considering a system derived from

(6.1) with solutions taken from the quotient Qn/U0.

We now discuss the constructions of an auxiliary polynomial by Schmidt

and by Faltings and Wüstholz, respectively.

We have to construct a non-zero multihomogeneous polynomial

P (Y1, . . . ,YM) ∈ Z[Y1, . . . ,YM ]

in M blocks Y1, . . . ,YM of N variables, which is homogeneous of degree dh
in the block Yh for h = 1, . . . ,M . This polynomial can be expressed as∑

i

c(i)
M∏
h=1

N∏
j=1

Mj(Yh)
ihj

where the summation is over tuples i = (ihj) such that
∑N

j=1 ihj = dh for

h = 1, . . . ,M .

Schmidt’s approach is to construct P with coefficients with small absolute

values, such that

c(i) = 0 if max
16j6N

∣∣∣∣∣(
M∑
h=1

ihj
dh

)
− M

N

∣∣∣∣∣ > ε

for some sufficiently small ε. The conditions c(i) = 0 may be viewed as linear

equations in the unknown coefficients of P . We may consider the indices ihj
as random variables with expectation 1/N . Then the law of large numbers

from probability theory implies that for sufficiently large M , the number

of conditions c(i) = 0 is smaller than the total number of coefficients of P .

Now Siegel’s Lemma gives a non-zero polynomial P with coefficients with

small absolute values.

The approach of Faltings and Wüstholz is as follows. Let αhj ∈ R with

|αhj| 6 1 for h = 1, . . . ,m, j = 1, . . . , R. Construct P with coefficients with

small absolute values such that

c(i) = 0 if

∣∣∣∣∣
M∑
h=1

N∑
j=1

αhj

(ihj
dh
− 1

N

)∣∣∣∣∣ > ε.
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Again, thanks to the law of large numbers, for sufficiently large M the

number of conditions c(i) = 0 is smaller than the number of coefficients of

P , and then P is obtained via an application of Siegel’s Lemma.

The choice of the weights αhj is completely free. In fact, if we are given

solutions x1, . . . ,xM of (6.1) from different classes, we may choose the αhj
in a suitable manner depending on the exponents ei(xh) (i = 1, . . . , N ,

h = 1, . . . ,M) from (6.2), and then show that |PI(ŷ1, . . . , ŷM)| < 1 for all

yh ∈ Π̂(xh) ∩ ZN , h = 1, . . . ,M , and all partial derivatives PI of P of not

too large order. Then the proofs of Theorems 2.1 and 3.1 are completed as

sketched above.
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