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DIRICHLET’S THEOREM

Rational numbers are represented as z/y, where
x,y are integers such that gcd(z,y) = 1,
y > 0.

Theorem (Dirichlet, 1842)

Let & be an irrational real number. Then
there are infinitely many rational numbers xz/y
such that

€ — (z/y)| <y~ 2.



ROTH’'S THEOREM

A number £ is called algebraic if there exists
a non-zero polynomial P with integer coeffi-
cients such that P(¢) = 0.

Theorem (Roth, 1955) Let £ be a real, ir-
rational, algebraic number. Let vk > 2. Then
there are only finitely many rational numbers
x/y such that

€ — @/ <y™".

This result is a culmination of earlier work of
Thue (1909), Siegel (1921), Dyson, Gel'fond
(1949).



METRIC DIOPHANTINE APPROXIMA-
TION

We recall a very special (and easy) case of a
result of Khintchine (1924):

Theorem.
Let k > 2. Then the set of real numbers &
such that

& — (z/y)| <y~ " for infinitely many z/y € Q,

has Lebesgue measure 0.



APPROXIMATION BY RATIONALS

Denote by k1(£) the supremum of all Kk € R
such that

() E—Z|<y"
Y

has infinitely many solutions in rational num-
bers x/y.

So (*) has infinitely many solutions if
k < k1(&) and only finitely many solutions if

k> k1(&).

Facts:

e x1(§) = 2 for almost all real numbers ¢
(Dirichlet, Khintchine)

e k(&) = 2 for real, irrational algebraic num-
bers £ (Dirichlet, Roth)

So the kq-value of a real irrational algebraic
number ¢ is equal to that of almost all real
numbers.



ALGEBRAIC NUMBERS

For every algebraic number a (in C) there is a
uniqgue polynomial P of minimal degree such
that P(a) = 0 and P has integer coefficients
with gcd 1 and positive leading coefficient.

P is called the minimal polynomial of «.
The degree dega of « is the degree of P.

The height H(«) of « is the maximum of the
absolute values of the coefficients of P.



EXAMPLES:

a = z/y (z,y € Z, gcd(z,y) = 1, y > 0)
has minimal polynomial yX —x, degree 1 and
height max(|z|,y).

a = 3v/2 + /3 has minimal polynomial
4X4 — 28X2 + 25, degree 4 and height 28.



APPROXIMATION BY ALGEBRAIC
NUMBERS OF HIGHER DEGREE

Definition. For a complex number £ and a
positive integer n, denote by x, (&) the supre-
mum of all reals Kk such that

€ —al < H(a)™

has infinitely many solutions in algebraic num-
bers o« of degree at most n.



APPROXIMATION TO REAL ¢

Let n be a positive integer.

Theorem (Sprindzhuk, 1966).
For almost all real numbers & we have

kn(é) =n+ 1.

Theorem (W.M. Schmidt, 1971).
Let £ be a real algebraic number of degree
d>2. Then kp(§) = min(n+ 1,d).

Real algebraic numbers of degree d > n
have the same kp-value as almost all real
numbers.



APPROXIMATION TO COMPLEX &
Let n be an integer > 2.

Theorem (Sprindzhuk, 1966). For almost
all £ € C we have kp(§) = (n+1)/2.

Lemma. If§ is a complex, non-real algebraic
number of degree d < n then kn(§) = d/2.

Not considered so far: Determination of
kn(&) for complex, non-real algebraic num-
bers of degree d > n.

Reasonable question: Do complex, non-
real algebraic numbers & of degree > n have
the same skn-value as almost all complex num-

bers, i.e., kp(§) = (n+1)/27
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A COUNTEREXAMPLE

Let n,d be even integers with d > n > 2, and

n a positive real algebraic number of degree
d/2.

Let £ .= /—n. Then deg& =d.
By Schmidt’'s Theorem we have
finj2(n) = (n/2) + 1.

Hence for every Kk < (n/2) + 1, there are in-
finitely many algebraic numbers (3 of degree
at most n/2 such that |n — 38| < H(B) ™ ".

Taking o = /—03, we get infinitely many al-
gebraic numbers o of degree at most n such
that for some constant A > 0O,

€—al <A In—Bl<A-H(B) "=A H(a)™"

Hence kn(§) = (n 4+ 2)/2.
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APPROXIMATION TO COMPLEX AL-
GEBRAIC ¢

Theorem 1. (Bugeaud, E.)
Let n be an integer > 2 and & a complex,
non-real algebraic humber of degree > n.

(i). Suppose that n or deg€ is odd. Then

on(€) = "1

2
(ii). Suppose that both n and deg & are even.

T hen

Rn(g)e{n—;17 n—;Q}

Further, for every even n,d with d > n > 2
there are £ of degree d with kn(§) = (n+1)/2
and & of degree d with kn(§) = (n+2)/2.
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THE CASE n AND deg ¢ EVEN

Theorem 2 (Bugeaud, E.)

Let n be an even integer > 2 and & a com-
plex, non-real algebraic humber of even de-
gree > 2n.

Then kn(§) = (n+2)/2 <—

1, £+ &, €€ are linearly dependent over Q.

The description of the set of £ with kn(§) =

(n+2)/2 and n < deg& < 2n is more compli-
cated, and is not completely known.
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ANOTHER THEOREM

For complex numbers &, u, and for integers
n > 2, denote by V,(u, &) the set of polyno-
mials f(X) with coefficients in QQ such that

deg f <n, pf(€) eR.

This is a vector space over Q.

Denote by t,(£) the maximum of the dimen-
sions of the spaces V,(u,£), taken over all

pe C\{0}.

Theorem 3 (Bugeaud, E.)
Let £ be a complex, non-real algebraic num-
ber of degree > n. Then

kn(€) = max (”T“ tn(§)>.

14



MAIN TOOL.:
SCHMIDT’S SUBSPACE THEOREM

Let n >2, 6 >0 and let
Li:aile—I—---—I—aan ('L':l,...,n)

be linear forms with algebraic coefficients Qi j
in C.

Theorem (W.M. Schmidt, 1972). Sup-
pose that the linear forms Lq,..., Ly are lin-
early independent. Then the set of solutions

x = (x1,...,2n) € Z"
of the inequality
-4
L1(x) -+ Ln(x)] < (max |z;))

is contained in some union 17 U --- U1y of
proper linear subspaces of Q™.
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