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SUBJECT OF OUR LECTURE

Let X be an algebraic subvariety of the N-
dimensional torus GY(Q) = (Q")V.

Let ' be a free subgroup of G%(@) of finite
rank, and let T be the division group of I".

Laurent, Poonen, Ev., Rémond proved
ineffective results which imply that the points
of X which are in T or “close to " lie in
finitely many “families.”

We give some limited class of varieties X for
which these families can be determined effec-
tively.



HEIGHTS ON TORI

N-dimensional torus:
GN(Q) = (@)Y with multiplication
(z1,...,zn) - (W1,-..,yN) = (191, .-, TNYN)-

Absolute logarithmic height on Q:

d
h(a) := %Iog <|a| [] max(1, |a(i)|)> for a € Q,
i=1

where a(X —a(D) ... (X —ald) is the minimal
polynomial in Z[X] of «.

Height on G (Q):

N
?L(X) = Z h(CBZ) for x = (331, e ,QZN) < G%(@)
1=1

Metric on G (Q)/GH (Q)tors:
d(x,y) := h(x-y~1).



LANG’S CONJECTURE FOR TORI

Let X be an algebraic subvariety of GXY(Q),
i.e., the set of common zeros in G (Q) of cer-
tain polynomials f1,...,fm € Q[X1,..., Xn].

Let I be a free subgroup of GY(Q) of finite
rank r, i.e., T = {vy1---v¥ : wy,...,wr € Z}
where {vq,...,v;} is a basis of I.

LetT = {x € GN(Q) : Im € Z-g with x™ €'}
be the division group of I.

Theorem A. (Laurent, 1984)

X NT is contained in a finite union of trans-
lates of algebraic subgroups u1H1U---UuHy,
where

u; € I, H, algebraic subgroup of G%(@),
w,H, C X fori=1,...,t.



A RESULT FOR CYLINDERS

Define the cylinder with radius € around I by

Tei={x=yz: yeT, zeGnQ), h(z) < e}

Theorem B. (Poonen, 1998)

There is eg = eg(IN,deg X) > 0O (effectively
computable) such that X N[, is contained
in a finite union of translates of algebraic sub-
groups u1H; U---UuH; of GN(Q), where

uiEFgO, w,H; C X fori =1,...,t.

Let X®X¢ denote the union of all translates uH
such that uw € X and H is an alg. subgroup
of GN(Q) of dimension > 0 with uH C X.

Put X0 := X\ X,

Corollary. The set XN T, is finite.



A RESULT FOR CONES

Define the truncated cone around I by
C(T,e) = {X:y-z cyel,zc G%(@),
h(z) < e(1 +E(X))}.

Theorem C. (Ev.; Rémond, 2002)
There is e1 = ¢1(N, X, ") > 0 such that the
set XONC(T,eq) is finite.

Remarks.

1) There are varieties X and groups I such
that for any € > 0, the intersection X NC(T,¢)
IS not contained in a finite union of translates
u,H; C X.

2) Rémond proved that the dependence of 7
on X, I is necessary.

3) In general, from the proof 1 can not be
computed effectively.



EFFECTIVITY

For some limited class of varieties X, we ob-
tained effective versions of Theorems A,B,C.

In these versions we give:
e explicit expressions for g, €1;

e explicit upper bounds, in terms of a set of
defining equations for X and a basis for I, for
the heights h(u;) and degrees [Q(u;) : Q] for
the translates ui{Hq¢,...,ustH;y C X occurring
in Thms. A,B or for the heights h(x) and
degrees [Q(x) : Q] of the solutions

x € X9NC(T,e1) in Thm. C.

These data suffice to determine effectively in
principle the translates u;H; in Thms. A,B or
the solutions x in Thm. C.



CURVES IN G2,(Q)

Let N = 2, let f € Q[X,Y] be a non-zero,
irreducible polynomial not of the shape
aX™ —bY"™ or aX™Y"™ — b, and

X ={x=(2,9) €GL@) : f(z,y) = 0]
(i.e., X is not a translate of an algebraic sub-
group).

Put
h(f) = max (1, heights of the coeff. of f),
0o = degyx f 4 degy f.

Let I be a free subgroup of G2, (Q) with basis
{vi,...,vr}. Put

(M) = max(l,ﬁ(vﬂ,...,ﬁ(vﬂ),
d = [Q(I):Q],
C(M) = exp (50(r+1)d-h(r)),

K = Q(I', coeff. of f).



EFFECTIVE RESULTS FOR CURVES

Theorem 1. (BEGP)
Let eg := (2486(Iog 6)5)

Then for every x € X N[, we have

h(x) < (M) m(y),
< 2°952(log §)°.

Theorem 2. (BEGP)

~1
Let e1 := (2*85(10g 8)° - C(MP°h(f))
Then for every x € X NC([M,e1) we have

hx) < (M- n(p),
[K(x): K] < 25962%(log §)°.



THE ESTIMATE FOR h(x)

Step 1. Estimate h(x) forxe X NT.

Use an idea of Bombieri and Gubler ( “Heights
in Diophantine Geometry” ) and lower bounds
for linear forms in (ordinary and p-adic) log-
arithms to obtain

h(x) < C1(MNPh(f).
Step 2. Reduce Thms. 1, 2 to Step 1.
For instance, in the case of Thm. 2, let x &€
X NC(l,e1). Then x =y -z with

yeT, h(z)<e1(1l+ h(x)).
Choose y’ € ' with minimal distance to y.
This gives x =y’ -z’ with
y €T, h(z) < (M) 4+ e1h(x).

Apply Step 1 to y' € 271X NnI. This gives
h(y") < C1(M)(h(f) + 6h(2z')) and thus

AN

<
h(x) < h(y) 4+ h(z) <--- + 0h(x) with 0 < 1.
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THE ESTIMATE FOR [K(x) : K] (I)

We use the following explicit Bogomolov type
result.

Theorem. (Pontreau)

Let X C G2,(Q) be a curve given by f(x,y) =
0, where f € Q[X,Y] is an irreducible polyno-
mial not of the form aX™ —bY"™ or aX™Y ™ —b.
Let ) .= degyx f+ degy f. Put

A= 2%75§(log §)°, B :=2°95%(log6)°.

Then there are at most B points x € X with
h(x) < A1

There are similar such results for arbitrary va-
rieties X C GXN(Q), due to Zhang, Zagier,
Bombieri& Zannier, Schmidt, David,
Philippon, Amoroso, Viada.
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THE ESTIMATE FOR [K(x) : K] (II)

For instance, let x € X NC(IM,e1). Then x =
y-z withy €T, h(z) < e1(1 + h(x)).

Note that [K(x) : K] equals the number of

distinct points among x, := o(x) - x~1 where

o € Gal(Q/K).

On the one hand, o(x) € X, hence

Xg € x 1x.

On the other hand, since o(y)y 1 is a torsion

point, and by our upper bound for h(x),
h(xs) = h(o(2)z™1) < 2h(z) < A~ L.

So the number of distinct points x5, and hence
[K(x) : K], is at most B.
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HIGHER DIMENSIONAL VARIETIES

We obtained effective versions of Theorems
A,B,C for varieties X ¢ GY (Q) given by equa-
tions

f1(x) =0,..., fm(x) =0, with

f17"'7fm€@[X17"'7XN]7
f1,..., fm binomials or trinomials.

Example: Grassmann type varieties:

N=(Z> (n>4, 2<k<n—2),

X={xeGH@: Iy1,...,yx€Q"
such that x:yl/\---/\yk}.

Main ingredients: |ower bounds for linear
forms in logarithms; explicit Bogomolov type

results.
13



A LEMMA

In addition, we needed the following lemma
which seems to be non-trivial.

Lemma. (BEGP)

Let ¢ > 0, let I a free subgroup of GN(Q)
of finite rank, let H be a positive dimen-
sional algebraic subgroup of G%(@), and let
u e G, (Q).

IfuHNT ¢ # 0, there exists u' € uH NT ¢, with
both h(v), [Q(v') : Q] bounded above by ef-
fectively computable numbers depending on
e, I, u H.
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