ON THE
SUBSPACE THEOREM

Jan-Hendrik Evertse (Leiden)

Winter school on
Explicit Methods in Number Theory

Debrecen, January 30, 2009



DIRICHLET’S THEOREM

Rational numbers are represented as z/y, where
x,y are integers such that gcd(z,y) = 1,
y > 0.

Theorem 1 (Dirichlet, 1842)

Let o« be an irrational real number. Then
there are infinitely many rational numbers xz/y
such that

o — (z/y)| <y~ 2.



ROTH’'S THEOREM

Theorem 2 (Roth, 1955)

Let o« be a real algebraic number. Let § >
0. Then there are only finitely many rational
numbers x/y such that

o — (z/y)| <y~ 27°.

This result is the outgrow of earlier work of
Thue (1909), Siegel (1921), Dyson, Gel'fond
(1949).



THE SUBSPACE THEOREM
For x = (x1,...,zn) € Z™ define
[x[| := max(|z1], ..., [znl]).
Let
Li:ai1X1+""|‘aian (7’: 17"'7”)

be n linear forms with (real or complex)
algebraic coefficients.

Suppose that Lq,..., Ly are linearly indepen-
dent, i.e., det(aij) = 0.

Theorem 3 (Subspace Theorem,

W.M. Schmidt, 1972)

For every 6 > 0O, there are a finite number
11,...,1y of proper linear subspaces of Q"
such that the set of solutions of the inequality

(1) |L1(x)--La(x)| < |Ix[|7° inxeZ"

s contained in T7 U---U"T4.



SUBSPACE THM — ROTH’'S THM

Consider

(%) la—(z/y)| <y 2% inz/yeqQ
where « is algebraic and § > 0. Then

y(z — ay)| <y~ 0 < max(|z|, |y]) .

By the Subspace Theorem, the solutions
(z,y) € Z? lie in finitely many one-dimensional
proper linear subspaces of QQ.

Each of these subspaces gives rise to one
rational number x/y.

Hence (*) has only finitely many solutions.



AN EXAMPLE WITH INFINITELY MANY
SOLUTIONS

Let O < §d < 1 and consider

(2)
(z1+V223) (21 — V223) (22— V223)| < [Ix[| .

Inequality (2) has infinitely many solutions

x = (1, %0, 23) € Z3 in the following four sub-

spaces:

® 't = I (e.g., with 1 = xo, 123 = 0 and

satisfying the Pell equation |z% — 223| = 1);

e r1 = —xo, (e.9., with 21 = —x3, 123 <0,

|:1:% — 2x§| =1);

e xr1 = x3 = 0O;

Exercise. Inequality (2) has only finitely many

solutions outside these four subspaces, each
satisfying ||x|| < 101/9.



REMARKS

1) In general, the available methods of proof
of the Subspace Theorem are ineffective in
that they do not provide an algorithm to de-
termine the subspaces 14q,...,7; containing
the solutions of

L1(x) -+ L(x)] < ||x]|7°.

2) It is possible to estimate from above the
number t of subspaces. This leads to quan-
titative versions of the Subspace Theorem.



VOJTA’'S REFINEMENT

Let again Lq,...,Ly be linearly independent
linear forms in n variables with algebraic
coefficients and 6 > 0. Consider again the
inequality

(1) L) La()] < x[7% in x € 2.

Theorem 4 (VVojta, 1989)

There is a finite, effectively determinable col-
lection U4, ...,Uy Of proper linear subspaces of
Q", independent of §, such that (1) has only
finitely many solutions outside U1 U ---U Uy.

Remark. With Vojta’s method of proof it is
not possible to determine the solutions out-
side Uy U---U U, effectively.

Nor is it possible to estimate from above the
number of solutions outside Uy U ---U Uy.
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ABSOLUTE VALUES ON QQ

For a € Q we define |a|oo := |a| and

al, = 0 if a = 0;

YWPT ) pm ifa=p"b/c where b,c € Z, ptbe
for every prime number p.

We fix an algebraic closure Q of Q.

For every p € {0} U {prime numbers}, we
choose an extension of |- |, to Q.

Thus, the absolute values |- |, are all defined

on Q.

Product Formula:
Let a € Q\ {0} composed of primes pq,...,p;
and S = {oo,p1,...,p¢}. Then

H alp = 1.

peS



THE P-ADIC SUBSPACE THEOREM

Theorem 5 (Schlickeweli, 1977)
Let S = {oco,p1,...,pt}, n =2, 6 >0.

For each p € S, let Liy,...,Lnp be n linearly
independent linear forms in n variables with
coefficients in Q.

T hen the set of solutions of
(3)

T 1Z1p(X) - - Lp(x)|p < [|x]|7° in x € Z"
peS

is contained in a union of finitely many proper
linear subspaces of Q".

There is a more general result in which the
solutions x have their coordinates in a given
algebraic number field instead of Z (Schmidt,
Schlickewei).
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THE QUANTITATIVE SUBSPACE
THEOREM: HISTORY

Quantitative versions of the Subspace Theo-
rem give an explicit upper bound for the num-
ber of subspaces.

In 1989, Schmidt gave the first quantitative
version of his basic Subspace Theorem (The-
orem 3).

In 1991, Schlickewei generalized this to the
p-adic case.

There were subsequent improvements and gen-
eralizations by Ev. (1995) and Schlickewei
and Ev. (2002).

The result of Schlickewei and Ev. was re-
cently improved by Ferretti and Ev. (in prepa-
ration).
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Quantitative versions of the p-adic Subspace
Theorem are important tools to derive good
explicit upper bounds for the number of solu-
tions of Diophantine equations from several
classes.

There are recent applications by Adamczewski,
Bugeaud et.al. to complexity measures of
expansions of algebraic numbers, and to tran-
scendence measures.
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SPLITTING THE PRODUCT

Let S = {oco,p1,...,Pt}-

The quantitative version of the Subspace T he-
orem of Ferretti and Ev. does not give an
explicit upper bound for the number of
subspaces containing the solutions of

(3) H |L1p(X) - Lnp(x)]p < ||X||_

peS
but instead for the number of subspaces con-
taining the solutions of a system of inequali-
ties
(4)  [LpX)p < |Ix[|? (p€ S,i=1,...,n)
in x € Z™, where the ¢;, are fixed reals with

n
Z Zcip<0.

peSi=1
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REMARKS

One can reduce inequality (3) to a finite num-
ber of systems of type (4).

For a system (4) we have a much sharper
upper bound for the number of subspaces of
solutions than for an inequality (3).

In many Diophantine applications one obtains

sharper results by making a reduction to sys-
tems (4) instead of inequalities of type (3).
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THE QUANTITATIVE P-ADIC
SUBSPACE THEOREM

Let S = {oco,p1,..-,Pt}

Let L;y, cip (p € S,7 = 1,...,n) be linear

forms in n variables with coefficients in Q,
resp. reals satisfying

| det(Lip,...,Lnp)|lp =1 for pe S,

n
YD) ep <=6 with0<é< 1.
peS =1
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Theorem 6 (Ferretti, Ev., 2017)
T he set of solutions x € Z™ of

(4) |Lip®)[p < |Ix||% (peS,i=1,...,n)
is contained in a union of at most

C({Lp}) - 6 3(log s~ 1)?

proper linear subspaces of Q™.

Here c1 is an absolute constant, and C({L;,})
depends only on the set of linear forms {Lz-p ;
p € S;¢ = 1,...,n} and is independent of
p1,...,pt and the Cip-

Previously, Schlickewei and Ev. (2002) had
obtained a bound

C({Lip}) - 6%
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AN APPLICATION

Let ag,...,an be Nnon-zero integers, and
Bo, ..., Bn pairwise coprime integers > 2.

Consider the equation

(5) aoBt + -+ anBF =0
in zg,...,2n € Z~0.

Theorem 7
Eq. (5) has at most

2
(con)3™

solutions, where co, c3 are absolute constants,
independent of ag,...,an,Bg,..., Bn.
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A QUALITATIVE PROOF (I)

Let S = {o0,p1,...,pt}, Where pq,...,ps are
the primes occurring in the factorizations of
ao,...,aﬂn, BO,,Bn

For a solution (zqg,...,2n) Oof (5), write

x; = aZ-Bfi (1=20,...,n).

Notice that z¢,...,xp and zg = —x1 — -+ - — 2,
are linear forms in x = (x1,...,xn).

For p € S, choose i, € {0,...,n} for which
|z4,lp 1S maximal. Thus,

|$zoo|00 — ||X||7 |$’ip|p > 1 (p — P1,--- 7pt)'

Then using [[peg|zilp =1 for i =0,...,n we
infer

n
[T IT leilp < 117

peS i=0
1 ip
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A QUALITATIVE PROOF (1)

By the p-adic Subspace Theorem, the vectors
x = (x1,...,xn) lie in finitely many proper
linear subspaces of Q™.

Consider the solutions x in one of these
subspaces. Then we can eliminate one of the
variables and make a reduction to an equation
in fewer variables.

By induction, (5) has only finitely many
solutions. L]
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DEDUCTION OF THE UPPER BOUND

It can be shown that there is a collection of
at most (cqn)" systems of type (4) with

1 n
5257 LZpE{X].?)Xna_ZX’L} V’L,p
=1

such that each vector x = (a1 B3, ..., anBi")
corresponding to a solution (zq,...,2n) Of (5)

satisfies one of these systems.

By the QPST, the vectors x satisfying a sin-
gle system lie in at most cg proper linear sub-
spaces of Q".

Thus, the whole set of vectors x is contained
in at most (c¢7n )™ proper linear subspaces of

Q.

By induction, the total number of solutions

of (5) is at most (czn)c3”2.
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A MORE GENERAL RESULT (I)

Let

Fi={ail o : 21,...,2r €L}
where aq,...,qr are non-zero complex num-
bers.

Define the division group of I by
r = {ze€C": I3m € Z-g with 2™ €'}

— {”\Vail---affri m € Z~0, zl,...,erZ}.

Theorem 8 (Beukers, Schlickewei, 1996)
Letai,a> be non-zero complex numbers. Then
the equation

a1x1 +arxo =1 Iin x1,x0 € r

has at most 216(r+1) sojutions.
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DEGENERATE SOLUTIONS

Now let n > 3 and consider

(6) ajz1+ - -+apnzn=1in=z1,...,zn €T.

A solution (x1,...,zn) Of (6) is called degen-
erate if there is a vanishing subsum

> ax; =0 forsomelIcC{1,...,n}
icl
and non-degenerate otherwise.

From such a degenerate solution (zq1,...,xn)
we may construct infinitely many other solu-
tions («f,...,x)) of the shape

v.=x-2; icl), z.=x; (G¢gI)

with =z € T.
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A MORE GENERAL RESULT (II)

Theorem 9 (Schlickewei, Schmidt, Ev.,
2002)

Let T = {ai' - -af ! z1,...,2n € Z} where
ai,...,an € C*, denote by I the division group
of ', and letn >3, aq,...,an € C*.

Then the equation

airx1+- - -+anrn=1inx1,...,2n in I

has at most c(n,r) non-degenerate solutions.

Schlickewei, Schmidt, Ev. proved this with
C(’I’L, 'r) — 8(677,)4”(7“4—1).

T his was very recently improved by Amoroso
and Viada to ¢(n,r) = (9n)87°(r+1).
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INGREDIENTS OF THE PROOF

e A specialization argument from algebraic
geometry, to make a reduction to the case
that the generators aq,...,ap Of ' are
algebraic.

e A strong general quantitative version of the
Subspace Theorem, where the unknowns may
be algebraic numbers instead of rational in-
tegers (Schlickewei, Ev., 2002).

e Upper bounds for the number of algebraic
points of small height on an algebraic variety.
This was a development which started with S.
Zhang (1996). Recently Amoroso and Viada
obtained a new sharpening leading to their
improvement of c¢(n,r).
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A TRANSCENDENCE RESULT

We consider gap series

0. @)
g= > b
k=1

where b > 2 and 0 < njy <np <ng<--- are
integers.

Theorem 10 (Schneider, 1957)
Suppose

n
lim sup ktl > 1.

k— 00 ni
Then & is transcendental.
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AN IMPROVEMENT

We consider again numbers § = 72 ;b "k
with integers b > 2, 0<ny <no < ---.

Theorem 11 (Bugeaud, Ev., 2008)
Suppose that nygy1/n; | 1 monotonically.

Further suppose that for some ¢ > 0 there
are infinitely many k such that

nNE4-1
1 .
L V)

Then & is transcendental.

s ok .
Example. ) b~ with n > 2/3.
k=1
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PROOF OF THEOREM 11 (I)

Assume that £ is algebraic.

Fix § with O < d < 1, and consider the set

A(S) 1= {k:”k+1>1+5}.

ng

Let k € A(5). Define

k
T .— bnk, Y - — bk Z b_ni, X - — (xk,yk)
=1

Then zp,y, € Z~q, 9Cd(x, yp) = 1,
x| < b"F and

[©,@)
xRl —yp| = b D b

1=k—+1
& BT = (b)) 70 < ||xy]| 70
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PROOF OF THEOREM 11 (II)

Let S = {o0,p1,...,pt}, Where pq,...,ps are
the primes dividing b. Then

(7)

k€ — Ykloo < lIxkl ™0 lzRloo < [,
zklp < [1xp )|l 1090 g < 1

for p =p1,...,ps.
The sum of the exponents is —9J.

So by the QPST, the solutions of (7) lie in
< 6 3(logé~1)2 one-dimensional subspaces
of Q2, each of which gives rise to at most
one value of k.
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PROOF OF THEOREM 11 (III)

So for all 6§ with 0 < < 1,

HAS) = # {k gidn i S R 5} < §3(log s~ 12

ng
Hence

Mhtl o (log k)2/3
ng k1/3
for every sufficiently large k, contrary to our

assumption. [ ]
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COMPLEXITY OF ALGEBRAIC
NUMBERS (I)

Let & be an irrational algebraic number with
O < &< 1andbaninteger > 2. Consider the
b-ary expansion of &,

oo
= > apb " with ap € {0,...,b—1}.

n=1

We measure the complexity of £ by estimating
its number of digit changes up to N,

nbdc(&,b; N) == #{n < N . ap41 # an}.
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COMPLEXITY OF ALGEBRAIC
NUMBERS (II)

Assuming that the digits of the b-ary expan-
sion of an irrational real algebraic number &
behave like a random sequence, one should
expect nbdc(&,b; N) to be linear in N.

Theorem 12 (Bugeaud, Ev., 2008)
For any real, irrational algebraic number &
and any integer b > 2 we have

(log N)3/2
loglog N

nbdc(&,b; N) >¢ as N — oo.

The proof is similar to that of the previous
transcendence result.
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