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Attila Bérczes, Kálmán Győry, Jan-Hendrik Evertse

Number Theory and its applications

Debrecen, October 4–8, 2010

Conference dedicated to
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1



INTRODUCTION (I)

Let K be an algebraic number field. Denote by OK its ring of

integers.

An order in K is a subring of OK with quotient field K.

An order O in K of the form Z[α] is called monogenic.

We consider the “Diophantine equation”

(1) Z[α] = O in α ∈ O.

The solutions of (1) can be divided into equivalence classes,

where two solutions α, β are called equivalent if β = ±α + a for

some a ∈ Z.
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INTRODUCTION (II)

Every order in a quadratic number field is monogenic.

In number fields of degree > 3 there may be non-monogenic

orders (Dedekind).

THEOREM (Győry, 1976)

Let K be an algebraic number field, and O an order in K. Then

it can be decided effectively if O is monogenic.

Moreover, in that case there are only finitely many equivalence

classes of α ∈ O with

Z[α] = O

and a full system of representatives of those can be determined

effectively.
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k TIMES MONOGENEITY (I)

Let K be an algebraic number field, and O an order in K.

Definition. The order O is called precisely/at most/at least/...
k times monogenic, if

Z[α] = O

has precisely/at most/at least/... k equivalence classes of solu-
tions α ∈ O.

Facts:

1) Every quadratic order is precisely one time monogenic.

2) Every cubic order is at most 10 times monogenic (Bennett,
2001).

3) The ring of integers of Q(e2πi/7 +e−2πi/7) is precisely 9 times
monogenic (Baulin, 1960).
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k TIMES MONOGENEITY (II)

THEOREM (Győry, Ev., 1985)

Let K be an algebraic number field of degree r > 4. Suppose

that the normal closure of K/Q has degree g. Let O be an order

in K. Then O is at most (
3× 73g

)r−2

times monogenic.

This can be improved to

212r2(r−2)

(Győry, Ev. 2010).
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ORDERS IN A FIXED NUMBER FIELD

We fix a number field K and consider varying orders in K.

Example. Assume that [K : Q] > 3 and that K is not a totally

complex quadratic extension of a totally real field.

Then OK has infinitely many units ε such that K = Q(ε).

These give rise to infinitely many at least two times monogenic

orders Z[ε] = Z[ε−1] in K.

THEOREM 1 (Bérczes, Győry, Ev., 2010)

Let K be an algebraic number field of degree > 3. Then there

are only finitely many orders in K that are at least three times

monogenic.

The proof is ineffective.

6



TWO TIMES MONOGENIC ORDERS

Let K be a number field of degree r > 3 and N the normal

closure of K.

Denote by Sr the permutation group on r elements.

THEOREM 2 (Bérczes, Győry, Ev., 2010)

Assume that

Gal(N/Q) ∼= Sr.

Then there are only finitely many orders in K that are at least

two times monogenic and not of type A or type B.
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ORDERS OF TYPE A OR TYPE B

An order O in K is of type A if there are α, β ∈ O such that

O = Z[α] = Z[β], and

β =
a+ bα

c+ dα
for some

(
a b
c d

)
∈ GL(2,Z), d 6= 0, c+ dα ∈ O∗.

If K is not a totally complex quadratic extension of a totally real

field, it has infinitely many orders of type A.

An order O in K is of type B if [K : Q] = 4, and there are

α, β ∈ O such that O = Z[α] = Z[β], and

β = ±α2 + aα+ b, α = ±β2 + cβ + d for some a, b, c, d ∈ Z.

There are infinitely many quartic fields K such that Gal(N/Q) ∼=
S4 and K has infinitely many orders of type B.
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CONNECTION WITH UNIT EQUATIONS

Let K be an algebraic number field of degree r > 3, and N
its normal closure. Denote the conjugates of α ∈ K in N by
α(1), . . . , α(r).

LEMMA. Let α, β be elements of OK such that Q(α) = Q(β) =
K and Z[α] = Z[β]. Then for 1 6 i < j 6 r,

εij :=
β(i) − β(j)

α(i) − α(j)
∈ O∗N .

Proof. β = f(α), α = g(β) for some f, g ∈ Z[X].

Notice that for 1 6 i < j < k 6 r,

α(i) − α(j)

α(i) − α(k)
·
εij

εik
+
α(j) − α(k)

α(i) − α(k)
·
εjk

εik
=
β(i) − β(j)

β(i) − β(k)
+
β(j) − β(k)

β(i) − β(k)
= 1.

This leads to equations of the type ax+ by = 1 in x, y ∈ Γ, where
Γ is a finitely generated multiplicative group.
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UNIT EQUATIONS

Let F be a field of characteristic 0. Consider equations

(2) ax+ by = 1 in x, y ∈ Γ

where a, b ∈ F ∗ and Γ is a finitely generated subgroup of F ∗.

Two pairs of coefficients (a, b), (a′, b′) are called equivalent if

a/a′, b/b′ ∈ Γ.

Equations of type (2) have only finitely many solutions.

Equations of type (2) with equivalent pairs of coefficients have

the same number of solutions.

THEOREM (Győry, Stewart, Tijdeman, Ev., 1988)

For all pairs (a, b) outside a union of finitely many equivalence

classes, Eq. (2) has at most two solutions.
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SKETCH OF PROOF OF THEOREM 1

Let O = Z[α] be an at least three times monogenic order.

Consider the β with Z[β] = O. Put εij := β(i)−β(j)

α(i)−α(j).

Then there are 1 6 i < j < k 6 r such that

α(i) − α(j)

α(i) − α(k)
·
εij

εik
+

α(j) − α(k)

α(i) − α(k)
·
εjk

εik
= 1

has at least three solutions (εij/εik, εjk/εik).

The Theorem of GSTE + relations between the εij imply
that we have only finitely many possibilities for each
α(i)−α(j)

α(i)−α(k) (1 6 i < j < k 6 r).

This leads to only finitely many possibilities for O = Z[α].

11



SKETCH OF PROOF OF THEOREM 2 (I)

Assume [K : Q] = r > 4. Let O = Z[α] = Z[β] be an at least two

times monogenic order. Put εij := β(i)−β(j)

α(i)−α(j). From

α(i) − α(j)

α(i) − α(k)
·
εij

εik
+

α(j) − α(k)

α(i) − α(k)
·
εjk

εik
= 1 (1 6 i < j < k 6 r)

we infer

α(i) − α(j)

α(i) − α(k)
=

εik/εjk − 1

εij/εjk − 1
(1 6 i < j < k 6 r)

and from that, for all 1 6 i < j < k < l 6 r,

(εik/εjk − 1)

(εij/εjk − 1)
·

(εil/εkl − 1)

(εik/εkl − 1)
·

(εij/εlj − 1)

(εil/εlj − 1)

=
(α(i) − α(j))

(α(i) − α(k))
·

(α(i) − α(k))

(α(i) − α(l))
·

(α(i) − α(l))

(α(i) − α(j))
= 1.
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SKETCH OF PROOF OF THEOREM 2 (II)

The tuple (εik/εjk, . . . , εil/εlj) is a solution to

(3)
(x1 − 1)

(y1 − 1)
·

(x2 − 1)

(y2 − 1)
·

(x3 − 1)

(y3 − 1)
= 1

in x1, . . . , y3 ∈ O∗N .

LEMMA. Let F be a field of characteristic 0 and Γ a finitely

generated subgroup of F ∗. Then with at most finitely many ex-

ceptions, every solution x1, . . . , y3 ∈ Γ of (3) is of one of the

following types:

a) (x1, x2, x3) is a permutation of (y±1
1 , y±1

2 , y±1
3 ) (with any pos-

sible choice of the signs);

b) at least one of xixj, xi/xj, yiyj, yi/yj (1 6 i < j 6 3) is ±1 or

a cube root of unity.
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SKETCH OF PROOF OF THEOREM 2 (III)

Let F be a field of characteristic 0 and Γ a finitely generated

subgroup of F ∗.

Let g ∈ F [X1, . . . , Xn] and consider the equation

(4) g(x1, . . . , xn) = 0 in x1, . . . , xn ∈ Γ.

A solution (x1, . . . , xn) to (4) is called degenerate if there are

integers c1, . . . , cn with gcd(c1, . . . , cn) = 1 such that

g(x1T
c1, . . . , xnT

cn) ≡ 0 identically in the variable T ,

and non-degenerate otherwise.

THEOREM (Laurent, 1984).

Eq. (4) has only finitely many non-degenerate solutions.
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SKETCH OF PROOF OF THEOREM 2 (IV)

Let O = Z[α] = Z[β] be the at least two times monogenic order

we started with, and put εij = β(i)−β(j)

α(i)−α(j) (1 6 i < j 6 r).

The Lemma, together with the assumption Gal(N/Q) ∼= Sr,
leads to a list of conditions on εij/εik (1 6 i < j < k 6 r).

Applying

α(i) − α(j)

α(i) − α(k)
=

εik/εjk − 1

εij/εjk − 1
(1 6 i < j < k 6 r)

we infer that Z[α] is either of type A or type B, or belongs to a
finite set independent of α.

Open problem. What happens if we drop the assumption
Gal(N/Q) ∼= Sr?
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