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Abstract. Let A = Z[x1, . . . , xr] ⊃ Z be a domain which is finitely gen-
erated over Z and integrally closed in its quotient field L. Further, let K
be a finite extension field of L. An A-order in K is a domain O ⊃ A with
quotient field K which is integral over A. A-orders in K of the type A[α] are
called monogenic. It was proved by Győry [10] that for any given A-order
O in K there are at most finitely many A-equivalence classes of α ∈ O
with A[α] = O, where two elements α, β of O are called A-equivalent if
β = uα+ a for some u ∈ A∗, a ∈ A. If the number of A-equivalence classes
of α with A[α] = O is at least k, we call O k times monogenic.

In this paper we study orders which are more than one time monogenic.
Our first main result is that if K is any finite extension of L of degree
≥ 3, then there are only finitely many three times monogenic A-orders in
K. Next, we define two special types of two times monogenic A-orders, and
show that there are extensions K which have infinitely many orders of these
types. Then under certain conditions imposed on the Galois group of the
normal closure of K over L, we prove that K has only finitely many two
times monogenic A-orders which are not of these types. Some immediate
applications to canonical number systems are also mentioned.
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1. Introduction

In this introduction we present our results in the special case A = Z. Our

general results over arbitrary finitely generated domains A are stated in the

next section.

Let K be an algebraic number field of degree d ≥ 2 with ring of integers

OK . The number field K is called monogenic if OK = Z[α] for some α ∈ OK .

This is equivalent to the fact that {1, α, . . . , αd−1} forms a Z-module basis for

OK . The existence of such a basis, called power integral basis, considerably

facilitates the calculations in OK and the study of arithmetical properties of

OK .

The quadratic and cyclotomic number fields are monogenic, but this is not

the case in general. Dedekind [4] gave the first example for a non-monogenic

number field.

More generally, an order O in K, that is a subring of OK with quotient field

equal to K, is said to be monogenic if O = Z[α] for some α ∈ O. Then for

β = ±α + a with a ∈ Z we also have O = Z[β]. Such elements α, β of O are

called Z-equivalent.

In this paper, we deal with the “Diophantine equation”

(1.1) Z[α] = O in α ∈ O

where O is a given order in K. As has been explained above, the solutions of

(1.1) can be divided into Z-equivalence classes. It was proved by Győry [7], [8],

[9] that there are only finitely many Z-equivalence classes of α ∈ O with (1.1),

and that a full system of representatives for these classes can be determined

effectively. Evertse and Győry [5] gave a uniform and explicit upper bound,

depending only on d = [K : Q], for the number of Z-equivalence classes of such

α. For various generalizations and effective versions, we refer to Győry [13].

In what follows, the following definition will be useful.

Definition. An order O is called k times monogenic, if there are at least k

distinct Z-equivalence classes of α with (1.1), in other words, if there are at
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least k pairwise Z-inequivalent elements α1, . . . , αk ∈ O such that

O = Z[α1] = · · · = Z[αk].

Similarly, the order O is called precisely/at most k times monogenic, if there

are precisely/at most k Z-equivalence classes of α with (1.1).

It is not difficult to show that any order O in a quadratic number field is

precisely one time monogenic, i.e., there exist α ∈ O with (1.1), and these α

are all Z-equivalent to one another.

Our first result is as follows.

Theorem 1.1. Let K be a number field of degree ≥ 3. Then there are at most

finitely many three times monogenic orders in K.

This result is a refinement of work of Bérczes [1].

The bound 3 is best possible, i.e., there are number fields K having infinitely

many two times monogenic orders. We believe that if K is an arbitrary number

field of degree ≥ 3, then with at most finitely many exceptions, all two times

monogenic orders in K are of a special structure. Below, we state a theorem

which confirms this if we impose some restrictions on K.

Let K be a number field of degree at least 3. An order O in K is called of

type I if there are α, β ∈ O and ( a1 a2
a3 a4 ) ∈ GL(2,Z) such that

(1.2) K = Q(α), O = Z[α] = Z[β], β =
a1α + a2

a3α + a4

, a3 6= 0.

Notice that β is not Z-equivalent to α, since a3 6= 0 and K has degree at least

3. So orders of type I are two times monogenic.

Orders O of type II exist only for number fields of degree 4. An order O
in a quartic number field K is called of type II if there are α, β ∈ O and

a0, a1, a2, b0, b1, b2 ∈ Z with a0b0 6= 0 such that

K = Q(α), O = Z[α] = Z[β],(1.3)

β = a0α
2 + a1α + a2, α = b0β

2 + b1β + b2.

Orders of type II are certainly two times monogenic. At the end of this section,

we give examples of number fields having infinitely many orders of type I,

respectively II.



4 A. BÉRCZES, J.-H. EVERTSE, AND K. GYŐRY

Let E be a field of characteristic 0, and F = E(θ)/E a finite field extension

of degree d. Denote by θ(1), . . . , θ(d) the conjugates of θ over E, and by G

the normal closure E(θ(1), . . . , θ(d)) of F over E. We call F m times transitive

over E (m ≤ d) if for any two ordered m-tuples of distinct indices (i1, . . . , im),

(j1, . . . , jm) from {1, . . . , d}, there is σ ∈ Gal(G/E) such that

σ(θ(i1)) = θ(j1), . . . , σ(θ(im)) = θ(jm).

If E = Q, we simply say that F is m times transitive.

We denote by Sn the permutation group on n elements.

Our result on two times monogenic orders is as follows.

Theorem 1.2. (i) Let K be a cubic number field. Then every two times

monogenic order in K is of type I.

(ii) Let K be a quartic number field of which the normal closure has Galois

group S4. Then there are at most finitely many two times monogenic orders

in K which are not of type I or of type II.

(iii) Let K be a four times transitive number field of degree at least 5. Then

there at most finitely many two times monogenic orders in K which are not of

type I.

In Section 2 we present some immediate applications of our results to canoni-

cal number systems. In Section 3 we formulate generalizations of Theorems 1.1

and 1.2 for the case that the ground ring is an arbitrary integrally closed do-

main which is finitely generated over Z. Sections 4–6 contain auxiliary results,

and Sections 7–9 contain our proofs.

Our proofs of Theorems 1.1 and 1.2 use finiteness results on unit equations

in more than two unknowns, together with some combinatorial arguments. At

present, it is not known how to make the results on unit equations effective,

therefore we are not able to determine effectively the three times monogenic

orders in Theorem 1.1, or the two times monogenic orders not of type I or II

in Theorem 1.2. Although it is possible to estimate from above the number of

solutions of unit equations, it is because of the combinatorial arguments in our

proofs that we are not able to estimate from above the numbers of exceptional

orders in Theorems 1.1 and 1.2.
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We finish this introduction with constructing number fields having infinitely

many orders of type I, respectively type II.

Let K be a number field of degree ≥ 3 which is not a totally complex

quadratic extension of a totally real field. By Dirichlet’s Unit Theorem, for

any proper subfield L of K, the rank of O∗L (the group of units of the ring of

integers of L) is smaller than that of O∗K . We show that K has infinitely many

orders of type I. Take ( a1 a2
a3 a4 ) ∈ GL(2,Z) with a3 6= 0. Suppose that there is

u0 ∈ O∗K such that u0 ≡ a4 (mod a3). This is the case for instance if a4 = 1.

By the Euler-Fermat Theorem for number fields, there is a positive integer t

such that ut ≡ 1 (mod a3) for every u ∈ O∗K . Hence the group of units u ∈ O∗K
with u ≡ 1 (mod a3) has finite index in O∗K . Consequently, there are infinitely

many units u ∈ O∗K with u ≡ a4 (mod a3). By our assumption on K, among

these, there are infinitely many u with Q(u) = K. For each such u, put

α :=
u− a4

a3

, β :=
a1α + a2

a3α + a4

.

Then clearly, K = Q(α). From the minimal polynomial of u we derive a

relation u−1 = f(u) with f ∈ Z[X]. Hence β = (a1α + a2)f(a3α + a4) ∈ Z[α].

Since β = (a4β − a2)/(−a3β + a1) and −a3β + a1 = ±u−1, we obtain in a

similar fashion α ∈ Z[β]. Therefore, Z[α] = Z[β]. By varying ( a1 a2
a3 a4 ) and u we

obtain infinitely many orders of type I in K.

For instance, for u ∈ O∗K we have Z[u] = Z[u−1] and the discriminant of

this order is the discriminant of (the minimal polynomial of) u. By Győry

[8, Corollaire 2.2], there are at most finitely many units u ∈ O∗K of given

discriminant. Hence there are infinitely many distinct orders among Z[u] (u ∈
O∗K).

We now construct quartic fields with infinitely many orders of type II. The

construction is based on the theory of cubic resolvents, see van der Waerden

[20, §64].

Let r, s be integers such that the polynomial f(X) = (X2 − r)2 − X − s

is irreducible and has Galois group S4. There are infinitely many such pairs

(r, s) (see, e.g., Kappe and Warren [14]). Denote by α(1) = α, α(2), α(3), α(4)
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the roots of f and let K := Q(α). Define

η1 := −(α(1) + α(2))(α(3) + α(4)) = (α(1) + α(2))2,

η2 := −(α(1) + α(3))(α(2) + α(4)) = (α(1) + α(3))2,

η3 := −(α(1) + α(4))(α(2) + α(3)) = (α(1) + α(4))2.

Then

(1.4) (X − η1)(X − η2)(X − η3) = X3 − 4rX2 + 4sX − 1.

Take
√
η1 = α(1) + α(2),

√
η2 = α(1) + α(3),

√
η3 = α(1) + α(4).

Then

(1.5)
√
η1 ·
√
η2 ·
√
η3 = 1.

By the Gauss-Fermat Theorem over number fields, there exists a positive

integer t such that

(1.6) ηt1 ≡ 1 (mod 4).

Consider for m = 0, 1, 2, . . . the numbers

αm := 1
2

(√
η1

1+2mt +
√
η2

1+2mt +
√
η3

1+2mt
)
,

βm := 1
2

(√
η1
−1−2mt +

√
η2
−1−2mt +

√
η3
−1−2mt

)
.

The numbers αm are invariant under any automorphism that permutes α(2), α(3), α(4),

i.e., under any automorphism that leaves K invariant, hence they belong to K.

Further, they have four distinct conjugates, so Q(αm) = K. Next, by (1.5),

βm = α2
m − rm, αm = β2

m − sm,

where

rm = 1
4

(
η1+2mt

1 + η1+2mt
2 + η1+2mt

3

)
,

sm = 1
4

(
η−1−2mt

1 + η−1−2mt
2 + η−1−2mt

3

)
.

By (1.4),(1.6), rm, sm are rational integers, hence αm, βm are algebraic integers

for every m. We thus obtain for every non-negative integer m an order Z[αm] =

Z[βm] of type II in K.
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We claim that among the orders Z[αm] there are infinitely many distinct

ones. Denote by Dm the discriminant of Z[αm]. Then Dm is equal to the

discriminant of αm, and a straightforward computation shows that this is equal

to the discriminant of η1+2mt
1 . By [8, Corollaire 2.2], we have |Dm| → ∞ as

m→∞. This implies our claim.

2. Application to canonical number systems

Let K be an algebraic number field of degree ≥ 2, and O an order in K. A

nonzero element α in O is called a basis of a canonical number system (or CNS

basis) for O if every nonzero element of O can be represented in the form

a0 + a1α + · · ·+ amα
m

with m ≥ 0, ai ∈ {0, 1, . . . , |NK/Q(α)| − 1} for i = 0, . . . ,m, and am 6= 0.

Canonical number systems can be viewed as natural generalizations of radix

representations of rational integers to algebraic integers.

When there exists a canonical number system in O, then O is called a CNS

order. Orders of this kind have been intensively investigated; we refer to the

survey paper [2] and the references given there.

It was proved by Kovács [15] and Kovács and Pethő [16] that O is a CNS

order if and only if O is monogenic. More precisely, if α is a CNS basis in O,

then it is easily seen that O = Z[α]. Conversely, O = Z[α] does not imply

in general that α is a CNS basis. However, in this case there are infinitely

many α′ which are Z-equivalent to α such that α′ is a CNS basis for O. A

characterization of CNS bases in O is given in [16].

The close connection between elements α of O with O = Z[α] and CNS

bases in O enables one to apply results concerning monogenic orders to CNS

orders and CNS bases. The results presented in Section 1 have immediate

applications of this type. For example, it follows that up to Z-equivalence

there are only finitely many canonical number systems in O.

We say that O is a k-times CNS order if there are at least k pairwise Z-

inequivalent CNS bases in O. Theorem 1.1 gives the following.
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Corollary 2.1. Let K be an algebraic number field of degree ≥ 3. Then there

are at most finitely many three times CNS orders in K.

3. Results over finitely generated domains

Let A be a domain with quotient field L of characteristic 0. Suppose that

A is integrally closed, and that A is finitely generated over Z as a Z-algebra.

Let K be a finite extension of L of degree at least 3, AK the integral closure

of A in K, and O an A-order in K, that is a subring of AK which contains A

and which has quotient field K. Consider the equation

(3.1) A[α] = O in α ∈ O.

The solutions of this equation can be divided into A-equivalence classes, where

two elements α, β of O are called A-equivalent if β = uα + a for some a ∈ A
and u ∈ A∗. Here A∗ denotes the multiplicative group of invertible elements

of A. As is known (see Roquette [19]), A∗ is finitely generated.

It was proved by Győry [10] that the set of α with (3.1) is a union of finitely

many A-equivalence classes. An explicit upper bound for the number of these

A-equivalence classes has been derived by Evertse and Győry [5]. An effective

version has been established by Győry for certain special types of domains [11].

We now formulate our generalizations of the results from the previous sec-

tions to A-orders. We call an A-order O k times monogenic, if Eq. (3.1) has

at least k A-equivalence classes of solutions.

Theorem 3.1. Let A be a domain with quotient field L of characteristic 0

which is integrally closed and finitely generated over Z, and let K be a finite

extension of L of degree ≥ 3. Then there are at most finitely many three times

monogenic A-orders in K.

We now turn to two times monogenic A-orders. Let again K be a finite

extension of L of degree at least 3. We call O an A-order in K of type I if

there are α, β ∈ O and ( a1 a2
a3 a4 ) ∈ GL(2, L) such that

(3.2) K = L(α), O = A[α] = A[β], β =
a1α + a2

a3α + a4

, a3 6= 0.
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It should be noted that in the previous section (with L = Q, A = Z) we had

in our definition (1.2) of orders of type I the stronger requirement ( a1 a2
a3 a4 ) ∈

GL(2,Z) instead of ( a1 a2
a3 a4 ) ∈ GL(2,Q). In fact, if A is a principal ideal domain,

we can choose a1, a2, a3, a4 in (3.2) such that a1, a2, a3, a4 ∈ A and the ideal

generated by a1, . . . , a4 equals A. In that case, according to Lemma 6.4 proved

in Section 6 below, (3.2) implies that ( a1 a2
a3 a4 ) ∈ GL(2, A).

A-orders of type II exist only in extensions of L of degree 4. Thus, let K be

an extension of L of degree 4. We call O an A-order in K of type II if there

are α, β ∈ O and a0, a1, a2, b0, b1, b2 ∈ A with a0b0 6= 0, such that

K = L(α), O = A[α] = A[β],(3.3)

β = a0α
2 + a1α + a2, α = b0β

2 + b1α + b2.

Theorem 3.2. Let A be a domain with quotient field L of characteristic 0

which is integrally closed and finitely generated over Z, and let K be a finite

extension of L. Denote by G the normal closure of K over L.

(i) Suppose [K : L] = 3. Then every two times monogenic A-order in K is of

type I.

(ii) Suppose [K : L] = 4 and Gal(G/L) ∼= S4. Then there are only finitely

many two times monogenic A-orders in K which are not of type I or type II.

(iii) Suppose [K : L] ≥ 5 and that K is four times transitive over L. Then

there are only finitely many two times monogenic A-orders in K which are not

of type I.

4. Equations with unknowns from a finitely generated

multiplicative group

The main tools in the proofs of Theorems 3.1 and 3.2 are finiteness results on

polynomial equations of which the unknowns are taken from finitely generated

multiplicative groups. In this section, we have collected what is needed. Below,

G is a field of characteristic 0.

Lemma 4.1. Let a1, a2 ∈ G∗ and let Γ be a finitely generated subgroup of G∗.

Then the equation

(4.1) a1x1 + a2x2 = 1 in x1, x2 ∈ Γ
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has only finitely many solutions.

Proof. See Lang [17]. �

A pair (a1, a2) ∈ (G∗)2 = G∗ ×G∗ is called normalized if (1, 1) is a solution

to (4.1), i.e., a1 +a2 = 1. If (4.1) has a solution, (y1, y2), say, then by replacing

(a1, a2) by (a1y1, a2y2) we obtain an equation like (4.1) with a normalized pair

of coefficients, whose number of solutions is the same as that of the original

equation.

Lemma 4.2. Let Γ be a finitely generated subgroup of G∗. There is a finite

set of normalized pairs in (G∗)2, such that for every normalized pair (a1, a2) ∈
(G∗)2 outside this set, equation (4.1) has at most two solutions, the pair (1, 1)

included.

Proof. This result is due to Evertse, Győry, Stewart and Tijdeman [6]; see also

[12]. We note that the proof depends ultimately on the Subspace Theorem,

hence it is ineffective. �

We consider more generally polynomial equations

(4.2) f(x1, . . . , xn) = 0 in x1, . . . , xn ∈ Γ

where f is a non-zero polynomial from G[X1, . . . , Xn] and Γ is a finitely

generated subgroup of G∗. Denote by T an auxiliary variable. A solution

(x1, . . . , xn) of (4.2) is called degenerate, if there are integers c1, . . . , cn, not all

zero, such that

(4.3) f(x1T
c1 , . . . , xnT

cn) ≡ 0 identically in T ,

and non-degenerate otherwise.

Lemma 4.3. Let f be a non-zero polynomial from G[X1, . . . , Xn] and Γ a

finitely generated subgroup of G∗. Then Eq. (4.2) has only finitely many non-

degenerate solutions.

Proof. Given a multiplicative abelian group H, we denote by Hn its n-fold

direct product with componentwise multiplication.
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Let V be the hypersurface given by f = 0. Notice that the degenerate

solutions x are precisely those, for which there exists an algebraic subgroup H

of (G∗)n of dimension ≥ 1 such that xH ⊆ V . By a theorem of Laurent [18],

the intersection V ∩Γn is contained in a finite union of cosets x1H1∪· · ·∪xrHr

where H1, . . . , Hr are algebraic subgroups of (G∗)n, x1, . . . ,xr are elements of

Γn, and xiHi ⊆ V for i = 1, . . . , r. The non-degenerate solutions in our

lemma are precisely the zero-dimensional cosets among x1H1, . . . ,xrHr, while

the degenerate solutions are in the union of the positive dimensional cosets. �

5. Finitely generated domains

We recall some facts about domains finitely generated over Z.

Let A be an integrally closed domain with quotient field L of characteristic 0

which is finitely generated over Z. Then A is a Noetherian domain. Moreover,

A is a Krull domain; see e.g. Bourbaki [3], Chapter VII, §1. This means the

following. Denote by P(A) the collection of minimal non-zero prime ideals of

A, these are the non-zero prime ideals that do not contain a strictly smaller

non-zero prime ideal. Then there exist normalized discrete valuations ordp

(p ∈ P(A)) on L, such that the following conditions are satisfied:

for every x ∈ K∗ there are only finitely many p ∈ P(A) with

ordp(x) 6= 0,
(5.1)

A =
{
x ∈ K : ordp(x) ≥ 0 for p ∈ P(A)

}
,(5.2)

p =
{
x ∈ A : ordp(x) > 0

}
for p ∈ P(A).(5.3)

These valuations ordp are uniquely determined. As is easily seen, for x, y ∈ L∗

we have

(5.4) ordp(x) = ordp(y) for all p ∈ P(A)⇐⇒ xy−1 ∈ A∗.

Let G be a finite extension of L. Denote by AG the integral closure of A

in G, and by A∗G the unit group, i.e., group of invertible elements of AG. We

will apply the results from Section 4 with Γ = A∗G. To this end, we need the

following lemma.

Lemma 5.1. The group A∗G is finitely generated.
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Proof. The domain AG is contained in a free A-module of rank [G : L]. Since

A is Noetherian, the domain AG is finitely generated as an A-module, and so

it is finitely generated as an algebra over Z. Then by a theorem of Roquette

[19], the group A∗G is finitely generated. �

6. Other auxiliary results

We have collected some elementary lemmas needed in the proofs of Theorems

3.1 and 3.2. Let A be an integrally closed domain with quotient field L of

characteristic 0 which is finitely generated over Z, and K a finite extension of

L with [K : L] =: d ≥ 3. Denote by G the normal closure of K over L. Let

σ1 = id, . . . , σd be the distinct L-isomorphisms of K in G, and for α ∈ K write

α(i) := σi(α) for i = 1, . . . , d. Denote by AK and AG the integral closures of

A in K and G, respectively, and by A∗G the multiplicative group of invertible

elements of AG.

The discriminant of α ∈ K is given by

DK/L(α) :=
∏

1≤i<j≤d

(
α(i) − α(j)

)2
.

This is an element of L. We have L(α) = K if and only if all conjugates of α

are distinct, hence if and only if DK/L(α) 6= 0. Further, if α is integral over A

then DK/L(α) ∈ A since A is integrally closed.

Lemma 6.1. Let α, β ∈ AK and suppose that L(α) = L(β) = K, A[α] = A[β].

Then

(i)
β(i) − β(j)

α(i) − α(j)
∈ A∗G for i, j ∈ {1, . . . , d}, i 6= j,

(ii)
DK/L(β)

DK/L(α)
∈ A∗.

Proof. (i) Let i, j ∈ {1, . . . , d}, i 6= j. We have β = f(α) for some f ∈ A[X].

Hence
β(i) − β(j)

α(i) − α(j)
=
f(α(i))− f(α(j))

α(i) − α(j)
∈ AG.

Likewise (α(i) − α(j))/(β(i) − β(j)) ∈ AG. This proves (i).
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(ii) We have on the one hand, DK/L(β)/DK/L(α) ∈ L∗, on the other hand

DK/L(β)

DK/L(α)
=

∏
1≤i<j≤d

(
β(i) − β(j)

α(i) − α(j)

)2

∈ A∗G.

Since A is integrally closed, this proves (ii). �

We call two elements α, β of K L-equivalent if β = uα + a for some u ∈
L∗, a ∈ L.

Lemma 6.2. Let α, β ∈ AK and suppose that L(α) = L(β) = K, A[α] = A[β],

and α, β are L-equivalent. Then α, β are A-equivalent.

Proof. By assumption, β = uα+a with u ∈ L∗, a ∈ L. By the previous lemma,

ud(d−1) = DK/L(β)/DK/L(α) ∈ A∗, and then u ∈ A∗ since A is integrally closed.

Consequently, a = β − uα is integral over A. Hence a ∈ A. This shows that

α, β are A-equivalent. �

For α ∈ K with K = L(α) we define the ordered (d− 2)-tuple

(6.1) τ(α) :=
(α(3) − α(1)

α(2) − α(1)
, . . . ,

α(d) − α(1)

α(2) − α(1)

)
.

Lemma 6.3. (i) Let α, β with L(α) = L(β) = K. Then α, β are L-equivalent

if and only if τ(α) = τ(β).

(ii) Let α, β ∈ AK and suppose that L(α) = L(β) = K, A[α] = A[β]. Then

α, β are A-equivalent if and only if τ(α) = τ(β).

Proof. (i) If α, β are L-equivalent, then clearly τ(α) = τ(β). Assume con-

versely that τ(α) = τ(β). Then there are unique u ∈ G∗, a ∈ G such that

(6.2) (β(1), . . . , β(d)) = u(α(1), . . . , α(d)) + a(1, . . . , 1).

In fact, the unicity of u, a follows since thanks to our assumption K = L(α),

the numbers α(1), . . . , α(d) are distinct. As for the existence, observe that (6.2)

is satisfied with u = (β(2) − β(1))/(α(2) − α(1)), a = β(1) − uα(1).

Take σ from the Galois group Gal (G/L). Then σ ◦σ1, . . . , σ ◦σd is a permu-

tation of the L-isomorphisms σ1, . . . , σd : K ↪→ G. It follows that σ permutes
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(α(1), . . . , α(d)) and (β(1), . . . , β(d)) in the same way. So by applying σ to (6.2)

we obtain

(β(1), . . . , β(d)) = σ(u)(α(1), . . . , α(d)) + σ(a)(1, . . . , 1).

By the unicity of u, a in (6.2) this implies σ(u) = u, σ(a) = a. This holds for

every σ ∈ Gal (G/L). So in fact u ∈ L∗, a ∈ L, that is, α, β are L-equivalent.

(ii) Use Lemma 6.2. �

We denote by (a1, . . . , ar) the ideal of A generated by a1, . . . , ar.

Lemma 6.4. Let α, β ∈ AK with L(α) = L(β) = K, A[α] = A[β]. Suppose

there is a matrix ( a1 a2
a3 a4 ) ∈ GL(2, L) with

β =
a1α + a2

a3α + a4

, a3 6= 0,(6.3)

a1, a2, a3, a4 ∈ A, (a1, a2, a3, a4) = (1).(6.4)

Then ( a1 a2
a3 a4 ) ∈ GL(2, A).

Remark. Let O be an A-order of type I, as defined in Section 3. Then there

exist α, β with O = A[α] = A[β], and a matrix U := ( a1 a2
a3 a4 ) ∈ GL(2, L) with

(6.3). If A is a principal ideal domain then by taking a suitable scalar multiple

of U we can arrange that (6.4) also holds, and thus, that U ∈ GL(2, A).

Proof. Since α ∈ AK and L(α) = K, it has a monic minimal polynomial

f ∈ A[X] over L of degree d. Moreover, since A[β] = A[α], we have

(6.5) β = r0 + r1α + · · ·+ rd−1α
d−1 with r0, . . . , rd−1 ∈ A.

Hence

(6.6) (a3X + a4)(rd−1X
d−1 + · · ·+ r0)− a1X − a2 = a3rd−1f(X).

Equating the coefficients, we see that

a4r0 − a2 ∈ a3rd−1A, a4r1 + a3r0 − a1 ∈ a3rd−1A,(6.7)

a4rj + a3rj−1 ∈ a3rd−1A (j = 2, . . . , d− 1).(6.8)

We first prove that

(6.9) a1−j
3 rj ∈ A for j = 1, . . . , d− 1.
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In fact, we prove by induction on i (1 ≤ i ≤ d−1), the assertion that a1−j
3 rj ∈ A

for j = 1, . . . , i, and a1−i
3 rj ∈ A for j = i+ 1, . . . , d− 1. For i = 1 this is clear.

Let 2 ≤ i ≤ d − 1 and suppose that the assertion is true for i − 1 instead

of i. Then sj := a2−i
3 rj ∈ A for j = i, . . . , d − 1. Further, by (6.8), we have

a4sj + a3sj−1 = zja3sd−1 with zj ∈ A for j = i, . . . , d − 1. Next, by (6.7)

we have a1, a2 ∈ (a3, a4), and then (a3, a4) = (1) by (6.4). That is, there are

x, y ∈ A with xa3 + ya4 = 1. Consequently, for j = i, . . . , d− 1, we have

sj = (xa3 + ya4)sj = a3(xsj + y(zjsd−1 − sj−1)) ∈ a3A,

i.e., a1−i
3 rj = a−1

3 sj ∈ A. This completes our induction step, and completes

the proof of (6.9).

Now define the binary form F (X, Y ) := Y df(X/Y ). Then (6.6) implies

a3rd−1F (X, Y ) = (a3X + a4Y )(· · · )− Y d−1(a1X + a2Y ).

Substituting X = a4, Y = −a3, and using (6.9), it follows that

(6.10) F (a4,−a3) = s−1(a1a4 − a2a3) with s ∈ A.

Denote by α(1), . . . , α(d) the conjugates of α, and by β(1), . . . , β(d) the corre-

sponding conjugates of β. Then for the discriminant of β we have, by (6.3),

(6.10),

DK/L(β) =
∏

1≤i<j≤d

(β(i) − β(j))2

= (a1a4 − a2a3)
d(d−1)

(
d∏
i=1

(a4 + a3α
(i))

)−2d+2 ∏
1≤i<j≤d

(α(i) − α(j))2

= (a1a4 − a2a3)
d(d−1)F (a4,−a3)

−2d+2DK/L(α)

= s2d−2(a1a4 − a2a3)
(d−1)(d−2)DK/L(α).

On the other hand, by Lemma 6.1, (ii) we have DK/L(β)/DK/L(α) ∈ A∗. Using

also that A is integrally closed, it follows that a1a4−a2a3 ∈ A∗. This completes

our proof. �
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7. Proof of Theorem 3.1

The proof splits into two parts. Consider β ∈ AK with K = L(β). The

first part, which is Lemma 7.1 below, implies that the set of β such that A[β]

is three times monogenic, is contained in a union of at most finitely many

L-equivalence classes. The second part, which is Lemma 7.2 below, implies

that if C is a given L-equivalence class, then the set of β ∈ C such that A[β]

is two times monogenic, is in a union of at most finitely many A-equivalence

classes. (Lemma 7.2 is used in the proof of Theorem 3.2 as well, therefore it

deals with two times monogenic orders.) Any three times monogenic A-order

in K can be expressed as A[β]. A combination of Lemmas 7.1 and 7.2 clearly

yields that the set of such β lies in finitely many A-equivalence classes. Since

A-equivalent β give rise to equal A-orders A[β], there are only finitely many

three times monogenic orders in K.

Lemma 7.1. The set of β such that

(7.1) β ∈ AK , L(β) = K, A[β] is three times monogenic

is contained in a union of at most finitely many L-equivalence classes.

Proof. Assume the contrary. Then there is an infinite sequence of triples

{(β1p, β2p, β3p) : p = 1, 2, . . .} such that

(7.2) βhp ∈ AK , L(βhp) = K for h = 1, 2, 3, p = 1, 2, . . . ;

(7.3) β1p (p = 1, 2, . . .) lie in different L-equivalence classes

and for p = 1, 2, . . . ,

(7.4)

{
A[β1p] = A[β2p] = A[β3p],

β1p, β2p, β3p lie in different A-equivalence classes

(so the β1p play the role of β in the statement of our lemma). For any three

distinct indices i, j, k from {1, . . . , d}, and for h = 1, 2, 3, p = 1, 2, . . ., put

β
(ijk)
hp :=

β
(i)
hp − β

(j)
hp

β
(i)
hp − β

(k)
hp

.

By (7.2), these numbers are well-defined and non-zero.
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We start with some observations. Let i, j, k be any three distinct indices

from {1, . . . , d}. By Lemma 6.1 and the obvious identities β
(ijk)
hp + β

(kji)
hp = 1

(h = 1, 2, 3), the pairs (β
(ijk)
hp /β

(ijk)
1p , β

(kji)
hp /β

(kji)
1p ) (h = 1, 2, 3) are solutions to

(7.5) β
(ijk)
1p x + β

(kji)
1p y = 1 in x, y ∈ A∗G.

Notice that (7.5) has solution (1, 1). So according to Lemmas 4.2, 5.1, there is

a finite set Aijk such that if β
(ijk)
1p 6∈ Aijk, then (7.5) has at most two solutions,

including (1, 1). In particular, there are at most two distinct pairs among

(β
(ijk)
hp /β

(ijk)
1p , β

(kji)
hp /β

(kji)
1p ) (h = 1, 2, 3). Consequently,

(7.6) β
(ijk)
1p 6∈ Aijk =⇒ two among β

(ijk)
1p , β

(ijk)
2p , β

(ijk)
3p are equal.

We start with the case d = 3. Then τ(βhp) = (β
(132)
hp ) for h = 1, 2, 3. By (7.3)

and Lemma 6.3,(i) the numbers β
(132)
1p (p = 1, 2, . . .) are pairwise distinct. By

(7.6) and Lemma 6.3,(ii), for all but finitely many p, two among the numbers

β
(132)
hp (h = 1, 2, 3) are equal and hence two among βhp (h = 1, 2, 3) are A-

equivalent which contradicts (7.4).

Now assume d ≥ 4. We have to distinguish between subsets {i, j, k} of

{1, . . . , d} and indices h for which there are infinitely many distinct numbers

among β
(ijk)
hp (p = 1, 2, . . .), and {i, j, k} and h for which among these numbers

there are only finitely many distinct ones. This does not depend on the choice

of ordering of i, j, k, since any permutation of (i, j, k) transforms β
(ijk)
hp into one

of (β
(ijk)
hp )−1, 1− β(ijk)

hp , (1− β(ijk)
hp )−1, 1− (β

(ijk)
hp )−1, (1− (β

(ijk)
hp )−1)−1.

There is a subset {i, j, k} of {1, . . . , d} such that there are infinitely many

distinct numbers among β
(ijk)
1p (p = 1, 2, . . .). Indeed, if this were not the

case, then there would be only finitely many distinct tuples among τ(β1p) =

(β
(132)
1p , . . . , β

(1d2)
1p ), and then by Lemma 6.3,(i) the numbers β1p would lie in only

finitely many L-equivalence classes, contradicting (7.3). There is an infinite

subsequence of indices p such that the numbers β
(ijk)
1p are pairwise distinct.

Suppose there is another subset {i′, j′, k′} 6= {i, j, k} such that if p runs through

the infinite subsequence just chosen, then β
(i′j′k′)
1p runs through an infinite set.

Then for some infinite subsequence of these p, the numbers β
(i′j′k′)
1p are pairwise

distinct. Continuing in this way, we infer that there is a non-empty collection

S of 3-element subsets {i, j, k} of {1, . . . , d}, and an infinite sequence P of
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indices p, such that for each {i, j, k} ∈ S the numbers β
(ijk)
1p (p ∈ P) are

pairwise distinct, while for each {i, j, k} 6∈ S, there are only finitely many

distinct elements among β
(ijk)
1p (p ∈ P).

Notice that if {i, j, k} 6∈ S, then among the equations (7.5) with p ∈ P , there

are only finitely many distinct ones, and by Lemmas 4.1, 5.1, each of these

equations has only finitely many solutions. Therefore, there are only finitely

many distinct numbers among β
(ijk)
hp /β

(ijk)
1p hence only finitely many among

β
(ijk)
hp (h = 2, 3, p ∈ P). Conversely, if {i, j, k} ∈ S, h ∈ {2, 3}, there are

infinitely many distinct numbers among β
(ijk)
hp (p ∈ P). For if not, then by the

same argument, interchanging the roles of βhp, β1p, it would follow that there

are only finitely many distinct numbers among β
(ijk)
1p (p ∈ P), contradicting

{i, j, k} ∈ S.

We conclude that there is an infinite subsequence of p, which after renaming

we may assume to be 1, 2, . . ., such that for h = 1, 2, 3,

(7.7) β
(ijk)
hp (p = 1, 2, . . .) are pairwise distinct if {i, j, k} ∈ S,

(7.8)
there are only finitely many distinct numbers among

β
(ijk)
hp (p = 1, 2, . . .) if {i, j, k} 6∈ S.

Notice that this characterization of S is symmetric in βhp (h = 1, 2, 3); this

will be used frequently.

We frequently use the following property of S: if i, j, k, l are any four distinct

indices from {1, . . . , d}, then

(7.9) {i, j, k} ∈ S =⇒ {i, j, l} ∈ S or {i, k, l} ∈ S.

Indeed, if {i, j, l}, {i, k, l} 6∈ S then also {i, j, k} 6∈ S since β
(ijk)
hp = β

(ijl)
hp /β

(ikl)
hp .

Pick a set from S, which without loss of generality we may assume to be

{1, 2, 3}. By (7.9), for k = 4, . . . , d at least one of the sets {1, 2, k}, {1, 3, k}
belongs to S. Define the set of pairs

(7.10) C :=
{

(j, k) : j ∈ {2, 3}, k ∈ {3, . . . , d}, j 6= k, {1, j, k} ∈ S
}
.
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Thus, for each k ∈ {3, . . . , d} there is j with (j, k) ∈ C. Further, for every

p = 1, 2, . . . there is a pair (j, k) ∈ C such that

β
(1jk)
1p 6= β

(1jk)
2p .

Indeed, if this were not the case, then since β
(12k)
hp = β

(13k)
hp β

(123)
hp , it would follow

that for some p,

β
(12k)
1p = β

(12k)
2p for k = 3, . . . , d,

and then τ(β1p) = τ(β2p). Together with Lemma 6.3,(ii) this would imply that

β1p, β2p are A-equivalent, contrary to (7.4). Clearly, there is a pair (j, k) ∈ C
such that β

(1jk)
1p 6= β

(1jk)
2p for infinitely many p. After interchanging the indices

2 and 3 if j = 3 and then permuting the indices 3, . . . , d, which does not affect

the above argument, we may assume that j = 2, k = 3. That is, we may

assume that {1, 2, 3} ∈ S and

β
(123)
1p 6= β

(123)
2p for infinitely many p.

We now bring (7.6) into play. It implies that for infinitely many p we have

β
(123)
3p ∈ {β(123)

1p , β
(123)
2p }. After interchanging β1p, β2p (which does not affect the

definition of S or the above arguments) we may assume that {1, 2, 3} ∈ S and

(7.11) β
(123)
1p = β

(123)
3p 6= β

(123)
2p

for infinitely many p.

We repeat the above argument. After renaming again, we may assume that

the above infinite sequence of indices p for which (7.11) is true is p = 1, 2, . . . ,

and thus, (7.7) and (7.8) are true again. Define again the set C by (7.10).

Similarly as above, we conclude that there is a pair (j, k) ∈ C such that among

p = 1, 2, . . . there is an infinite subset with β
(1jk)
1p 6= β

(1jk)
3p . Then necessarily,

k 6= 3. After interchanging 2 and 3 if j = 3 (which does not affect (7.11))

and rearranging the other indices 4, . . . , d, we may assume that j = 2, k = 4.

Thus, {1, 2, 3}, {1, 2, 4} ∈ S and there are infinitely many p for which we have

(7.11) and

β
(124)
1p 6= β

(124)
3p .

By (7.6), for all but finitely many of these p we have β
(124)
2p ∈ {β(124)

1p , β
(124)
3p }.

After interchanging β1p, β3p if necessary, which does not affect (7.11), we may
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conclude that {1, 2, 3}, {1, 2, 4} ∈ S and there are infinitely many p with (7.11)

and

(7.12) β
(124)
1p = β

(124)
2p 6= β

(124)
3p .

Next, by (7.9), at least one of {1, 3, 4}, {2, 3, 4} belongs to S. Relations

(7.11), (7.12) remain unaffected if we interchange β
(1)
hp and β

(2)
hp , so without loss

of generality, we may assume that {1, 3, 4} ∈ S. By (7.6), for all but finitely

many of the p with (7.11) and (7.12), at least two among the numbers β
(134)
hp

(h = 1, 2, 3) must be equal. Using (7.11), (7.12) and β
(134)
hp = β

(124)
hp /β

(123)
hp , it

follows that {1, 2, 3}, {1, 2, 4}, {1, 3, 4} ∈ S and for infinitely many p we have

(7.11),(7.12) and

(7.13) β
(134)
2p = β

(134)
3p 6= β

(134)
1p .

We now show that this is impossible. For convenience we introduce the

notation

β̃
(i)
hp :=

β
(i)
hp − β

(4)
hp

β
(3)
hp − β

(4)
hp

= β
(4i3)
hp

for h = 1, 2, 3, i = 1, 2, 3, 4, p = 1, 2, . . .. Notice that β̃
(3)
hp = 1, β̃

(4)
hp = 0,

and β
(ijk)
hp =

β̃
(i)
hp−β̃

(j)
hp

β̃
(i)
hp−β̃

(k)
hp

for any distinct i, j, k ∈ {1, 2, 3, 4}. Thus, (7.11)–(7.13)

translate into

β̃
(1)
1p − β̃

(2)
1p

β̃
(1)
1p − 1

=
β̃

(1)
3p − β̃

(2)
3p

β̃
(1)
3p − 1

6=
β̃

(1)
2p − β̃

(2)
2p

β̃
(1)
2p − 1

,(7.14)

β̃
(1)
1p − β̃

(2)
1p

β̃
(1)
1p

=
β̃

(1)
2p − β̃

(2)
2p

β̃
(1)
2p

6=
β̃

(1)
3p − β̃

(2)
3p

β̃
(1)
3p

,(7.15)

β̃
(1)
2p − 1

β̃
(1)
2p

=
β̃

(1)
3p − 1

β̃
(1)
3p

6=
β̃

(1)
1p − 1

β̃
(1)
1p

.(7.16)

We distinguish between the cases {2, 3, 4} ∈ S and {2, 3, 4} 6∈ S.

First suppose that {2, 3, 4} ∈ S. Then by (7.6), there are infinitely many

p such that (7.14)–(7.16) hold and at least two among β̃
(2)
hp = β

(423)
hp (h =

1, 2, 3) are equal. But this is impossible, since (7.14),(7.15) imply β̃
(2)
1p 6= β̃

(2)
2p ;

(7.14),(7.16) imply β̃
(2)
1p 6= β̃

(2)
3p ; and (7.15),(7.16) imply β̃

(2)
2p 6= β̃

(2)
3p .
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Hence {2, 3, 4} 6∈ S. This means that there are only finitely many distinct

numbers among β̃
(2)
hp = β

(423)
hp , (h = 1, 2, 3, p = 1, 2, . . .). It follows that there

are (necessarily non-zero) constants c1, c2, c3 such that β̃
(2)
hp = ch for h = 1, 2, 3

and infinitely many p. By (7.16), (7.15), respectively, we have for all these p

that β̃
(1)
2p = β̃

(1)
3p and β̃

(1)
2p = (c2/c1)β̃

(1)
1p . By substituting this into (7.14), we get

β̃
(1)
1p − c1
β̃

(1)
1p − 1

=
c2β̃

(1)
1p − c1c3

c2β̃
(1)
1p − c1

.

By (7.14), (7.16) we have c1 6= c3, hence

β̃
(1)
1p = β

(413)
1p =

c1(c1 − c3)
c1c2 + c1 − c2 − c1c3

is a constant independent of p. But this contradicts {1, 3, 4} ∈ S and (7.7).

So our assumption that Lemma 7.1 is false leads in all cases to a contradic-

tion. This completes our proof. �

Lemma 7.2. Let C be an L-equivalence class in K. Then the set of β such

that

(7.17) β ∈ AK ∩ C, L(β) = K, A[β] is two times monogenic

is contained in a union of at most finitely many A-equivalence classes.

Remark. As mentioned before, Lemma 7.2 is used also in the proof of Theo-

rem 3.2. Our proof of Lemma 7.2 does not enable to estimate the number of

A-equivalence classes. It is for this reason that we can not prove quantitative

versions of Theorems 3.1 and 3.2.

Proof. We assume that the set of β with (7.17) is not contained in a union of

finitely many A-equivalence classes and derive a contradiction.

Pick β with (7.17). Then there exist numbers α such that A[α] = A[β] and

α is not A-equivalent to β. Consider such α. Then from the identities

α(i) − α(1)

α(2) − α(1)
+
α(2) − α(i)

α(2) − α(1)
= 1 (i = 3, . . . , d)

and Lemma 6.1 it follows that the pairs

(7.18)

(
α(i) − α(1)

α(2) − α(1)
,
α(2) − α(i)

α(2) − α(1)

)
(i = 3, . . . , d)
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satisfy

x+ y = 1 in x, y ∈ Γ,

where Γ is the multiplicative group generated by A∗G and the numbers

β(i) − β(1)

β(2) − β(1)
,
β(2) − β(i)

β(2) − β(1)
(i = 3, . . . , d).

By Lemma 6.3,(i), the group Γ depends only on the given L-equivalence class

C and is otherwise independent of β. By Lemma 5.1, the group Γ is finitely

generated, and then by Lemma 4.1, the pairs (7.18) belong to a finite set

depending only on Γ, hence only on C. Therefore, the tuple τ(α) belongs to a

finite set depending only on C. In view of Lemma 6.3,(i), this means that α

belongs to a union of finitely many L-equivalence classes which depends on C
but is otherwise independent of β. Now by Dirichlet’s box principle, there is

an L-equivalence class C ′ with the following property: the set of β such that

(7.19)


β ∈ AK , L(β) = K, β ∈ C,

there is α ∈ C ′ such that A[α] = A[β]

and α is not A-equivalent to β

cannot be contained in a union of finitely many A-equivalence classes.

Fix β0 with (7.19) and then fix α0 such that A[α0] = A[β0], α0 ∈ C ′ and α0

is not A-equivalent to β0.

Let β be an arbitrary number with (7.19). Choose α such that A[α] = A[β],

α ∈ C ′ and α is not A-equivalent to β. Then there are u, u′ ∈ L∗, a, a′ ∈ L
with

(7.20) β = uβ0 + a, α = u′α0 + a′.

For these u, u′ we have

(7.21) DK/L(β) = ud(d−1)DK/L(β0), DK/L(α) = u′d(d−1)DK/L(α0).

On the other hand, it follows from A[α0] = A[β0], A[α] = A[β] and Lemma 6.1

(ii) that DK/L(β)/DK/L(α) ∈ A∗ and DK/L(β0)/DK/L(α0) ∈ A∗. Combined

with (7.21) and our assumption that A is integrally closed, this gives

(7.22) u′/u ∈ A∗.
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Since L(β0) = K and α0 ∈ A[β0] there is a unique polynomial F0 ∈ L[X]

of degree < d, which in fact belongs to A[X], such that α0 = F0(β0). Like-

wise, there is a unique polynomial F ∈ L[X] of degree < d which in fact

belongs to A[X], such that α = F (β). Inserting (7.20), it follows that F (X) =

u′F0 ((X − a)/u) + a′. Suppose that F0 =
∑m

j=0 ajX
j with m < d and am 6= 0.

Then F has leading coefficient amu
′u−m which belongs to A. Together with

(7.22) this implies

(7.23) u1−mam ∈ A.

Further, by (7.21)

(7.24) ud(d−1)DK/L(β0) = DK/L(β) ∈ A.

We distinguish between the cases m > 1 and m = 1. First let m > 1. We

have shown that every β with (7.19) can be expressed as β = uβ0 + a with

u ∈ L∗, a ∈ L and moreover, u satisfies (7.23), (7.24). Hence

−
ordp(DK/L(β0))

d(d− 1)
≤ ordp(u) ≤ ordp(am)

m− 1
for p ∈ P(A),

where P(A) is the collection of minimal non-zero prime ideals of A and ordp

(p ∈ P(A) ) are the associated discrete valuations, as explained in Section 5.

Thus, for the tuple v(u) := (ordp(u) : p ∈ P(A) ) we have only finitely many

possibilities.

We partition the set of β with (7.19) into a finite number of classes according

to the tuple v(u). Let β1 = u1β0 +a1, β2 = u2β0 +a2 belong to the same class,

where u1, u2 ∈ L∗ and a1, a2 ∈ L. Then v(u1) = v(u2) and so, u1u
−1
2 ∈ A∗ by

(5.4). Hence β2 = vβ1 + b with v ∈ A∗ and b ∈ L. But b = β2− vβ1 is integral

over A, hence belongs to A since A is integrally closed. So two elements with

(7.19) belonging to the same class are A-equivalent. But then, the set of β with

(7.19) is contained in a union of finitely many A-equivalence classes, which is

against our assumption.

Now assume that m = 1. Then

α0 = a1β0 + a0 with a1 ∈ A \ {0}, a0 ∈ A,
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hence a
d(d−1)
1 = DK/L(α0)/DK/L(β0). By Lemma 6.1 (ii) we have a

d(d−1)
1 ∈ A∗,

and then a1 ∈ A∗ since by assumption A is integrally closed. Hence α0, β0

are A-equivalent, which is against our choice of α0, β0. We arrive again at a

contradiction.

Consequently, our initial assumption that the set of β with (7.17)

cannot be contained in finitely many A-equivalence classes leads to a con-

tradiction. This proves Lemma 7.2. �

Now our proof of Theorem 3.1 is complete.

8. Reduction of Theorem 3.2 to a polynomial unit equation

We keep the assumptions and notation from the previous sections. In par-

ticular, A is an integrally closed domain with quotient field L of characteristic

0 which is finitely generated over Z and K is a finite extension of L. Further,

we denote by G the normal closure of K over L. As it will turn out, the proof

of part (i) of Theorem 3.2 is elementary. Therefore, in this section we assume

that [K : L] =: d ≥ 4. Let O = A[α] = A[β] be a two times monogenic A-order

in K, where α, β are not A-equivalent.

By Lemma 6.1,(i) we have

(8.1) εij :=
α(i) − α(j)

β(i) − β(j)
∈ A∗G for i, j = 1, . . . , d, i 6= j,

where A∗G is the unit group of the integral closure of A in G. Let i, j, k be any

three distinct indices from {1, . . . , d}. By Lemma 6.1, the identity

β(j) − β(i)

β(j) − β(k)
+
β(i) − β(k)

β(j) − β(k)
= 1

and a similar identity for α, the two pairs (1, 1) and (εij/εjk, εik/εjk) satisfy

(8.2)
β(j) − β(i)

β(j) − β(k)
· x +

β(i) − β(k)

β(j) − β(k)
· y = 1 in x, y ∈ A∗G.

Now a straightforward computation gives

(8.3)
εik
εjk
− 1 =

β(i) − β(j)

β(i) − β(k)
·
(
εij
εjk
− 1

)
.
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This is valid for any three distinct indices i, j, k. Now take four distinct indices

i, j, k, l from {1, . . . , d}. By applying (8.3) but with the respective triples

(i, j, k), (i, k, l), (i, l, j) replacing (i, j, k), and taking the product, the terms

with the conjugates of β disappear, and we obtain(
εik
εjk
− 1

)(
εil
εkl
− 1

)(
εij
εjl
− 1

)
(8.4)

=

(
εij
εjk
− 1

)(
εik
εkl
− 1

)(
εil
εjl
− 1

)
.

In the remainder of this section we focus on the equation

(x1 − 1)(x2 − 1)(x3 − 1) = (y1 − 1)(y2 − 1)(y3 − 1)(8.5)

in x1, x2, x3, y1, y2, y3 ∈ Γ

where Γ is a finitely generated multiplicative group, contained in a field of

characteristic 0. As we just observed, the tuple

(8.6)

(
εik
εjk

,
εil
εkl
,
εij
εjl
,
εij
εjk

,
εik
εkl
,
εil
εjl

)
is a solution to (8.5) with Γ = A∗G. Recall that by Lemma 5.1, the group A∗G
is finitely generated.

We prove the following Proposition concerning (8.5).

Proposition 8.1. Let G be a field of characteristic 0 and Γ a finitely generated

subgroup of G∗. Then there is a finite subset S of Γ with 1 ∈ S such that for

every solution (x1, . . . , y3) ∈ Γ6 of (8.5), at least one of the following holds:

(i) at least one of x1, . . . , y3 belongs to S;

(ii) there are η1, η2, η3 ∈ {±1} such that (y1, y2, y3) is a permutation of (xη11 , x
η2
2 , x

η3
3 );

(iii) one of the numbers in {xixj, xi/xj, yiyj, yi/yj : 1 ≤ i < j ≤ 3} is equal

to either −1, or to a primitive cube root of unity.

We remark here that case (iii) may occur. For instance, let i2 = −1, let

ρ denote a primitive cube root of unity, and assume that i, ρ ∈ Γ. Then for

every u ∈ Γ, the tuple (u6, iu3,−iu3, u4, ρu4, ρ2u4) satisfies (8.5). There are

various other such infinite families of solutions. Proposition 8.1 contains only

the information needed for the proof of Theorem 3.2.
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Proposition 8.1 is deduced from the following lemma. Here and below, T is

an auxiliary variable, and by ≡ we indicate that an identity holds identically

in T .

Lemma 8.2. Let G, Γ be as in Proposition 8.1. Let m,n be non-negative

integers with m+ n > 0. Then there is a finite subset T of Γ with 1 ∈ T such

that for every solution (x1, . . . , xm, y1, . . . , yn, z) ∈ Γm+n+1 of

(8.7) (1− x1) · · · (1− xm) = z(1− y1) · · · (1− yn),

at least one of the following holds:

(i) at least one of x1, . . . , yn belongs to T ;

(ii) there are integers c1, . . . , cm, d1, . . . , dn, e with c1 · · · cmd1 · · · dn 6= 0, such

that

(8.8) (1− x1T
c1) · · · (1− xmT cm) ≡ zT e(1− y1T

d1) · · · (1− ynT dn).

Proof. We proceed by induction on m+n. For m = 1, n = 0, say, our assertion

is a simple consequence of the fact that the equation 1−x1 = z has only finitely

many solutions in x1, z ∈ Γ. Let p ≥ 2, and suppose that the lemma is true

for all pairs of non-negative integers m,n with m+ n < p. Take non-negative

integers m,n with m + n = p. By Lemma 4.3, for all but finitely many

solutions (x1, . . . , yn, z) ∈ Γm+n+1 of (8.7) with xi 6= 1 for i = 1, . . . ,m, yj 6= 1

for j = 1, . . . , n, there are integers c1, . . . , dn, e, not all 0, such that (8.8) holds,

but some of c1, . . . , cm, d1, . . . , dn may be zero. Notice that (8.8) cannot hold

with e 6= 0 and all ci, dj equal to 0. Fix a solution (x1, . . . , yn, z) satisfying (8.8)

where some of the ci, dj are 0, and put I := {i : ci 6= 0}, Ic := {1, . . . ,m} \ I,

J := {j : dj 6= 0}, J c := {1, . . . , n}\J . Then at least one of I, J is non-empty.

For i ∈ I, put ai := |ci| and ui := x±1
i with uai

i = x−cii . Likewise, for j ∈ J ,

put bj := |dj|, and vj := y±1
j such that v

bj
j = y

−dj

j . Then (8.7) implies that∏
i∈I

(T ai − ui) ·
∏
i∈Ic

(1− xi) ≡ z′T f
∏
j∈J

(T bj − vj) ·
∏
j∈Ic

(1− yj)

with z′ ∈ Γ, f ∈ Z. Since both sides of this identity must be polynomials with

equal leading coefficients, we have f = 0, and

(8.9)
∏
i∈Ic

(1− xi) = z′
∏
j∈Ic

(1− yj).
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By combining this with (8.8) we obtain

(8.10)
∏
i∈I

(1− T cixi) ≡ z′′T e
∏
j∈J

(1− T djyj),

where z′z′′ = z. Recall that all but finitely many solutions of (8.7) satisfy both

(8.9), (8.10).

We apply the induction hypothesis to (8.9). Notice that |Ic|+ |J c| < m+ n

since at least one of the sets I, J is non-empty. It follows that there exists

a finite set T ′ with 1 ∈ T ′ such that for every tuple (xi : i ∈ Ic; yj : j ∈
J c; z′) with entries from Γ, satisfying (8.9), either one of the xi (i ∈ Ic) or yj
(j ∈ J c) belongs to T ′, or there are integers ci (i ∈ Ic), dj : (j ∈ J c), e′ with∏

i∈Ic ci
∏

j∈Jc dj 6= 0 such that∏
i∈Ic

(1− xiT ci) ≡ z′T e
′ ∏
j∈Ic

(1− yjT dj ).

By multiplying this with (8.10), we obtain an identity of the type (8.8) where

none of the ci, dj are 0. All solutions (x1, . . . , xm; y1, . . . , yn; z) ∈ Γm+n+1 of

(8.7) satisfy this identity, except those for which some xi or yj belongs to T ′

or the finitely many solutions with all xi, yj different from 1 for which (8.9),

(8.10) do not both hold. This completes our induction step, and our proof. �

Proof of Proposition 8.1. We take for S the set T from Lemma 8.2, taken with

m = n = 3 and z = 1. Pick a solution (x1, . . . , y3) ∈ Γ6 of (8.5) with none of

the xi, yj in S. Then there are integers c1, . . . , d3 and e with c1c2c3d1d2d3 6= 0

such that

(8.11) (1−x1T
c1)(1−x2T

c2)(1−x3T
c3) ≡ T e(1−y1T

d1)(1−y2T
d2)(1−y3T

d3).

For i = 1, 2, 3, define ai := |ci|, bi := |di|, ui := x±1
i , vi := y±1

i , where uai
i =

x−cii , vbii = y−di
i . Then (8.11) can be rewritten as an identity in polynomials

(8.12) (T a1 − u1)(T
a2 − u2)(T

a3 − u3) ≡ (T b1 − v1)(T
b2 − v2)(T

b3 − v3)

with positive integers a1, . . . , b3; here we have divided out possible powers of

T on both sides.

In what follows we assume that

(8.13) ui + uj 6= 0, vi + vj 6= 0 for 1 ≤ i < j ≤ 3
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and prove that at least one of the following two alternatives must hold:

(v1, v2, v3) is a permutation of (u1, u2, u3);(8.14)

{ui/uj, vi/vj (i ≤ i < j ≤ 3)}
contains a primitive cube root of unity.

(8.15)

This clearly implies Proposition 8.1. Since (8.13)–(8.15) are invariant under

permutations of u1, u2, u3, under permutations of v1, v2, v3 and under inter-

changing the tuples (u1, u2, u3), (v1, v2, v3), it suffices to consider the cases

(i)–(x) below.

Case (i). a1 > a2 > a3, b1 > b2 > b3.

Then (8.12) becomes

T a1+a2+a3 − u3T
a1+a2 − u2T

a1+a3 − u1T
a2+a3

+u2u3T
a1 + u1u3T

a2 + u1u2T
a3 − u1u2u3 ≡

T b1+b2+b3 − v3T
b1+b2 − v2T

b1+b3 − v1T
b2+b3

+v2v3T
b1 + v1v3T

b2 + v1v2T
b3 − v1v2v3.

We have either a2 + a3 6= a1 and b2 + b3 6= b1 or a2 + a3 = a1 and b2 + b3 = b1.

But in each of these cases, the second largest exponent on T on the left is

a1 +a2 and that on the right b1 + b2; hence u3 = v3. Likewise, the third largest

exponent on T on the left is a1 + a3 and that on the right b1 + b3; so u2 = v2.

Finally, u1u2u3 = v1v2v3; hence u1 = v1. This implies (8.14).

Case (ii). a1 > a2 > a3, b1 = b2 > b3.

Then (8.12) becomes

T a1+a2+a3 − u3T
a1+a2 − u2T

a1+a3 − u1T
a2+a3 + u2u3T

a1

+u1u3T
a2 + u1u2T

a3 − u1u2u3 ≡

T 2b1+b3 − v3T
2b1 − (v1 + v2)T

b1+b3

+(v1 + v2)v3T
b1 + v1v2T

b3 − v1v2v3.

By (8.13), the right-hand side consists of 6 terms with different exponents

on T and non-zero coefficients. So on the left-hand side, two terms have to

cancel each other and this is possible only if a2 + a3 = a1 and u1 = u2u3.
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Comparing the remaining term with the largest exponent on T on the left

with the term with the largest exponent on T on the right, and also the terms

on both sides with the second largest, third largest exponent on T , etc., we

see that a1 + a2 + a3 = 2b1 + b3, a1 + a2 = 2b1, a1 + a3 = b1 + b3. This implies

a3 = b3, a1 = b1, a2 = b1, contradicting a1 > a2. So Case (ii) is impossible.

Case (iii). a1 > a2 > a3, b1 > b2 = b3.

Then (8.12) becomes

T a1+a2+a3 − u3T
a1+a2 − u2T

a1+a3 − u1T
a2+a3 + u2u3T

a1

+u1u3T
a2 + u1u2T

a3 − u1u2u3 ≡

T b1+2b3 − (v2 + v3)T
b1+b3 − v1T

2b3

+v2v3T
b1 + v1(v2 + v3)T

b3 − v1v2v3.

Again, on the left-hand side we must have cancellation of two terms, implying

a2 + a3 = a1 and u1 = u2u3. On the right-hand side, all six terms must have

different exponents on T , so 2b3 6= b1. If 2b3 > b1, then comparing on both

sides the three terms with the largest powers of T , we get a1+a2+a3 = b1+2b3,

a1 + a2 = b1 + b3, a1 + a3 = 2b3, implying a1 = a3 = b3 which is impossible.

So b1 > 2b3. Then comparing the exponents on T of the corresponding terms

on the left- and right-hand side does not lead to a contradiction. Comparing

the coefficients of the terms with the second largest exponent on T , i.e., with

T a1+a2 , T b1+b3 , with the third largest exponent, etc., we get u3 = v2 + v3,

u2 = −v2v3, u1u3 = −v1, u1u2 = v1(v2 + v3), u1u2u3 = v1v2v3. Consequently,

v1v2v3 = u1u2u3 = v1(v2 + v3)
2, hence v2v3 = (v2 + v3)

2, v2
2 + v2v3 + v2

3 = 0,

v2/v3 is a primitive cube root of unity. This implies (8.15).

Case (iv). a1 > a2 > a3, b1 = b2 = b3.

In this case, the expansion of the left-hand side of (8.12) gives at least 6 non-

zero terms with distinct powers of T , while the right-hand side cannot have

more than 4 terms. So this case is impossible.

Case (v). a1 = a2 > a3, b1 = b2 > b3.
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Then (8.12) becomes

T 2a1+a3 − u3T
2a1 − (u1 + u2)T

a1+a3

+(u1 + u2)v3T
a1 + u1u2T

a3 − a1a2a3 ≡

T 2b1+b3 − v3T
2b1 − (v1 + v2)T

b1+b3

+(v1 + v2)v3T
b1 + v1v2T

b3 − v1v2v3.

By (8.13) we have on both sides 6 non-zero terms with distinct powers of T .

Comparing the terms on both sides with the second highest power of T , i.e.,

T 2a1 and T 2b1 , we get u3 = v3. Comparing the terms with the third highest

power of T , i.e., T a1+a3 and T b1+b3 , we obtain u1 + u2 = v1 + v2, and finally,

from the terms with the smallest positive power of T , i.e., T a3 , T b3 , we obtain

u1u2 = v1v2. Hence {u1, u2} = {v1, v2}. This implies (8.14).

Case (vi). a1 = a2 > a3, b1 > b2 = b3.

Then (8.12) becomes

T 2a1+a3 − u3T
2a1 − (u1 + u2)T

a1+a3

+(u1 + u2)u3T
a1 + u1u2T

a3 − u1u2u3 ≡

T b1+2b3 − (v2 + v3)T
b1+b3 − v1T

2b3

+v2v3T
b1 + v1(v2 + v3)T

b3 − v1v2v3.

On the left-hand side there are 6 non-zero terms with distinct powers of T .

So on the right-hand side we must also have 6 non-zero terms with distinct

powers of T . We have either 2b3 > b1 or 2b3 < b1. If 2b3 > b1 then, on

comparing the terms with the three largest exponents on T on both sides we

get 2a1 + a3 = b1 + 2b3, 2a1 = b1 + b3, a1 + a3 = 2b3, hence a1 = a3 = b3,

which is impossible. So b1 > 2b3. Then comparing the coefficients of the

terms with the largest exponent on T on both sides, the terms with the second

largest exponent, etc. we get u3 = v2 + v3, u1 + u2 = v3, (u1 + u2)u3 = v2v3,

u1u2 = v1(v2 + v3), u1u2u3 = v1v2v3. This leads to v1v2v3 = v1(v2 + v3)
2, and

then similarly as in Case (iii) it follows that v2/v3 is a primitive cube root of

unity. Hence (8.15) holds.

Case (vii). a1 = a2 > a3, b1 = b2 = b3.

This case is impossible since on the left-hand side of (8.12) we have 6 non-zero
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terms with distinct powers of T and on the right-hand side not more than 4

terms.

Case (viii). a1 > a2 = a3, b1 > b2 = b3.

Then (8.12) becomes

T a1+2a3 − (u2 + u3)T
a1+a3 − u1T

2a3

+u2u3T
a1 + u1(u2 + u3)T

a3 − u1u2u3 ≡

T b1+2b3 − (v2 + v3)T
b1+b3 − v1T

2b3

+v2v3T
b1 + v1(v2 + v3)T

b3 − v1v2v3.

There are various possibilities depending on whether 2a3 = a1, 2a3 6= a1,

u1 = u2u3, u1 6= u2u3 and similarly for the bi’s and vi’s. But in each of these

cases, a1+a3 is the second largest exponent on T occurring on the left and b1+b3
the second largest exponent on the right and so u2+u3 = v2+v3. Further, a3 is

the smallest positive exponent on the left and b3 the smallest positive exponent

on the right and so u1(u2 + u3) = v1(v2 + v3); and finally u1u2u3 = v1v2v3. It

follows that u1 = v1, u2u3 = v2v3, and then {u2, u3} = {v2, v3}. This implies

(8.14).

Case (ix). a1 > a2 = a3, b1 = b2 = b3.

Then (8.12) becomes

T a1+2a3 − (u2 + u3)T
a1+a3 − u1T

2a3 + u2u3T
a1

+u1(u2 + u3)T
a3 − u1u2u3 ≡

T 3b1 − (v1 + v2 + v3)T
2b1 + (v2v3 + v1v3 + v1v2)T

b1 − v1v2v3.

Then necessarily, a1 = 2a3 and u1 = u2u3. Further, all terms on the right-hand

side are non-zero. Comparing the terms with the largest and second largest

exponent on T , we see that a1 + 2a3 = 3b1, a1 + a3 = 2b1, hence a1 = a3 = b1
which is impossible.

Case (x). a1 = a2 = a3, b1 = b2 = b3.

Then (8.12) implies at once (8.14). This completes the proof of Proposition

8.1. �
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9. Proof of Theorem 3.2

Let as before A be an integrally closed domain with quotient field L of

characteristic 0 which is finitely generated over Z, and K an extension of L of

finite degree d ≥ 3. Further, denote by G the normal closure of K over L. In

what follows, we consider pairs (α, β) such that

(9.1)

{
L(α) = L(β) = K, α, β are integral over A,

A[α] = A[β], α, β are not A-equivalent.

The next lemma implies part (i) of Theorems 3.2 and 1.2.

Lemma 9.1. Suppose that [K : L] = 3. Let (α, β) be a pair with (9.1). Then

there is a matrix ( a1 a2
a3 a4 ) such that

(9.2)
( a1 a2

a3 a4

)
∈ GL(2, L), β =

a1α + a2

a3α + a4

, a3 6= 0.

Further, if A is a principal ideal domain then ( a1 a2
a3 a4 ) can be chosen from

GL(2, A).

Proof. Let σi (i = 1, 2, 3) be the L-isomorphisms of K into G, and write

α(i) := σi(α), β(i) := σi(β) for i = 1, 2, 3. By straightforward linear algebra,

there are a1, a2, a3, a4 ∈ G such that

β(i) =
a1α

(i) + a2

a3α(i) + a4

for i = 1, 2, 3.

If we choose the first non-zero element among a1, . . . , a4 equal to 1, then

a1, . . . , a4 are uniquely determined. By applying σ ∈ Gal(G/L) and observing

that σ permutes the α(i) in the same way as the β(i), we infer that σ(ai) = ai
for i = 1, . . . , 4. Hence ai ∈ L for i = 1, . . . , 4. The matrix ( a1 a2

a3 a4 ) must

have non-zero determinant since otherwise β(1) = β(2) = β(3), contrary to our

assumption L(β) = K. Next, we must have a3 6= 0. For otherwise, α, β are

L-equivalent, hence A-equivalent by Lemma 6.2, contrary to our assumptions.

This proves (9.2).

In case that A is a principal ideal domain, by taking a scalar multiple of

( a1 a2
a3 a4 ), we can see to it that a1, . . . , a4 ∈ A and (a1, . . . , a4) = (1). Then

( a1 a2
a3 a4 ) ∈ GL(2, A) by Lemma 6.4. This completes the proof of Lemma 9.1. �
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In what follows, we assume that

(9.3)

{
[K : L] = d ≥ 4, Gal(G/L) ∼= S4 if d = 4,

K is four times transitive over L if d ≥ 5.

For every pair (α, β) with (9.1) we define, in the usual manner,

εij :=
α(i) − α(j)

β(i) − β(j)
(1 ≤ i, j ≤ d, i 6= j).

We start with a simple, but for our proof important observation.

Lemma 9.2. Let α, β satisfy (9.1), and let (p1, p2, p3, p4), (q1, q2, q3, q4) be two

ordered tuples of distinct indices from {1, . . . , d}. Then there is σ ∈ Gal(G/L)

such that

σ(εpi,pj
) = εqi,qj for each distinct i, j ∈ {1, 2, 3, 4}.

Proof. By (9.3), there is σ ∈ Gal(K/L) such that σ(α(pi)) = α(qi) for i =

1, 2, 3, 4. The same holds with β instead of α. This implies the lemma at

once. �

Our next observation is that for any pair (α, β) with (9.1),

(9.4)
εij
εik
6= 1 for i, j, k ∈ {1, . . . , d}, with i, j, k distinct.

Indeed, suppose there are distinct indices i, j, k with εij = εik. Then by Lemma

9.2 we have ε1j = ε12 for j = 3, . . . , d. This implies that τ(α) = τ(β), where

τ(·) is given by (6.1). Now Lemma 6.3 (ii) implies that α, β are A-equivalent,

contrary to (9.1).

Lemma 9.3. There is a finite set E such that for every pair (α, β) with (9.1),

at least one of the following alternatives holds:

(i) εij/εik ∈ E for each ordered triple (i, j, k) of distinct indices from {1, . . . , d};
(ii) εijεkl = εikεjl for each ordered quadruple (i, j, k, l) of distinct indices from

{1, . . . , d};
(iii) d = 4, and εij = −εkl for each permutation (i, j, k, l) of (1, 2, 3, 4).
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Proof. Pick a pair (α, β) with (9.1). We apply Proposition 8.1 to (8.5), with

Γ = A∗G and with for (x1, x2, x3, y1, y2, y3) the tuple (8.6) with (i, j, k, l) =

(1, 2, 3, 4), i.e.,

(9.5)

(
ε13

ε23

,
ε14

ε34

,
ε12

ε24

,
ε12

ε23

,
ε13

ε34

,
ε14

ε24

)
.

Let S be the finite set from Proposition 8.3. Let E consist of all conjugates

over L of the elements from S, as well as all roots of unity of order up to 18.

First suppose that alternative (i) of Proposition 8.1 holds. Then there are

distinct p, q, r ∈ {1, . . . , 4}, such that εpq/εpr ∈ S. By Lemma 9.2 we then

have εij/εik ∈ E for each triple (i, j, k) of distinct indices from {1, . . . , d}. This

is alternative (i) of our Lemma.

Next, suppose that alternative (ii) of Proposition 8.1 holds. Then

ε13

ε23

∈
{
ε12

ε23

,
ε13

ε34

,
ε14

ε24

,
ε23

ε12

,
ε34

ε13

,
ε24

ε14

}
.

By (9.4), ε13/ε23 cannot be equal to ε12/ε23 or ε13/ε34. If ε13/ε23 = ε14/ε24,

then ε13ε24 = ε14ε23. Then by Lemma 9.2 εijεkl = εikεjl for any four distinct

indices i, j, k, l ∈ {1, . . . , d}. This is alternative (ii) of our Lemma.

Assume that ε13/ε23 = ε23/ε12; then ε2
23 = ε12ε13. By Lemma 9.2, we have

also ε2
13 = ε12ε23. Hence (ε23/ε13)

3 = 1. Again by Lemma 9.2, and the fact that

E contains all cube roots of unity, this implies alternative (i) of our Lemma.

Next, assume that ε13/ε23 = ε34/ε13. Then ε2
13 = ε23ε34. Then by Lemma

9.2, ε2
23 = ε13ε34. This implies again (ε13/ε23)

3 = 1 and then alternative (i) of

our Lemma.

Finally, assume that ε13/ε23 = ε24/ε14. Then ε13ε14 = ε23ε24. By Lemma

9.2, the same holds after interchanging the indices 2 and 3, and also after

interchanging 2 and 4; that is, we have also ε12ε14 = ε23ε34 and ε13ε12 = ε34ε24.

Multiplying together the last two identities and dividing by the first, we obtain

ε2
12 = ε2

34, or ε12 = ±ε34. First suppose that ε12 = ε34. Then by Lemma 9.2,

we have also ε13 = ε24, ε14 = ε23. Substituting this into (8.4) with (i, j, k, l) =
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(1, 2, 3, 4), we obtain(
ε13

ε14

− 1

)(
ε14

ε12

− 1

)(
ε12

ε13

− 1

)
=

(
ε12

ε14

− 1

)(
ε13

ε12

− 1

)(
ε14

ε13

− 1

)
.

But this is impossible, since by (9.4), both sides are non-zero, and since the

left-hand side is the opposite of the right-hand side. Hence ε12 = −ε34 and then

by Lemma 9.2, also ε13 = −ε24, ε14 = −ε23. If d ≥ 5, then again by Lemma

9.2, ε12 = −ε35, implying ε34 = ε35, which is impossible by (9.4). Hence d = 4.

We conclude that alternative (iii) of our Lemma holds.

Finally, suppose that (iii) of Proposition 8.1 holds. Then if (x1, . . . , y3) is

the tuple (9.5) we have that at least one of the numbers xixj, xi/xj, yiyj,

yi/yj (1 ≤ i < j ≤ 3) is −1 or a primitive cube root of unity. All these

possibilities can be combined by saying that there is a permutation (i, j, k, l)

of (1, 2, 3, 4) such that εikεil/εjkεkl or εikεkl/εilεjk is −1 or a primitive cube

root of unity. By Lemma 9.2, we may replace the indices i, j, k, l by 1, . . . , 4,

respectively. Then (ε13ε14/ε23ε34)
6 = 1 or (ε13ε34/ε14ε23)

6 = 1.

First suppose that (ε13ε14/ε23ε34)
6 = 1. Applying again Lemma 9.2, the

same holds if we interchange the indices 2 and 4, i.e., (ε13ε12/ε34ε23)
6 = 1. As

a consequence, (ε12/ε14)
6 = 1. But then another application of Lemma 9.2

implies that εij/εik ∈ E for any three distinct indices i, j, k, i.e., alternative (i)

of our Lemma.

Finally, suppose that (ε13ε34/ε14ε23)
6 = 1. By Lemma 9.2, interchanging the

indices 1 and 3, we get also (ε13ε14/ε34ε12)
6 = 1. Multiplying the two identities

gives (ε2
13/ε12ε23)

6 = 1. Again by Lemma 9.2, interchanging the indices 2 and

3, we get (ε2
12/ε13ε23)

6 = 1. Then on dividing the last two identities, we get

(ε13/ε12)
18 = 1. A final application of Lemma 9.2 leads to εij/εik ∈ E for

any three distinct indices i, j, k, which is alternative (i) of our Lemma. This

completes our proof. �

Proof of Theorem 3.2, (ii), (iii). Consider the two times monogenic A-orders

O = A[α] = A[β] in K, where α, β satisfy (9.1).

First consider those A-orders O such that the pair (α, β) satisfies alternative

(i) of Lemma 9.3. Then by (8.3), (9.4), there is a finite set F independent of
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α, β such that β(i)−β(j)

β(i)−β(k) ∈ F for any three distinct i, j, k ∈ {1, . . . , d}. Hence

for the tuple τ(β) defined by (6.1) there are only finitely many possibilities.

Then Lemma 6.3 implies that for the A-orders O under consideration, the

corresponding β lie in only finitely many L-equivalence classes. Subsequently,

by Lemma 7.2 these β lie in only finitely many A-equivalence classes, and thus

there are only finitely many possibilities for the A-order O.

Next, we consider those A-orders O = A[α] = A[β] such that (α, β) satisfies

alternative (ii) of Lemma 9.3. Take such a pair (α, β). By assumption, εijεkl =

εikεjl, hence, in view of (8.1),

(β(i) − β(j))(β(k) − β(l))

(β(i) − β(k))(β(j) − β(l))
=

(α(i) − α(j))(α(k) − α(l))

(α(i) − α(k))(α(j) − α(l))

for every quadruple (i, j, k, l) of distinct indices from {1, . . . , d}. In other words,

the cross ratio of any four numbers among the α(i)’s is equal to the cross ratio

of the corresponding numbers among the β(i)’s. Then by elementary projective

geometry, there is a matrix C = ( a1 a2
a3 a4 ) ∈ GL(2, G) such that

β(i) =
a1α

(i) + a2

a3α(i) + a4

for i = 1, . . . , d.

If we assume that the first non-zero entry among a1, . . . , a4 is 1, the matrix C is

uniquely determined. Any σ ∈ Gal(G/L) permutes the sequences α(1), . . . , α(d)

and β(1), . . . , β(d) in the same manner, hence the above relation holds with σ(C)

instead of C; so σ(C) = C. It follows that C ∈ GL(2, L). We observe that

a3 6= 0. For otherwise, α, β are L-equivalent and then A-equivalent by Lemma

6.2, contrary to (9.1). This shows that O = A[α] = A[β] is of type I. Notice

that if A is a principal ideal domain, then by taking a suitable scalar multiple

of C we can arrange that a1, . . . , a4 ∈ A and (a1, . . . , a4) = (1), and thus,

C ∈ GL(2, A) by Lemma 6.4.

Finally, we consider those A-orders O = A[α] = A[β] such that (α, β) sat-

isfies alternative (iii) of Lemma 9.3; then d = 4. Take such a pair (α, β). By

assumption, εij = −εkl for every permutation (i, j, k, l) of (1, 2, 3, 4). Define

u0 := ε12ε13ε14,

α0 := 1
2
u0(ε

−1
12 + ε−1

13 + ε−1
14 ), β0 := 1

2
(ε12 + ε13 + ε14).
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By (9.3), the group Gal(G/L) acts on {α(1), . . . , α(4)} as the full permuta-

tion group. Say that σ(α(i)) = α(σ(i)) for σ ∈ Gal(G/L), i = 1, 2, 3, 4. Then

σ(β(i)) = β(σ(i)) for i = 1, 2, 3, 4 and thus, σ(εij) = εσ(i),σ(j) for 1 ≤ i, j ≤ 4,

i 6= j. Further, Gal(G/K) consists of those L-automorphisms that permute

α(2), α(3), α(4) and leave α = α(1) unchanged. Hence u0, α0, β0 are invariant un-

der Gal(G/K) and so belong to K. But u0 is in fact invariant under Gal(G/L),

hence belongs to L. Notice that

(9.6) β2
0 = α0 + r0, α2

0 = u0β0 + s0 with r0, s0 ∈ L.

Indeed, (9.6) holds with

r0 := 1
4
(ε2

12 + ε2
13 + ε2

14), s0 := 1
4
u2

0(ε
−2
12 + ε−2

13 + ε−2
14 ),

and these r0, s0 are invariant under Gal(G/L).

A straightforward computation gives

α
(2)
0 = 1

2
u0(ε

−1
21 + ε−1

23 + ε−1
24 ) = 1

2
u0(ε

−1
12 − ε−1

13 − ε−1
14 )

and similarly, β
(2)
0 = 1

2
(ε12 − ε13 − ε14). Hence

α
(1)
0 − α

(2)
0

β
(1)
0 − β

(2)
0

=
−u0(ε

−1
13 + ε−1

14 )

−(ε13 + ε14)
= u0ε

−1
13 ε
−1
14 = ε12.

By taking conjugates over L we get

(9.7)
α

(i)
0 − α

(j)
0

β
(i)
0 − β

(j)
0

= εij for 1 ≤ i, j ≤ 4, i 6= j.

As a consequence, the four conjugates of α0 over L are distinct, and also the

four conjugates of β0 over L are all distinct. Hence L(α0) = L(β0) = K. Notice

that in the deduction of (8.3), no properties of α, β were used other than that

L(α) = L(β) = K. That is, the same reasoning applies if we replace α, β by

α0, β0. But then, applying (8.3) both with (α, β) and with (α0, β0), using (9.7),

(9.4), we obtain

β(i) − β(j)

β(i) − β(k)
=
β

(i)
0 − β

(j)
0

β
(i)
0 − β

(k)
0

(1 ≤ i, j, k ≤ d, i, j, k distinct).
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By multiplying this identity with εij/εik we obtain

α(i) − α(j)

α(i) − α(k)
=
α

(i)
0 − α

(j)
0

α
(i)
0 − α

(k)
0

(1 ≤ i, j, k ≤ d, i, j, k distinct).

This shows that τ(β) = τ(β0), τ(α) = τ(α0), where τ(·) is defined by (6.1).

By Lemma 6.3, (i), there are λ, λ′ ∈ L∗, µ, µ′ ∈ L, such that

α = λα0 + µ, β = λ′β0 + µ′.

By combining this with (9.6), we obtain

β = a0α
2 + a1α + a2, α = b0β

2 + b1β + b2

with a0, a1, a2, b0, b1, b2 ∈ L and a0b0 6= 0. But in fact, we have a0, . . . , b2 ∈ A
since by assumption, A[α] = A[β]. This shows that O = A[α] = A[β] is an

A-order of type II. This completes the proof of Theorem 3.2. �
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