
Effective results for Diophantine equations

over finitely generated domains

Jan-Hendrik Evertse (Universiteit Leiden)

(Joint work with Attila Bérczes, Kálmán Győry)

Let A = Z[z1, . . . , zq] ⊃ Z be an integral domain which is finitely generated

over Z. Then

A ∼= Z[X1, . . . , Xr]/(f1, . . . , fs),

where f1, . . . , fs is a system of generators for the ideal of f ∈ Z[X1, . . . , Xr]

with f(z1, . . . , zr) = 0. We want to give effective finiteness results for certain

classes of Diophantine equations with unknowns taken from the domain A.

To state our results, we need some terminology. Given a ∈ A, we call

ã ∈ Z[X1, . . . , Xr] a representative for a if ã(z1, . . . , zs) = a. There exist

algorithms with which one can decide for given f, f1, . . . , fs ∈ Z[X1, . . . , Xr]

whether f ∈ (f1, . . . , fs) (see Simmons [13, 1970], Aschenbrenner [1, 2004]).

With the help of this, one can decide effectively whether two polynomials

f, g ∈ Z[x1, . . . , Xr] represent the same element of A.

For f ∈ Z[X1, . . . , Xr], let deg f denote its total degree and h(f) its

logarithmic height (i.e., the maximum of the logarithms of the absolute

values of its coefficients), and define its size s(f) := max(1, deg f, h(f)).

Then we define the size of x ∈ A by the minimum of the quantities s(x̃),

taken over all representatives x̃ ∈ Z[X1, . . . , Xr] for x.

Notice that if F ∈ A[Y1, . . . , Yt] is a polynomial with coefficients in A,

and we are given F̃ ∈ Z[X1, . . . , Xr][Y1, . . . , Yt] whose coefficients represent

those of F , then in order to determine effectively all solutions of the equation

(∗) F (y1, . . . , yt) = 0 in y1, . . . , yt ∈ A, it suffices to give a number C such

that maxi s(yi) ≤ C for all solutions (y1, . . . , yt) of (∗). Indeed, one simply

needs to check for all polynomials ỹ1, . . . , ỹt ∈ Z[X1, . . . , Xr] of size ≤ C

whether F̃ (ỹ1, . . . , ỹt) ∈ (f1, . . . , fs).

Recently, Győry and the author [8, 2011] proved the following result on

unit equations over A in two unknowns:

Let a, b, c be non-zero elements of A and let be given representatives ã, b̃, c̃

for a, b, c. Suppose that f1, . . . , fs and ã, b̃, c̃ have total degrees at most d

and logarithmic heights at most h where d, h ≥ 1. Then for the solutions
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x, y of

ax+ by = c in x, y ∈ A∗

we have

s(x), s(x−1), s(y), s(y−1) ≤ exp
{

(2d)κ
r

(h+ 1)
}

where κ is an effectively computable absolute constant.

The method of proof of this result can be applied to other classes of Dio-

phantine equations as well. To illustrate this, we give some effective results

for Thue equations and hyper- and superelliptic equations over A, obtained

jointly with Bérczes and Győry. We always use κ to denote an effectively

computable absolute constant, but at each occurrence, its value may be

different.

Let F (X, Y ) = a0X
n+a1X

n−1Y + · · ·+a0Y
n ∈ A[X, Y ] be a binary form

of degree n ≥ 3 without multiple factors, and let b ∈ A \ {0}. Consider the

equation

(1) F (x, y) = b in x, y ∈ A.

Baker [2, 1968] gave in the case A = Z an effective proof that (1) has only

finitely many solutions. This was extended by Coates [7, 1968/69] to the

case A = Z[(p1 · · · pt)−1] where the pi are distinct primes and by Kotov and

Sprindzhuk [10, 1973] to the case that A is the ring of S-integers in a num-

ber field. Győry [9, 1983] extended this effective finiteness result further to

integral domains of the special shape Z[z1, . . . , zq, w, g
−1], where z1, . . . , zq

are algebraically independent, w is integral over A0 := Z[z1, . . . , zq], and

g ∈ A0. In his proof, Győry developed a specialization method, which we

managed to extend to arbitrary finitely generated domains. This led to

the following general result for Thue equations. As before, A is an integral

domain containing Z, isomorphic to Z[X1, . . . , Xr]/(f1, . . . , fs).

Theorem 1 (Bérczes, E., Győry). Let ã0, . . . , ãn, b̃ be representatives

for the coefficients a0, . . . , an of F and of b, and assume that these represen-

tatives, as well as f1, . . . , fs, have total degrees ≤ d and logarithmic heights

at most h. Then for the solutions of (1) we have

s(x), s(y) ≤ exp
{

(n!)3n5(2d)κ
r

(h+ 1)
}
.

Now let F (X) = a0X
n +a1X

n−1 + · · ·+an ∈ A[X], b ∈ A \ {0}, m ∈ Z≥2

and consider the hyper-/superelliptic equation

(2) bym = F (x) in x, y ∈ A.



3

Assume that F has no multiple roots, and that F has degree n ≥ 3 if m = 2

and degree n ≥ 2 if m ≥ 3. Again Baker[3, 1969] was the first to give an

effective finiteness proof for the set of solutions of (2), in the case A = Z.

This was extended by Brindza [4, 1984] to the case that A is the ring of

S-integers of a number field, and further[6, 1989] to the special class of

finitely generated domains mentioned above considered by Győry. In the

case A = Z, Schinzel and Tijdeman [12, 1976] proved that if (2) has a so-

lution x, y ∈ Z with y 6= 0,±1, then m is bounded above by an effectively

computable number depending only on F and b. Brindza [5, 1987] extended

this to the case that A is the ring of S-integers in a number field, and Végső

[14, 1994] to the class of domains considered by Győry.

Theorem 2 (Bérczes, E., Győry). Let ã0, . . . , ãn, b̃ be representatives for

the coefficients a0, . . . , an of F and of b, and assume that these representa-

tives, as well as f1, . . . , fs, have total degrees ≤ d and logarithmic heights

at most h. Then for the solutions of (2) we have

s(x), s(y) ≤ exp
{
m2n5(2d)κ

r

(h+ 1)
}
.

Further, if (2) has a solution x, y ∈ A with y not equal to 0 or to a root of

unity, then

m ≤ exp
{
n5(2d)κ

r

(h+ 1)
}
.

We sketch the proof of Theorem 1; the proof of Theorem 2 is essentially

similar. Let as before A = Z[z1, . . . , zr] ⊃ Z be an integral domain. Assume

that z1, . . . , zq are linearly independent, and that zq+1, . . . , zr are algebraic

over K0 := Q(z1, . . . , zq). Choose w ∈ A integral over A0 := Z[z1, . . . , zq]

and choose g ∈ A0 such that A ⊆ B := Z[z1, . . . , zq, w, g
−1]. Assume that

w has degree D over K0. Given u = (u1, . . . , uq) ∈ Zq with g(u) 6= 0, we

can define a specialization homomorphism ϕu : B → Q by mapping zi to

ui for i = 1, . . . , q. Then ϕu maps the Thue equation (1) over A to a Thue

equation (1u) over the ring of Su-integers OSu in a number field Ku, where

both the number field Ku and the set of places Su may depend on u.

Now let x, y ∈ A be a solution of (1). We can express x as
∑D−1

i=0 Piw
i/Q,

where P0, . . . , PD−1, Q ∈ Z[z1, . . . , zq]. Using Mason’s effective result for

Thue equations over function fields [11, 1984] one can estimate the degrees

of P0, . . . , PD−1, Q. By applying Baker’s method to the Thue equations

(1u) for ‘many’ u ∈ Zq, and then using linear algebra, one can estimate

the coefficients of the Pi and Q. Up to this point, this outlines Győry’s

specialization method mentioned above. Using a recent effective result by
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Aschenbrenner [1, 2004] for systems of inhomogeneous linear equations over

polynomial rings over Z, one can estimate the size s(x) of x in terms of

the total degrees and heights of the Pi and Q. The size s(y) of the other

unknown is estimated in the same way.

The above method of proof can by applied to various other classes of Dio-

phantine equations. we would like to finish with an open problem. Consider

the Thue-Mahler equation over an arbitrary finitely generated domain A,

(3) F (x, y) ∈ A∗ in x, y ∈ A,

where F ∈ A[X, Y ] is a binary form of degree ≥ 3 without multiple factors.

One can show that (3) has finitely many solutions (x1, y1), . . . , (xl, yl), such

that every other solution of (3) is expressable in the form u(xi, yi) with

u ∈ A∗, i ∈ {1, . . . , l}. Given an arbitrary finitely generated domain A, can

one determine such (xi, yi) effectively?
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