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Introduction

Let K be an algebraic number field. Denote by Ok its ring of integers.
An order in K is a subring of Ok with quotient field K.

An order O in K of the form Z[«] is called monogenic.

For a given order O we consider the “Diophantine equation”

(1) Zla)]=0 ina€O.

The solutions of (1) can be divided into equivalence classes, where two
solutions «, 3 are called equivalent if

B8 =+« + a for some a € Z.



Gyory’s theorem

Every order in a quadratic number field is monogenic.

In number fields of degree > 3 there may be non-monogenic orders
(Dedekind).

Theorem (Gyory, 1976)

Let K be an algebraic number field, and O an order in K. Then there are
only finitely many equivalence classes of a € O with

(1) Z[o] = O.

Moreover, there exists an algorithm which, for any explicitly given K, O,
decides if O is monogenic and if so, determines a full system of
representatives for the equivalence classes of «.

Proof.
Baker’'s Theorem on linear forms in logarithms. 0l



Multiply monogenic orders

Let K be an algebraic number field, and O an order in K.
We focus on the number of equivalence classes of solutions of Z[a] = O.

Definition
The order O is called k times monogenic, if
(1) Zla)=0 inaecO
has at least k equivalence classes of solutions, i.e., if there are aq, ..., ax
with
Zloy] = =Zlak) =0, ajto;jEZforl<iz#j<k.

The order O is called at most/precisely k times monogenic if (1) has at
most/precisely k equivalence classes of solutions.



Multiply monogenic orders

Let K be an algebraic number field, and O an order in K.
We focus on the number of equivalence classes of solutions of Z[a] = O.

Definition
The order O is called k times monogenic, if
(1) Zla)=0 inaecO
has at least k equivalence classes of solutions, i.e., if there are aq, ..., ax
with
Zloy] = =Zlak) =0, ajto;jEZforl<iz#j<k.

The order O is called at most/precisely k times monogenic if (1) has at
most/precisely k equivalence classes of solutions.

Facts:
» Every order in a quadratic n.f. is precisely one time monogenic.
» Every order in a cubic n.f. is at most 10 times monogenic (Bennett,
2001).
> Z[e*™/T 4 e=27/] is precisely 9 times monogenic (Baulin, 1960).



Multiply monogenic orders of higher degree

Theorem (Gyory, E., 1985)
Let K be an algebraic number field of degree d > 4. Then every order O

in K is at most c(d) times monogenic.

Gyéry, E. (1985): c(d) = (3 x 74")4~2;
E. (2012): ¢(d) = 25¢’



Multiply monogenic orders of higher degree

Theorem (Gyory, E., 1985)

Let K be an algebraic number field of degree d > 4. Then every order O
in K is at most c(d) times monogenic.

Gyéry, E. (1985): c(d) = (3 x 74")4~2;
E. (2012): ¢(d) = 25¢’

Example (Miller-Sims, Robertson, 2005).
Let p > 11 be a prime and ¢, = e>"//P.

Then O, := Z[(, + ¢, '] is 3(p — 1) times monogenic.
In fact, Z[a] = O, has the solutions

1
a = m+ *m, - - @ r‘rl:].,...,l —1,3:_1707132'
Cren gagrrs | o= )

These are pairwise inequivalent if p > 11.



Multiply monogenic orders in a given number field

Question

Can a number field have infinitely many k times monogenic orders for
k=23...7
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Assume that [K : Q] > 3 and that K is not a totally complex quadratic
extension of a totally real field.

Then Ok has infinitely many units & such that K = Q(¢).

These give rise to infinitely many two times monogenic orders
Zlel = Z[e" Y in K.



Multiply monogenic orders in a given number field

Question

Can a number field have infinitely many k times monogenic orders for
k=23...7

Example.
Assume that [K : Q] > 3 and that K is not a totally complex quadratic
extension of a totally real field.

Then Ok has infinitely many units e such that K = Q(¢).

These give rise to infinitely many two times monogenic orders
Zlel = Z[e" Y in K.

Theorem 1 (Bérczes, Gyéry, E., 2011)
Let K be an algebraic number field of degree > 3. Then K has only

finitely many three times monogenic orders.

The proof is ineffective.



Two times monogenic orders

A number field K may have infinitely many two times monogenic orders,
e.g., Z[e] = Z[e1], € a unit.

There may be other infinite classes of two times monogenic orders, but
these are all rather special.

Vague belief

Every number field K of degree > 3 has finitely many infinite classes of
'special’ two times monogenic orders, and only finitely many two times
monogenic orders outside these classes.

We have proved a precise result of this type for a special class of number
fields.



Orders of type | and Il

Type | orders

Let K be an algebraic number field of degree > 3. An order O in K is of
type | if there are o, 8 € O such that O = Z[a] = Z[3], and

b
d

b
B = i—tdz for some (i

) € GL(2,7) with d # 0.

If K is not a totally complex quadratic extension of a totally real field, it
has infinitely many orders of type |.



Orders of type | and Il

Type | orders

Let K be an algebraic number field of degree > 3. An order O in K is of
type | if there are o, 8 € O such that O = Z[a] = Z[3], and

b
d

b
B = :‘——::dz for some (i

) € GL(2,7) with d # 0.

If K is not a totally complex quadratic extension of a totally real field, it
has infinitely many orders of type |.

Type Il orders

Let K be a quartic number field. An order O in K is of type Il if there
are a, 8 € O such that O = Z[«o] = Z[5], and

B==4c?+aa+b, a==+8°+cB+d forsome a,b,c,d € Z.

There are infinitely many quartic fields K with infinitely many orders of
type Il.



The theorem for two times monogenic orders

Fact.
If K has degree 3 then every two times monogenic order of K is of type I.

We denote by Sy the permutation group on d elements.

Theorem 2 (Bérczes, Gyéry, E., 2011)
Let K be a number field of degree d > 4. Assume that the normal
closure of K has Galois group = S,.

(i) If d = 4 then K has only finitely many two times monogenic orders
which are not of type | or Il.

(ii) If d > 5 then K has only finitely many two times monogenic orders
which are not of type I.



Connection with unit equations

Let K be an algebraic number field of degree d > 3, and N its normal
closure. Denote the conjugates of & € K in N by a(, ... al9).

Lemma
Let «, 8 be elements of Ok such that Q(«a) = Q(B8) = K and
Z[a] = Z[B]. Then for1 <i<j<d,

o 5(1’) _ 5(1’) .
E,’j = m € ON'
Proof.
B =f(a), a = g(B) for some f,g € Z[X]. O



Connection with unit equations

Let K be an algebraic number field of degree d > 3, and N its normal
closure. Denote the conjugates of & € K in N by a(, ... al9).

Lemma

Let «, 8 be elements of Ok such that Q(«a) = Q(B8) = K and
Z[a) = Z[B]. Then for1 <i<j<d,
B — gl)

Eij :m € ON'

Proof.
B =f(a), a = g(B) for some f,g € Z[X]. O

We have for all distinct /,j,k € {1,...,d},

o) —al) i al)—a® g O 0 O fW

D —a® o T A o o, B _pR T g0 pR

This leads to unit equations ax + by =1 in x,y € Of,.



Unit equations

Let F be a field of characteristic 0. We consider equations
2) ax+by=1 inx,yel

where a,b € F* and I is a finitely generated subgroup of F*.

Such equations have only finitely many solutions (Siegel, Mahler, Lang,
1960).



Unit equations

Let F be a field of characteristic 0. We consider equations
2) ax+by=1 inx,yel

where a,b € F* and I is a finitely generated subgroup of F*.

Such equations have only finitely many solutions (Siegel, Mahler, Lang,
1960).

We call (a, b) normalized if a+ b =1.

If (2) has a solution u,v €T, then (&', b’) = (au, bv) is normalized, and
ax+ by =1inx,y €T has the same number of solutions as (2).

Theorem (Gyory, Stewart, Tijdeman, E., 1988)

There are only finitely many normalized pairs (a, b) € F* x F* such that
eq. (2) has more than two solutions.



Sketch of the proof of Theorem 1

Let K be a number field of degree d > 3.
Let O = Z[a] = Z[B] = Z[~] with «, 8, inequivalent. Put

() _ gU) NORNG
o -

= m7 nij = m (/,J, k € {1,. . .,d} dIStInCt).
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Let O = Z[a] = Z[B] = Z[~] with «, 8, inequivalent. Put

B0 00 y
8’] = m, 7]” = m (I,J,k S {17,d} dlStlnCt).

1) For each i,j, k, the equation
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mx+my:1 |nX,y€ON

has solutions (1,1), (sg/Eik,€jk/€ik), (ﬂij/ﬁikaﬁjk/ﬂik)-



Sketch of the proof of Theorem 1

Let K be a number field of degree d > 3.
Let O = Z[a] = Z[B] = Z[~] with «, 8, inequivalent. Put

QI N B )

= Tl T Al al) (i,j,k € {1,...,d} distinct).

1) For each i,j, k, the equation
ad — o) al) — k)

mx+my:1 |nX,y€ON

has solutions (1,1), (6,’]/5ik,5jk/5ik)y (ﬂij/ﬂik,ﬁjk/ﬂik)-

2) The Theorem of GSTE + combinatorics (to dispose of the problem
that for some i, j, k two solutions may coincide) imply that there are only
finitely many possible values for the quotients

al) — o0)

m for all distinct I,_j,k S {1,7d}

3) There are only finitely many orders O = Z[a] = Z[3] = Z[y] with
prescribed values for these quotients. O



Sketch of the proof of Theorem 2 (1)

Assume [K : Q] = d > 4. Let N be the normal closure of K.
By assumption Gal(N/Q) = S,.

Let O = Z[a] = Z[5] with «, 8 inequivalent. Put ¢j; := fi:;:ig
From

o) — o) & ak) — o) Gk _ g

a(k) — a(]) Ejk a(k) — a(f) Ejk
we infer

() — ) e —
« « _ Elk/gjk 1 .. .
o —a® ~ jex —1 (i,j,k e {1,...,d} distinct).



Sketch of the proof of Theorem 2 (1)

Assume [K : Q] = d > 4. Let N be the normal closure of K.
By assumption Gal(N/Q) = S,.

Let O = Z[a] = Z[5] with «, 8 inequivalent. Put ¢j; := 58:@8
From ) ) ]
o) — o) & k) — ) Gk _ g
alk) —al) gy alk) —al) gy
we infer
M) — o) o Jen —
« « _ Elk/gjk 1 .. .
o —a® ~ jex —1 (i,j,k e {1,...,d} distinct).

Hence for all distinct /,j, k,/ € {1,...,d},

(ein/ej — 1) (en/ew — 1) (e5/e5 — 1)
(ei/ej = 1) (ew/ew = 1) (en/ey —1)
(@ — o)) (o) — o) (al) — o)
T (@ —a®) (@ —a) (ol — o)




Sketch of the proof of Theorem 2 (II)

Let O = Z[a] = Z[f] with o, 5 inequivalent, and ¢j; := 5(750) Then

u=(g;:1<i<j<dyeXxnr
d(d—1)/2

where I = (0;,)9(9=1)/2 and X is the algebraic subvariety of Gm
given by

(eic/ex —1) (/e —1) (ej/ey —1)
(ei/eje —1) (ei/ew —1) (en/ej —1)

=1 Vij kI

We apply:
Theorem (Laurent, 1984)

Let F be a field of characteristic 0, X an algebraic subvariety of GR
defined over F and I a finitely generated multiplicative subgroup of

GA(F) = (F*)".

Then X NT is contained in a finite union u;H; U - - - U u;H; of cosets of
algebraic subgroups of Gﬁ withu;H; C X fori=1,...,t



Sketch of the proof of Theorem 2 (ll1)

Let O = Z[a] = Z[8] and &; := Z5=50 (1< i < j < d).

Lemma

There is a finite set S depending only on K such that at least one of the
three following assertions is true:

(i) ejj/eix € S for all distinct i,j, k € {1,...,d};

(ii) ejjews = eixej for all distinct i,j, k,1 € {1,...,d};

(iii) d =14 and €12 = —E34, €13 — —€24, €14 = —E€23.

Proof.

1) Apply Laurent's Theorem.
2) Use the relations between the ¢;; following from our assumption
Gal(N/Q) = Sy. O



Sketch of the proof of Theorem 2 (ll1)

Let O = Z[a] = Z[8] and &; := Z5=50 (1< i < j < d).

Lemma

There is a finite set S depending only on K such that at least one of the
three following assertions is true:

(i) ejj/eix € S for all distinct i,j, k € {1,...,d};

(ii) ejjews = eixej for all distinct i,j, k,1 € {1,...,d};

(iii) d =14 and €12 = —E34, €13 — —€24, €14 = —E€23.

Completion of the proof of Theorem 2.

(i) gives rise to only finitely many possibilities for O;
(i) implies that O = Z[«] = Z[4] is of type I;
(iii) implies that O is of type II.

This proves Theorem 2. OJ



Extension to non-integers

Let K be a number field of degree d.

For o with K = Q(«) define the Z-module and order
-1
M, = {Zx,-o/ DX € Z}, 0, = {)\ eK: M, C /\/la}.
i=0

If « is an algebraic integer, then O, = Z[a].

We call o, 8 € K GL(2,7Z)-equivalent if

b
8= jidz for some (j_

b
d

) € GL(2,7).

If o, 8 € K are GL(2,Z)-equivalent then O, = Og.



An open problem

Given an order O in a number field K, denote by N(O) the number of
GL(2,Z)-equivalence classes of « with

Qa) =K, 0,=0.

Theorem

Let K be a number field of degree d > 3. Then for every order O in K
we have

N(O) =1 if d = 3 (Delone, Faddeev, 1940);

N(0) < 2%¢" if d > 4 (Bérczes, Gydry, E., 2004).

Open problem.

Is there an absolute constant N (= 2?) such that for every number field
K of degree > 4 we have N(O) < N for all but finitely many orders O in
K?



Thank you for your
attention!



