EFFECTIVE RESULTS FOR DIOPHANTINE EQUATIONS
OVER FINITELY GENERATED DOMAINS

ATTILA BERCZES, JAN-HENDRIK EVERTSE, AND KALMAN GYORY

1. INTRODUCTION.

Let A be an arbitrary integral domain of characteristic 0 that is finitely
generated over Z. We consider Thue equations F(x,y) = 0 in x,y € A,
where F' is a binary form with coefficients from A and ¢ is a non-zero
element from A, and hyper- and superelliptic equations f(z) = Jdy™ in

xz,y € A, where f € A[X], 0 € A\ {0} and m € Z>o.

Under the necessary finiteness conditions we give effective upper bounds
for the sizes (defined in Section 2) of the solutions of the equations in terms
of appropriate representations for A, o, F', f, m. These results imply that
the solutions of these equations can be determined in principle. Further, we
consider the Schinzel-Tijdeman equation f(z) = dy™ where z,y € A and
m € Z>y are the unknowns and give an effective upper bound for m.

We mention that results from the existing literature deal only with equa-
tions over restricted classes of finitely generated domains whereas we do not
have to impose any restrictions on A. Further, our upper bounds for the
sizes of the solutions x, y and m are new, also for the special cases considered
earlier. Our proofs are a combination of existing effective results for Thue
equations and hyper- and superelliptic equations over number fields and
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over function fields, and a recent effective specialization method of Evertse
and Gyéry [9].

We give a brief overview of earlier results. A major breakthrough in the
effective theory of Diophantine equations was established by A. Baker in the
1960’s. Using his own estimates for linear forms in logarithms of algebraic
numbers, he obtained effective finiteness results, i.e., with explicit upper
bounds for the absolute values of the solutions, for Thue equations [2] and
hyper- and superelliptic equations [3] over Z. Schinzel and Tijdeman [17]
were the first to consider superelliptic equations f(x) = dy™ over Z where
also the exponent m was taken as an unknown and gave an effective upper
bound for m. Their proof also depends on Baker’s linear forms estimates.

The effective results of Baker and of Schinzel and Tijdeman were extended
to equations where the solutions z, y are taken from larger integral domains;
we mention here Coates [8], Sprindzuk and Kotov [19] (Thue equations over
Og, where Og is the ring of S-integers of an algebraic number field), Trelina
[21], Brindza [6] (hyper- and superelliptic equations over Og), Gyéry [11]
(Thue equations over a restricted class of integral domains finitely generated
over Z that contain transcendental elements), Brindza [7] and Végs6 [22]
(hyper- and superelliptic equations and the Schinzel-Tijdeman equation over
the class of domains considered by Gy6ry). These last mentioned works of
Gyory, Brindza and Végso were based on an effective specialization method
developed by Gy6ry in the 1980’s [11], [12].

Recently, Evertse and Gyéry [9] extended Gy6ry’s specialization method
so that it can now be used to prove effective results for Diophantine equa-
tions over arbitrary finitely generated domains A over Z, without any further
restriction on A whatsoever. They applied this to unit equations ax+by = ¢
in units z,y of A, and gave an effective upper bound for the sizes of the
solutions z,y in terms of appropriate representations for A, a,b,c. In their
method of proof, Evertse and Gydry used existing effective results for S-unit
equations over number fields and function fields, and combined these with
their general specialization method.

The approach of Evertse and Gy6ry can be applied to various other classes
of Diophantine equations. In the present paper, we have worked out the
consequences for Thue equations, hyper-and superelliptic equations, and
Schinzel-Tijdeman equations.
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2. RESuLTS

We first introduce the necessary notation and then state our results.

2.1. Notation. Let A = Z|zy,..., 2] be a finitely generated integral do-
main of characteristic 0 which is finitely generated over Z. We assume that
r > 0. We have

AZXy,. ., X,]/I

where I is the ideal of polynomials f € Z[ X7, ..., X,]| such that f(z1,...,2,) =
0. The ideal I is finitely generated, say

I=(f1,..., f)

We may view fi,..., f; as a representation for A. Recall that a necessary
and sufficient condition for A to be a domain of characteristic zero is that
I be a prime ideal with I NZ = (0). Given a set of generators {fi,..., f;}
for I this can be checked effectively (see for instance Aschenbrenner [1, Cor.
6.7, Lemma 6.1] but this follows already from work of Hermann [14]).

Denote by K the quotient field of A. For a € A, we call f a repre-
sentative for a, or we say that f represents «, if f € Z[X;,...,X,] and
a= f(z1,...,2). Further, for « € K we call (f, g) a pair of representatives
for «, or say that (f,g) represents « if f,g € Z[X1,...,X,], g & I and
a=f(z1,...,2.)/9(z1, ..., 20).

Using an ideal membership algorithm for Z[Xi,..., X,] (see e.g., As-
chenbrenner [1, Theorem A] but such algorithms were probably known in
the 1960’s), one can decide effectively whether two polynomials [, f” €
Z[Xy,...,X,| represent the same element of A, i.e., f' — f” € I, or whether

two pairs of polynomials (', ¢'), (f”,¢") in Z[ X1, . .., X,] represent the same
element of K, ie., g €1,¢" ¢ 1 and f'¢" — "¢ € I.

Given a non-zero polynomial f € Z[X;,..., X,|, we denote by deg f its
total degree and by h(f) its logarithmic height, that is the logarithm of the
maximum of the absolute values of its coefficients. Then the size of f is
defined by

s(f) := max(1,deg f, h(f)).
Further, we define s(0) := 1. It is clear that there are only finitely many
polynomials in Z[X7, ..., X,] of size below a given bound, and these can be
determined effectively.
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Throughout the paper we shall use the notation O(-) to denote a quantity
which is ¢ times the expression between the parentheses, where ¢ is an
effectively computable positive absolute constant which may be different at
each occurrence of the O-symbol. Further, throughout the paper we write

log™ a := max(1,loga) for a > 0, log" 0 :=1.

2.2. Thue equations. We consider the Thue equation over A,
(2.1) F(z,y)=4d in z,y€ A,

where
FX,Y)=a X" +a; X" 'Y +-- 4 a,Y" € AX,Y]

is a binary form of degree n > 3 with discriminant Dp # 0, and 6 € A\ {0}.
Choose representatives

o, @1, - - -, dn, 0 € Z[Xy, ..., X,

of ag,ay,...,an,d, respectively. To ensure that 6 # 0 and D(F) # 0, we
have to choose the representatives in such a way that 0 & I, D i & I where
Dy is the discriminant of F':= Y7 (d; X" /Y7, These last two conditions
can be checked by means of the ideal membership algorithm mentioned
above. Let

(2.2) { max(deg fi, ..., deg f;, deg dy, degdy, . .., degdy, degd) < d

max(h(f1)7 Ty h(ft)7 h(dO)a h(d1>7 ) h<a~n)7 h((;)) S h7
where d > 1, h > 1.

Theorem 2.1. Every solution x,y of equation (2.1) has representatives &,
such that

(2.3) s(Z),s(g) < exp (n!(nd)eXpO(T)(h +1)).

The exponential dependence of the upper bound on n!, d and h + 1 is
coming from a Baker-type effective result for Thue equations over number
fields that is used in the proof. The bad dependence on r is coming from the
effective commutative algebra for polynomial rings over fields and over Z,
that is used in the specialization method of Evertse and Gyéry mentioned
above.

We immediately deduce that equation (2.1) is effectively solvable:
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Corollary 2.1. There exists an algorithm which, for any given fi,..., f;
such that A is a domain, and any representatives ay,...,d,, 0 such that
Dz, 0 & I, computes a finite list, consisting of one pair of representatives
for each solution (x,y) of (2.1).

Proof. Let C be the upper bound from (2.3). Check for each pair of polyno-
mials #, 7 € Z[X1, ..., X,] of size at most C' whether F'(Z,7) — 6 € I. Then
for all pairs 7,y passing this test, check whether they are equal modulo I,
and keep a maximal subset of pairs that are different modulo 1. [

2.3. Hyper- and superelliptic equations. We now consider the equation
(2.4) F(z) = oy™ in z,ye€A,
where

F(X)=aX"+a X" '+ +a, € A[X]
is a polynomial of degree n with discriminant Dy # 0, and where 6 € A\{0}.
We assume that either m =2 and n > 3, or m > 3 and n > 2. For m = 2,

equation (2.4) is called a hyperelliptic equation, while for m > 3 it is called
a superelliptic equation. Choose again representatives

o, A1, . .., n, 0 € Z[X1, ..., X,]

for ag,ay, ..., an,d, respectively. To guarantee that § # 0 and Dp # 0, we
have to choose the representatives in such a way that ¢ and the discriminant
of F:= 37" ;a; X" do not belong to I. Let

(2.5) { max(deg fi, ..., deg f;, deg dy, degdy, . .., degdy, degd) < d

max(h(fl)a Ty h(ft): h(dO)a h(d1>7 M) h<a~n)7 h<5)) < h7
where d > 1, h > 1.

Theorem 2.2. FEvery solution x,y of equation (2.4) has representatives T,
such that

(2.6) s(Z), s(g) < exp (mB(nd)eXpO(”(h +1)).

Completely similarly as for Thue equations, one can determine effectively
a finite list, consisting of one pair of representatives for each solution (z, )
of (2.4).

Our next result deals with the Schinzel-Tijdeman equation, which is (2.4)
but with three unknowns z,y € A and m € Z>,.
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Theorem 2.3. Assume that in (2.4), F' has non-zero discriminant and
n>2. Let x,y € A, m € Z>y be a solution of (2.4). Then

(2.7) m < exp ((nd)eXpO(T)(h +1))
ify € Q, y#0, yis not a root of unity,
(2.8) m < (nd)**°" if y ¢ Q.

3. A REDUCTION

We shall reduce our equations to equations of the same type over an
integral domain B D A of a special type which is more convenient to deal
with.

As before, let A = Z[z,..., 2] be an integral domain which is finitely
generated over Z and let K be the quotient field of A. Suppose that K has
transcendence degree ¢ > 0. If ¢ > 0, we assume without loss of generality
that {z1,...,2,} forms a transcendence basis of K/Q. Write p :=r —q. We
define

Ay =7z, ..., 2y, Ko :=Q(z1,...,2) ifg>0

Ay =7, Ky :=Q if g =0.
The field K is a finite extension of K. Further, if ¢ = 0, it is an algebraic
number field. In case that ¢ > 0, for f € Ay \ {0} we define deg f and Ah(f)
to be the total degree and logarithmic height of f, viewed as a polynomial

in the variables 2, ..., 2, In case that ¢ = 0, for f € Ay \ {0} = Z\ {0},
we put deg f := 0 and h(f) := log|f].

We shall construct an integral extension B of A in K such that
(3.1) B := Aglw, f7],

where f € Ay and w is a primitive element of K over Ky which is integral
over Ay. Then we give a bound for the sizes of the solutions of our equations

inz,y € B.
We recall that A = Z[ X, ..., X,]/] where [ C Z[X},...,X,] is the ideal
of polynomials f with f(z1,...,2.) = 0 and z; corresponds to the residue

class of X; modulo I. The ideal I is finitely generated. Assume that
I = (fb'":f?f))
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and put
(3.2) do:=max(1,deg fi,...,deg f;), ho := max(1, h(f1),...,h(f)).

Proposition 3.1. (i) There is a w € A such that K = Ko(w), w is integral
over Ag and w has minimal polynomaial

F(X)=XP+ FXP ' .. 4+ Fp € Ay[X]
over Ko such that D < dfj and
(3.3)  degFi < (2do)**O"),  h(Fi) < (2do)™P O (ho + 1)
fork=1,...,D.
(i) Let aq, ..., € K* and suppose that the pairs u;,v; € Z[ X1, ..., X,],

v; & I represent o fori=1,... k, respectively. Put

d™ := max(dy, deg uy, deg vy, ..., degu, degvy),

h** :=max(hg, h(u1), h(v1), ..., h(ug), h(vg)).
Then there is a non-zero f € Ay such that

A C Aolw, f7],

3.4
( ) O[l,...7OZkEAO[w7f_1]*

and

(3.5) deg f < (k+1)(2d*)*PO"  h(f) < (k+1)(2d™)=PO0) (B +1).

Proof. For (i) see Evertse and Gy6ry [9], Proposition 3.4 and Lemma 3.2,
(i), and for (ii) see [9], Lemma 3.6. O

We shall use Proposition 3.1, (ii) in a special case. To state it, we intro-
duce some further notation and prove a lemma.

We recall that ag,aq,...,a, € A are the coefficients of the binary form
F(X,Y), resp. of the polynomial F(X) in Sections 2.2 resp. 2.3, and
do, ay, ..., a, denote their representatives satisfying (2.2) resp. (2.5). This
implies that dy < d, hy < h, and that a; has total degree < d and logarithmic
height < h for i = 0,...,n. Denote by F the binary form F(X,Y) resp. the
polynomial F(X) Wlth coefﬁments ag, ai, . . ., a, replaced by ag,ay, ..., ay,
and by Dz the discriminant of F. In view of the assumption Dp # 0 we
have Dy & 1.
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Keeping the notation and assumptions of Sections 2.2 resp. 2.3, we have
the following lemma.

Lemma 3.2. For the discriminant D the following statements are true:

(3.6) deg Dp < (2n — 2)d,

(3.7) WDy < (20 —2) (log (2n2 (d jf T)) 4 h) .

Proof. Recall that the discriminant Dz can be expressed as

o iy cee an
o e e
. aq 205 cee o nay,
(38) D(F) ==+ nay (n—1)a, - Gp1 )
ndo (n — 1)&1 s &n,1
with on the first n — 2 rows of the determinant dy, ..., d,, on the (n — 1)-st
rOW a1, 2das, . . .,Nnd,, and on the last n — 1 rows nao, ..., a,_1. This implies

at once (3.6).

To prove (3.7), we use the length L(P) of a polynomial P € Z[ X1, ..., X,],
that is the sum of the absolute values of the coefficients of P. It is known
and easily seen that if P,Q € Z[X;,...,X,] then L(P + @) and L(PQ) do
not exceed L(P)+ L(Q) and L(P)L(Q), respectively (see e.g. Waldschmidt
23], p.76).

We have
L(a;) < (

d+r

)H with H =exph fori=20,...,n.
r

By applying these facts to (3.8), we obtain
L(D;) < (2n — 2)! <n< + r) H) .
r

Together with h(Dz) <log L(Dz) this implies (3.7). O]
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We now apply Proposition 3.1, (ii) to the numbers a; = 8, g = 671, g =
Dr and oy = D', Then the pairs (5, 1), (1,5), (Dg, 1), (1, Dg) represent
the numbers o, i = 1,...,4. Using the upper bounds for deg Dy, h(Djy)
implied by Lemma 3.2 as well as the upper bounds degd < d, h(d) < h
implied by (2.2), (2.5), we get immediately from Proposition 3.1, (ii) the
following.

Proposition 3.3. There is a non-zero f € Ay such that

(3.9) AC Aolw, [, 6,Dp € Aglw, [~
and
(3.10) deg f < (nd)**°" h(f) < (nd)™*°")(h 4 1).
In the case ¢ > 0, 21,..., 2, are algebraically independent. Thus, for

q > 0, Ap is a unique factorization domain, and hence the greatest common
divisor of a finite set of elements of A is well defined and up to sign uniquely
determined. We associate with every element o € K the up to sign unique
tuple Py, ..., Pyp-1,Qq of elements of Ay such that

(3.11)
D—1
a=Q' Y Pujw’ with Qu#0, ged(Pag,... Pap-1,Qu) = 1.
7=0
We put
(3.12) deg o := max(deg P, ...,deg Py p_1,deg Qy)
' h(a) := max(h(Payp), . .., h(Pap-1), (Qs)),

where as usual, deg P, h(P) denote the total degree and logarithmic height
of a polynomial P with rational integral coefficients. Thus for ¢ = 0 we
have deg o = 0 and h(a) = logmax(|Paol, - - -, | Pap-1l,|Qal)-

Lemma 3.4. Let « € K* and let (a,b) be a pair of representatives for o
with a,b € Z|Xy,..., X,], b¢ 1. Put

d* = max(dy,dega,degb) and h*:= max(hg,h(a),h(D)).
Then
(3.13) degov < (2d%)°POM () < (2d*)POW (B 4 1).

Proof. This is Lemma 3.5 in Evertse and Gydry [9)]. O
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Lemma 3.5. Let o be a nonzero element of A, and put
d:= max(dy, deg a), h = max(ho, h(a)).

Then « has a representative & € Z[ Xy, ..., X,] such that

(3.14)

~

dega < (2d)exp0(rlog r (f; 1)
h(&) < (2d)exp0(rlog r (h )r—l—l

Proof. This is a special case of Lemma 3.7 of Evertse and Gyéry [9] with
the choice A =1 and a = b = 1. The proof of this lemma is based on work
of Aschenbrenner [1]. O

3.1. Thue equations. Recall that Ay = Z[z1, ..., 2], Ko = Q(21,...,2)
if g >0, and Ay = Z, Ky = Q if ¢ = 0, and that in the case ¢ = 0 total
degrees and deg-s are always zero. Further, we have

F(X,Y)=ao X" +a: X" 'Y +-- +a,Y" € AX,Y]

with n > 3 and with discriminant Drp # 0, and 6 € A\ {0}. Recall
that for ag,aq,...,a,,d we have chosen representatives ag,di,...,d,,0 €

Z[Xy, ..., X,] satisfying (2.2).

Theorem 2.1 will be deduced from the following Proposition, which makes
sense also if ¢ = 0. The proof of this proposition is given in Sections 4-6.

Proposition 3.6. Let w and f be as in Propositions 3.1, (i) and 3.3, respec-
tively, with the properties specified there, and consider the integral domain

B = Ao[f w)].

Then for the solutions x,y of the equation

(3.15) F(zx,y)=19¢ in x,y€ B

we have

(3.16) deg, degy < (nd)™®°"),

(3.17) (), h(y) < exp (n!(nd)*PO" (h+1)).

We now deduce Theorem 2.1 from Proposition 3.6.
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Proof of Theorem 2.1. Let x,y be a solution of equation (2.1). In view of
(3.9) x,y is also a solution in B = Ay[f~!, w], where f,w satisfy the condi-
tions specified in Propositions 3.1, (i) and 3.3, respectively. Then by Propo-
sition 3.6, the inequalities (3.16) and (3.17) hold. Applying now Lemma 3.5
to x and y, we infer that x, y have representatives Z,y in Z[X1, ..., X,] with

(2.3). O

3.2. Hyper- and superelliptic equations. Recall that the polynomial
F(X)=a X" +a, X"+ +a, € A[X]

has discriminant Dp # 0, that 6 € A\ {0}, and that for ag,as,...,a,,d
we have chosen representatives dg, di, . ..,d,,0 € Z[Xi,...,X,| satisfying
(2.5).

Theorem 2.2 will be deduced from the following Proposition, which has

a meaning also if ¢ = 0. Similarly as its analogue for Thue equations, its
proof is given in Sections 4-6.

Proposition 3.7. Let w and f be as in Propositions 3.1, (i) and 3.3, re-
spectively, with the properties specified there, and consider the domain

B = A[f ', w)].

Further, let m be an integer > 2, and assume that n > 3 if m = 2 and
n > 2 if m > 3. Then for the solutions x,y of the equation

(3.18) F(z) = oy™ in x,y€ B

we have

(3.19) degz, mdegy < (nd)*™PO")

(3.20) h(z), h(y) < exp (m*(nd)**°")(h + 1))

We now deduce Theorem 2.2 from Proposition 3.7.

Proof of Theorem 2.2. Let x,y be a solution of equation (2.4). In view
of (3.9) x,y is also a solution in B = Ag[f~!,w], where f,w satisfy the
conditions specified in Propositions 3.1, (i) and 3.3, respectively. Then by
Proposition 3.7, (3.19) and (3.20) hold. Applying now Lemma 3.5 to z
and y, we infer that x,y have representatives z,y in Z[Xy,...,X,] with
(2.6). O
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Proposition 3.8. Suppose that equation (3.18) has a solution x € B, y €
BNQ and that also y # 0 and y is not a root of unity. Then

(3.21) m < exp ((nd)eXpO(r)(h +1)).

Proof of Theorem 2.3. Let xz,y € A, m € Zss be a solution of equation
(2.4). First let y ¢ Q. Then degy > 1, and together with (3.19) this implies
(2.8). Next, let y € Q. Then Proposition 3.8 gives at once (2.7). O

The proof of Proposition 3.8 is a combination of results from Sections
4-6. It is completed at the end of Section 6.

4. BOUNDING THE DEGREE

In this section we shall prove (3.16) of Proposition 3.6 and (3.19) of
Proposition 3.7.

We recall some results on function fields in one variable. Let k be an
algebraically closed field of characteristic 0, z a transcendental element over
k and M a finite extension of k(z). Denote by g/ the genus of M, and by
M the collection of valuations of M /k, these are the discrete valuations of
M with value group Z which are trivial on k. Recall that these valuations
satisfy the sum formula

Z v(a) =0 for o€ M™.
vEMar
For a finite subset S of M), an element o € M is called an S-integer if
v(a) >0 for all v € My, \ S. The S-integers form a ring in M, denoted by
Os. The (homogeneous) height of a = (ay, ..., q;) € M! relative to M /k is
defined by

Hy(a) = Hy(aq, ... 0q) = — Z min(v(aq),...,v()),

vE./Vl]u

and we define the height Hy,(f) of a polynomial f € M[X] by the height
of the vector defined by the coefficients of f. Further, we shall write
Hy(1,a) := Hy(1,04,...,0q;). We note that

(41) HM<CK1) gHM(a) SHM<&1)++HM(OQ), Z:L,l
By the sum formula,

(4.2) Hy(ca) = Hy(a) for ae M".
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The height of a € M relative to M /k is defined by

Hy(a) = Hy(1,0) = = > min(0,v(a)).

vEM s

It is clear that Hy(a) = 0 if and only if o € k. Using the sum formula, it
is easy to prove that the height has the properties

g He(e) = (@),
T Hy(oa+ B) < Hy(o) + Hy(f), Hy(afB) < Hy(a) + Hy(B)
for all non-zero o, 5 € M and for every integer [.

If L is a finite extension of M, we have
(44) Hp(ag,...,oq) =[L: M|Hy(ag,. .., o) for ag,...,0q € M.

By deg f we denote the total degree of f € k[z]. Then for fy,..., f; € k[2]
with ged(fo, ..., fi) =1 we have

(4.5) Hyp(fo, - - -, fi) = max(deg fo, ..., deg f;).
Lemma 4.1. Let ay,...,q; € M and suppose that

X+ aX ot =X —ay) .. (X — )
for certain f1,... f; € klz]. Then

l
[M : k(z)] max(deg fi, ..., deg f;) = Z Hagoy).

Proof. This is Lemma 4.1 in Evertse and Gydry [9]. O
Lemma 4.2. Let
F=foX'+ X" -+ fi e M[X]

be a polynomial with fy # 0 and with non-zero discriminant. Let L be the
splitting field over M of F'. Then

grpe < (L2 M- (garp + LH (F)).
In particular, if M =k(z2) and fo, ..., fi € k[z], we have
g < [L 2 M| - lmax(deg fo, ..., deg fi).
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Proof. The second assertion follows by combining the first assertion with
(4.5). We now prove the first assertion. Our proof is a generalization of
that of Lemma H of Schmidt [18].

For v € My, put v(F) := min(v(fy),...,v(f1)). Let Dp denote the
discriminant of F'. Since Dp is a homogeneous polynomial of degree 2] — 2
in fo,..., f1, we have

(4.6) v(Dp) > (20 — 2)u(F).

Let S be the set of v € My, with v(fy) > v(F) or v(Dp) > (21 — 2)v(F).
We show that L/M is unramified over every valuation v € M, \ S.

Take v € My, \ S. Let
Op:={xeM:vx)>0}, m,:={xeM:vx)>0}

denote the local ring at v, and the maximal ideal of O,, respectively. The
residue class field O, /m, is equal to k since k is algebraically closed. Let
vy : O, — k denote the canonical homomorphism.

Without loss of generality, we assume v(F) = 0. Then v(fy) = 0,
v(Dp) = 0. Let @u(F) := Y5 0u(f;) X' ™. Then ¢,(fo) # 0 and @,(F)
has discriminant ¢,(Dp) # 0. Since Dp # 0, the polynomial F' has [ dis-
tinct zeros in L, ay,...,qq, say. Further, ¢,(F') has [ distinct zeros in k,
ai,...,a, say.

Denote by ¥; the permutation group on (1,...,1). Choose ¢y, ...,¢ €k,
such that the numbers
Qg 1= C10G1) + - + Qo) (0 € %))
are all distinct, and the numbers
Uy = C10e01) + -+ GGy (0 € X))

are all distinct. Let a := cja1 + -+ - + ¢y. Then L = M («), and the monic
minimal polynomial of & over M divides G := [], .y, (X — a,) which by the
theorem of symmetric functions belongs to M[X]. The image of G under
¢v 18 [[,ex,(X —a,) and this has only simple zeros. This implies that L/M
is unramified at v.

For v € My, and any valuation € M, above v, denote by e(V|v) the
ramification index of V' over v. Recall that > ., e(V|v) = [L : M], where
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the sum is taken over all valuations of L lying above v. Now the Riemann-
Hurwitz formula implies that

(4.7) 201 —2 = [L:M](29x—2)+> > (e(VIv) —1)

veS Vv
< [L:M]Q29x —2+5]),

where |S| denotes the cardinality of S. It remains to estimate |S|. By the
sum formula and (4.6) we have

51 < 7 ((0(fo) = v(F)) + ((Dp) = (2L = 2)u(F)))

veES
= =Y @=1uE)= > o(fo)— D, v(Dp)
veS veEMu\S vEMp\S
< —(2—1) > w(F) = (20— 1)Hy(F).

vEMp

By inserting this into (4.7) we arrive at an inequality which is stronger than
what we wanted to prove. [

In the sequel we keep the notation of Proposition 3.1. To prove (3.16)
and (3.19) we may suppose that ¢ > 0 since the case ¢ = 0 is trivial.
Let again Ky := Q(21,...,24), K = Ko(w), Ay = Z[z,...,2), B =
Zlz1,. .., 2q, [71,w] with f,w specified in Propositions 3.1 (i) and 3.3.

Fixi € {1,...,q}. Let ki := Q(21,...,2i 1,241, .., %) and k; its alge-
braic closure. Then Ay is contained in k;[z;]. Denote by w") := w, ... w®)
the conjugates of w over K. Let M; denote the splitting field of the poly-
nomial XP + F XP~1 ...+ Fp over ky(z), that is

M; = Kki(z,w®, .. wP).
Then
B; :=k[z, fHw®, ... w?)]
is a subring of M; which contains B = Z[z, ..., z,, f ', w] as a subring. Let
A; := [M; : ki(2;)]. Further, let gy, denote the genus of M;/k;, and Hyy,
the height taken with respect to ]\4,/@Z Put

(4.8) dy := max(dy,deg f,deg Fi,...,deg Fp).
We mention that in view of Propositions 3.1, 3.3,

(4.9) dy < (nd)®PO0),
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Lemma 4.3. Let o € K* and denote by oW, ..., aP) the conjugates of a
corresponding to w, ... w®P). Then

q D
dega < ¢Dd; + ZA;I ZHMi(a(j)).

i=1 j=1
Proof. This is Lemma 4.4 in Evertse and Gyéry [9]. OJ

Conversely, we have the following:

Lemma 4.4. Let o € K* and o, ..., a'P) be as in Lemma 4.3. Then we
have
(4.10) max Hyy, (o) < A; (2Ddeg o + (2d,)™P ™)) .

irj

Proof. Consider the representation of the form (3.11) of a.. Since P, x, @ €
Ky, we have

(w(j))k for 7=1,...,D.

In view of (4.3) it follows that

D-1 P D-1
(4.11) Hy (@) < HMi( “”“) + ) kHy, (w).

But we have

Pak) (Pak)
Hy. : < A;Hy, (. ’ < Aj(deg, P, + deg,.
(4.12) M,( 0 we) |\ (deg., Pox 2., Q)

< Aj(deg P, +deg Q) < 2A,deg a.

Further, applying Lemma 4.1 with M;, w®, ..., w®) instead of M, a4, . . ., oy,

we get
() , ,
N
) . : . exp O(r)
< A; max (deg F5) < Ai(2do) :

Now using the fact that D < df < dj ', (4.11), (4.12) and (4.13) imply
(4.10). O
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4.1. Thue equations. As before, k is an algebraically closed field of char-
acteristic 0, z a transcendental element over k and M a finite extension of
k(z). Further, gy denotes the genus of M, My, the collection of valu-
ations of M/k, and for a finite subset S of Mj;, Og denotes the ring of
S-integers in M. We denote by |S| the cardinality of S.

Consider now the Thue equation
(4.14) F(z,y) =1 in z,y € Og,

where F'is a binary form of degree n > 3 with coefficients in M and with
non-zero discriminant.

Proposition 4.5. Every solution z,y € Og of (4.14) satisfies

Proof. This is Theorem 1, (ii) of Schmidt [18]. O

We note that from Mason’s fundamental inequality concerning S-unit
equations over function fields (see Mason [16]) one could deduce (4.15) with
smaller constants than 89 and 212. However, this is irrelevant for the bounds
in (2.3).

Now we use Proposition 4.5 to prove the statement (3.16) of Proposition
3.6.

Proof of (3.16). We denote by w) :=w, ..., w' the conjugates of w over

Ky, and for o € K we denote by aM, ... aP) the conjugates of o corre-
sponding to w™®, ... w®.
Next, fori =1,...,n we putk; :== Q(21,...,2i-1,2it1, ..., 2,) and denote

by k; its algebraic closure. Further, M, denotes the splitting field of the
polynomial X? + F XP~1 ...+ Fp over k(2), we put A, := [M; : ki(2)]
and define

Sii={ve My, : v(z) <0orov(f) >0}
The conjugates w") (j =1,...,D) lie in M; and are all integral over k;[z;].
Hence they belong to Og,. Further, f~! € Og,. Consequently, if « € B =
Aolf~', w], then o) € Og, for j =1,...,D,i=1,...,q.

Let z,y be a solution of equation (3.15). Put F’ := §~'F, and let F') be
the binary form obtained by taking the j-th conjugates of the coefficients of
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F'. Let je{1,...,D}, i€ {l,...,q}. Then clearly, F'Y) € M;[X,Y], and
FOE0 g0y =1, 20 40 ¢ 0.

So by Proposition 4.5 we obtain that

(4.16)  max(Hyy, (z29), Hy, (y9)) < 89Hy (FY)) + 2129, + |Si| — 1.

We estimate the various parameters in this bound. We start with Hy, (F'()).
We recall that F/(X,Y) =6 Hap X"+ a1 X" 'Y +---+a,Y™). Using (4.2),
(4.1) and Lemma 4.4 we infer that

< A; (2D(degag + -+ - + deg a,) + n(2dy) PO .
By Lemma 3.4 we have
dega; < (2d*)PO) for 1=0,...,n,

where d* := max(dy,dega;) < d. Further, we have dy < d, D < dy ? < d".
Thus we obtain that

(4.17)  Ha,(F'9) < A;(2D(n + 1)(2d)™ ") + n(2d)=PO0)

< Ay(nd)=PO0),

Next, we estimate the genus. Using Lemma 4.2 with F(X) = F(X) =
XP 4+ FXP~1 ... + Fp, applying Proposition 3.1, and using dy < d,
D < dj < d", we infer that

(4.18)  gar, < AiD max deg. Fi < A;D(2dy)*PO") < A (nd)*POT),
Lastly, we estimate |S;|. Each valuation of k;(z;) can be extended to at most
[M; : ki(z)] = A; valuations of M;. Thus M; has at most A; valuations

v with v(z;) < 0 and at most A; deg f valuations v with v(f) > 0. Hence
using Proposition 3.3, we get

(4.19) [Si| < Ay + Aydeg,, [ < A1+ deg f) < Ay(nd)*PO0).
By inserting the bounds (4.17), (4.18) and (4.19) into (4.16), we infer

(420) maX(HM, (ZE(])), HMl (y(J)>> < Az(nd)expO(r)

In view of Lemma 4.3, (4.20), D < d", ¢ <r and (4.9) we deduce that

q D
degz,degy < qDdy + Y AT Hyy, (29) < (nd)O0),

i=1 j=1
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This proves (3.16). O

4.2. Hyper- and superelliptic equations. Recall the notation intro-
duced at the beginning of Section 4. Again, k is an algebraically closed
field of characteristic 0, z a transcendental element over k, M a finite ex-
tension of k(z), and S a finite subset of M.

Proposition 4.6. Let F' € M[X] be a polynomial with non-zero discrimi-
nant and m > 3 a given integer. Put n := deg F' and assume n > 2. All
solutions of the equation

(4.21) F(z)=y™ in z,y € Og
have the property

(4.22) Hy(z) < (6n+18)Hy(F) + 6gars + 21|,
(4.23)  mHu(y) < (6n®+18n+ 1)Hy(F) 4 6ngu i + 2n|9).

Proof. First assume that F' splits into linear factors over M, and that S
consists only of the infinite valuations of M, these are the valuations of M
with v(z) < 0. Under these hypotheses, Mason [16, p.118, Theorem 15],
proved that for every solution x,y of (4.21) we have

But Mason’s proof remains valid without any changes for any arbitrary
finite set of places S. That is, (4.24) holds if F splits into linear factors over
M, without any condition on S.

We reduce the general case, where the splitting field of M may be larger
than M, to the case considered by Mason. Let L be the splitting field of F’
over M, and T the set of valuations of L that extend those of S. Then |T'| <
[L: M]-|S|, and by Lemma 4.2, we have gr i < [L : M]- (gaj+nHy (F)).
Note that (4.24) holds, but with L, T instead of M, S. Tt follows that

[L:M]-Hy(x)=Hp(x) < 18HL(F)+6grx+2(|T|—1)
< [L: M]((6n + 18)Hy (F) + 6ga + 2|5))
which implies (4.22). Further,
(4.25) mHy (y) = Hu(y™) = Hy(F(z)) < Hy (F) + nHy (),
which gives (4.23). O
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Proposition 4.7. Let F' € M[X] be a polynomial with non-zero discrimi-
nant. Put n := deg F' and assume n > 3. Then the solutions of

(4.26) F(z) =3 in x,y € Og
have the property

(4.27) Hy(z)
(4.28) Hy(y)

(42n 4 37)Hp (F) + 8gni + 4151,

<
< (21n® + 19n)Hy (F) + 4nga i + 20 S).

Proof. First assume that F' splits into linear factors over M, that S consists
only of the infinite valuations of M, that F' is monic, and that F' has its
coefficients in Og. Under these hypotheses, Mason [16, p.30, Theorem 6]
proved that for every solution of (4.26) we have

(4.29) Hy(z) < 26Hy (F) 4 8gnmp + 4(1S] — 1).

An inspection of Mason’s proof shows that his result is valid for arbitrary
finite sets of valuations S, not just the set of infinite valuations. This leaves
only the conditions imposed on F'.

We reduce the general case to the special case to which (4.29) is applica-
ble. Let F' = agX"™ + -+ + a,. Let L be the splitting field of F'- (X2 — ag)
over M. Let T be the set of valuations of L that extend the valuations
of S, and also the valuations v € M, such that v(F) < 0. Further, let
F'= X"+ X" ' + apay X" 2 + --- + af 'a,, and let b be such that
b?> = al~'. Then for every solution z,y of (4.26) we have

F'(apz) = (by)?, aoz,by € Or,

and moreover, F' € Or[X], F’ is monic, and F” splits into linear factors
over L. So by (4.29),

(4.30) HL(CLOSE) < 26HL(FI) + 8gL/k + 4<|T‘ — 1).
First notice that
Hi(F) = [L: M]Hy(F') < [L: M]-nHy(F).
Further,
T < (2 MI(1S] = Y min(0,0(F))) < [L: M](S|+ Hy(F)).

vEM s

Finally, by Hy (F - (X? — ap)) < 2Hy(F) and Lemma 4.2, we have
grye < [L 2 M(garje + (0 + 2)2Hy (F)).
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By inserting these bounds into (4.30), we infer
[L: M|Hy(z) < [L:M](Hy(aoz)+ Hy(F)) = Hr(aox) + [L: M]Hy(F)
< [L: M]((42n 4 37)Hpy (F) + 8k + 4/S]).

This implies (4.27). The other inequality (4.28) follows by combining (4.27)
with (4.25) with m = 2. O

The final step of this subsection is to prove statement (3.19) in Proposition
3.7.

Proof of (3.19). We closely follow the proof of statement (3.16) in Proposi-
tion 3.6, and use the same notation. In particular, k;, M;, S;, A; will have
the same meaning, and for o € B, j = 1,..., D, the j-th conjugate o)
is the one corresponding to w"). Put F' := ¢ 'F, and let F'Y) be the
polynomial obtained by taking the j-th conjugates of the coefficients of F”.

We keep the argument together for both hyper- and superelliptic equa-
tions by using the worse bounds everywhere. Let x,y € B be a solution of
(2.4), where m,n > 2 and n > 3 if m = 2. Then

F'O(z0) = (yuym 20 40 e Oy .
By combining Propositions 4.6 and 4.7 we obtain the generous bound

For Hy,(F'9D), gas i, |Si] we have precisely the same estimates as (4.17),
(4.18), (4.19). Then a similar computation as in the proof of (3.16) leads to

(4.31) Hy (29, mHy, (y9) < Ay(nd)=PO0),
Now employing Lemma 4.3 and ignoring for the moment m we get simi-
larly as in the proof of (3.16),
degz, degy < (nd)™»o.
It remains to estimate mdegy. If y € Q we have degy = 0. Assume that

y € Q. Then y ¢ k; for at least one index 4. Since y € B C k;(z;, w) and
[ki(zi, w) : k;i(2z;)] < D, we have

Hur(y) = [M; 2 ki(25, 0)| Higy(z,0) () = [M; 2 ki(zi,0)] > A/ D.
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Together with (4.31) and D < d" this implies
m < (’I’Ld)eXpO(T).

This concludes the proof of (3.19). O

5. SPECIALIZATIONS

In this section we shall consider specialization homomorphisms from the
domain B to Q, and using these specializations together with earlier results
concerning our equations in the number field case we shall finish the proof
of Propositions 3.6 and 3.7.

We start with some notation. The set of places of Q is Mg = {c0} U
{primes}. By |- |~ we denote the ordinary absolute value on Q and by |- |,
(p prime) the p-adic absolute value with |p|, = p~'. More generally, let L
be an algebraic number field with set of places M. Given v € My, we
define the absolute value |- |, in such a way that its restriction to Q is | - |,
if v lies above p € M. These absolute values satisty the product formula

H la|® =1 for «€ L™,
vEM,
where d, := [L, : Q]/[L : Q], with p € Mg the place below v, and Q,, L,
the completions of Q at p, L at v. Note that we have qu\p d, = 1 for every
p € Mg. The absolute logarithmic height of o € L is defined by

h(a) :=log H max(1, |o|™).
VEM [,

This depends only on « and not on the choice of the number field L con-
taining «, hence it defines a height on Q. For properties of the height we
refer to Bombieri and Gubler [5].

Lemma 5.1. Let m > 1 and let oy, ..., o, € Q be distinct, and suppose
that G(X) = [[[L,(X — «;) € Z[X]. Let q,po,...,pm—1 be integers with

ged(q, pos - - -y Pm—1) = 1 and put
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Then

m

log max(lql, [pol, - - -, [Pm—11) < 2m* + (m — DA(G) + > h(B)):

j=1
Proof. This is Lemma 5.2 in Evertse and Gydry [9)]. O

We now consider our specializations B — Q and prove some of their
properties. These specializations were introduced by Gyéry [11] and [12]
and, in a refined form, by Evertse and Gyéry [9].

We assume ¢ > 0 and apart from that keep the notation and assumption
from Section 3. In particular, Ko := Q(z1,...,2,), K = Q(21,..., 24, w),
Ay := Z|z,...,2,. Further, B := Z[z,...,2, f~ ', w] where f is a non-
zero element of Ay with the properties specified in Proposition 3.3, and w
is integral over Ay and has minimal polynomial

F(X)=XP+ FXP 4 4 Fp € Ag[X]

over Ky as in Proposition 3.1 (i). In the case D = 1 we take w = 1,
F(X)=X—1.
Let u = (uy,...,u,) € Z% Then the substitution z; — us,...,2; =

defines a ring homomorphism (specialization) from K, to Q

gpu:al—mx(u):{a:&:gl,gQGAo,gg(u)#O}—>Q.

92

To extend this to a ring homomorphism from B to Q we have to impose
some restrictions on u. Let Az be the discriminant of F (with Ar = 1 if
D =1), and let

Put

(5.2) dy = max(deg Fi, . ..,deg Fp), d; := max(d§, deg f)
' hy = max(h(Fy),...,h(Fp)),  h*:=max(hi, h(f)).

Clearly H € Ay and since Az is a homogeneous polynomial in Fi,..., Fp
of degree 2D — 2, we have

(5.3) degH < (2D — V)& + d'.
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Further, by Proposition 3.1 (i), Proposition 3.3 and (2.2) we also have
{df? <2000, R < (A0 (R + 1),

5.4
( ) d; < (nd)expO(r)’ hf{ < (nd)EXPO(T)(h + ]_)

Next assume that
(5.5) H(u) #£0.
Then we have f(u) # 0, Ap(u) # 0, hence the polynomial
Foi=XP + F(0)XP 4.+ Fp(u)

has D distinct zeros which are all different from 0, say w® (u), ..., w®) (u).
Consequently, for j = 1,..., D the assignment

2 U, Zg Y Ug, W — w(u)

defines a ring homomorphism ¢, ; from B to Q; if D =1 it is just ¢,. The
image of @ € B under ¢, ; is denoted by ¥ (u). It is important to note
that if o is a unit in B, then its image by a specialization cannot be 0. Thus
by Proposition 3.3, 6(u) # 0 and Dg(u) # 0.

Recall that we may express elements of B as

D-1

(56)  a=) (P/Qu

=1

where Py, ..., Pp_1,Q € Ay, ng(Po, .oy Pp_q, Q) =1.
Because of a € B, ) must divide a power of f; hence Q(u) # 0. So we have
A D—1 A .
67 P =Y (AW/QMW) WPw) . j=1....D.
i=1

Clearly, ¢, ; is the identity on BN Q. Hence if « € BN Q then ¢, j(a) has
the same minimal polynomial as a and so it is a conjugate of .

For u = (uy,...,u,) € Z9, put |u| := max(|uyl,...,|uy|). It is easy to
check that for any g € Ay, u € Z4

(5.8) log |g(u)] < qlogdeg g + h(g) + deg glog max(1, |ul).
In particular, we have

(5.9) h(Fa) < qlogdi + hi + djlogmax(1, |ul)
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and so by Lemma 5.1 of Evertse and Gy6ry [9]

D
(5.10) Z h(wW (1)) < D+ 1+ qlogd + hy + d; log max(1, [ul).
j=1

We define the algebraic number fields K, ; = Q(w(u)) for j = 1,..., D.
We denote by Ay, the the discriminant of an algebraic number field L. We
derive an upper bound for the absolute value of the discriminant Ay, ; of
Ky ;.

Lemma 5.2. Let u € 77 with H(u) # 0. Then for j = 1,...,D we have
[Ku;:Q] <D and

Ak, | < D71 ((dy)%ehs max(1, [u]%))*" 7

Proof. This is Lemma 5.5 in Evertse and Gydry [9)]. O

The following two lemmas relate the height of & € B to the heights of
a9 (u) for u € Z9.

Lemma 5.3. Let u € 7% with H(u) # 0, and let « € B. Then for j =

1,....D,
h(aYW(u)) < D* + ¢(Dlog d}, + log deg o) +
+Dh + h(a) + (Ddjy + deg ) log max(1, [ul).
Proof. This is Lemma 5.6 in Evertse and Gydry [9]. O

Lemma 5.4. Let « € B, a # 0, and let N be an integer with
(5.11) N > max(deg v, 2Dd}; + 2(q + 1)(d} + 1)).

Then the set

S:={ueZ : |ul <N, H(u)#0}
18 non-empty, and
(5.12) h(a) < 5N*(hi +1)* +2D(h} + 1)H,
where H := max{h(a¥(u)) : ues, j=1,...,D}.

Proof. This is Lemma 5.7 in Evertse and Gyéry [9)]. O



26 A. BERCZES, J.-H. EVERTSE, AND K. GYORY

6. BOUNDING THE HEIGHT AND THE EXPONENT m

We shall derive the height bounds (3.17) in Proposition 3.6 and (3.20) in
Proposition 3.7, as well as the upper bound for m in Proposition 3.8 by com-
bining the specialization techniques from the previous section with existing
effective results for Diophantine equations over S-integers of a number field,
namely Gyéry and Yu [13] for Thue equations, and the three authors [4] for
hyper- and superelliptic equations and the Schinzel-Tijdeman equation.

6.1. Thue equations. In the statement of the result of Gyéry and Yu we
need some notation.

For an algebraic number field L, we denote by dj, O, My, A, hy,
r; and Ry the degree, ring of integers, set of places, discriminant, class
number, unit rank and regulator of L. The absolute norm of an ideal a of
Oy, is denoted by N(a).

Let L be an algebraic number field and let S be a finite set of places of L
which contains all infinite places. Denote by s the cardinality of S. Recall
that the ring of S-integers Og is defined as

Os={a€eL : |a, <1forve Mp\S}

If S consists only of the infinite places of L, we put P := 2,Q = 2. If §
contains also finite places, we denote by p,...,p; the prime ideals corre-
sponding to the finite places of S, and we put

P :=max(N(p1),...,N(ps)), Q:=N(p1...p).

The S-regulator associated with S is denoted by Rg. If S consists only of
the infinite places of L it is just R, while otherwise

t
RS = hSRL H IOg N(pz);

i=1
where hg is a (positive) divisor of hy. It is an easy consequence of formula
(2) of Louboutin [15] that

(6.1) hiRy < |Ar]'?(log" [Ar])
cf. formula (59) of Gyéry and Yu, [13]. Further, we have
(6.2) Rs < [Ap[Y?(log" [AL[)" (log" Q)*;

see (6.1) in Evertse and Gy6ry [9]. In view of (6.1) this is true also if ¢ = 0.
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6.1.1. Results in the number field case. Let F(X,Y) € L[X,Y] be a binary
form of degree n > 3 with splitting field L and with at least three pairwise
non-proportional linear factors. Further, let § € L\ {0} and consider the
Thue equation

(6.3) F&n) =8 in &neOs.

For a polynomial G' with algebraic coefficients, we denote by h(G) the max-
imum of the logarithmic heights of its coefficients.

Proposition 6.1. All solutions (£,m) € O% of equation (6.3) satisfy
(6.4)  max(h(§),h(n)) < c1PRg (1 + (log* Rs)/log" P) x

h
X (CQRL + d_L log Q@ + 2nd Hy + H2) ,
L

where
Hy, = max(1,h(F)), Hs = max(1,h(d)),
= 25On6825+3.5 . 27s+27<1og 2S>d%8+4<10g*(2dL))3
and
0 Zf rL = 0
Cy = 1/dL Zf r, = 1
296TL!7’L\/TL - 110gdL Zf’/’L Z 2.
Proof. This is Corollary 3 of Gyéry and Yu [13]. OJ

We shall also need the following.

Lemma 6.2. If L is the composite of the algebraic number fields Ly, . .., Ly

with degrees dp,,...,dr, and discriminants Ap,, ..., A, , then Ap divides
AP A g,
Proof. See Stark [20]. O

Lemma 6.3. Let L be an algebraic number field and 0 a zero of a polynomial
G € L[X] of degree n without multiple roots. Then

|A L] < n®r Do =2RE) | A | |[EO:L]
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Proof. This is a slight modification of the second assertion of [4, Lemma 4.1].
In fact, this lemma gives the same bound but with an exponent (2n—2)h'(G)
on e, where for G = >} b, X"* we define

W(G)= Y dylogmax(1, |bo|o, ... |balo)-
VEM,

This height is easily estimated from above by > 7 _, h(by) < (n + 1)h(G).
Our lemma follows. O]

6.1.2. Concluding the proof of Proposition 3.6.

Proof of (3.17) in Proposition 3.6. We first consider the case ¢ > 0. Let x,y
be a solution of (3.15) in B. We keep the notation introduced in Section 5.
Recall that H := Az - Fp - f and by (5.3) and (5.4) we get

(6.5) degH < (nd)>PO"),

Choose u € Z? with H(u) # 0, choose j € {1,...,D}, and denote by
Fuj, 69U (u), 2U)(u), y¥)(u), the images of F,§,z,y under ¢y ;. Then F,
has its coefficients in K, ;. Further, let L denote the splitting field of Fy, ;
over K ;, and S the set of places of L which consists of all infinite places
and all finite places lying above the rational prime divisors of f(u). Note
that w@(u) is an algebraic integer and f(u) € O%. Thus ¢, ;(B) C Os
and it follows from (3.15) that

(6.6) Fu, (x(j)(u%y(j)(u)) — 5(j)(u)7 x(j)(u%y(j)(u) € Og.
We already proved in Section 4 that (3.16) of Proposition 3.6 holds, i.e.
we have
degz,degy < (nd)*PO0),
Hence we can apply Lemma 5.4 with
N = max ((nd)™*°") 2Dd; + 2(q + 1)(d} + 1)) .
In view of (5.4), D < d" and ¢ < r we get
(6.7) N < (nd)*PO0),

By applying Lemma 5.4 with o = x and a = y, and inserting D < d" and
the upper bound k! < (nd)*®°")(h + 1) from (5.4), it follows that there
areu € Z4, j € {l,...,D} with

(6.8) lu| < (nd)**°") H(u) #0
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and
(6.9)  max(h(z), h(y)) < (nd)™ OO [(h+ 1) +
+d" (h + 1) max (h(z) (u)), h(y(j)(u)))] .

We proceed further with this u, j and apply Proposition 6.1 to equation
(6.6) to derive an upper bound for h(z\)(u)) and h(y"(u)). To do so we
have to bound from above the parameters corresponding to those which
occur in Proposition 6.1.

Write F = >")_, ax X" *Y"* and put
deg F:= max degay, h(F):= max h(ay).

0<k<n 0<k<n

Notice that by Lemma 3.4, applied to § and the coefficients of F' with the
choice d* = d, h* = h, we have

(6.10) deg F,deg § < (2d)00),

(6.11) h(F), h(6) < (2d)"PO0) (b +1).

It follows from Lemma 5.3, ¢ < r, D < d", (5.4), (6.10), (6.11), and lastly
(6.8), that

(6.12) h(F,;) < D*+q(Dlogd} +logdeg F) + Dhi +
+h(F) + (Dd}, + deg F) logmax(1, |u])
< (nd)®PO0)(h 4 1).

In a similar way, replacing F' by 9, we obtain also

(6.13) h(6W (u)) < (nd)™PP0)(h 4 1).

We recall that d;, and A denote the degree and the discriminant of L
over Q. Since [Ky; : Q] < D, we have d, < Dn!l. Let G(X) := F(X,1),
and let 61, ...,6, be the roots of G. We haven’ =nifag #0andn’ =n—1
otherwise. Then L = K, ;(6,...,0,). Denote by d;, the degree and by
Ay, the discriminant of the number field L; := K, ;(#;), i = 1,...,n'. Then
by Lemma 6.2 we have
(6.14) AL < J]IAL |/

=1
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We estimate |Ap|. First notice that by Lemma 5.2, inserting the estimates
g<r,D<d, (54), (6.8),

(6.15) Ak,,| < D*P7'((dy)%" max(1, [u
< exp ((nd)™°")(h +1)).

Further, by Lemma 6.3 and the estimates D < d", (6.12), (6.15),
1ALl < n(2”*1)De(2”2*2)h(F“J)\AKW. [Li: K]
< exp{[L; : Ku] - (nd)™P°")(h + 1)}
By inserting this into (6.14), using [L : K ;] < n!, we obtain
(6.16) ALl < exp {(nd)e"po(”(h +1)- ndL/dKu’j}
< exp{n!(nd)*®°")(h +1)}.

dg

))2D—2

By assumption (5.2), f has degree at most dj and logarithmic height at
most hf. Further, f(u) # 0 and by ¢ <r, (5.4), (6.8),

(6.17) [f(w)] < (d7)%e" max(1, [u)% < exp{(nd)** ") (h +1)}.

The cardinality s of S is at most dj (1 4+ w), where w denotes the number of
distinct prime divisors of f(u). By prime number theory,

(6.18) s = O(dy log" | f(u)[/log" log™ | f(u)]).

From this estimate and (6.17), D < d", d;, < n!d", one easily deduces that
for ¢; coming from Proposition 6.1 we have

(6.19) ¢; < exp{n!(nd)*PO")(h +1)}.
Next, we estimate P,Q and Rg. By (6.17), d;, < nld" we have
(6.20) P <Q<|f(u)|® < exp{n!(nd)*P°"(h +1)}.

To estimate Rg, we use (6.2). Then, in view of (6.16) and d < nld", we
have

(6.21) IALIY2(log™ |AL|)% ™! < exp{n!(nd)®P°") (h +1)}.
Further, by (6.18) and (6.20),
s log" [ ()] -
(log @Q)* < exp {O<dLlog* log" |7 ()] - (logdy, + log" log |f(u)])> } :

Together with (6.17), this leads to
(6.22) Rs < |AL]'"2(log" [AL])" ! (log Q)* < exp{n!(nd)** " (h + 1)}.
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Combining (6.1) with (6.21) and with Ry > 0.2052 (see Friedman [10]) we
get

(6.23) max(hr, Ry) < exp{n!(nd)**°")(h +1)}.
Finally, using r; < d;, < nld", we infer that
(6.24) ¢y < expO(dylog* dp) < exp{n!(nd)=>P°"}.

We now apply Proposition 6.1 to equation (6.6). From the estimates (6.12),
(6.13), (6.19), (6.20), (6.22), (6.23), (6.24), it follows that the upper bound
in Proposition 6.1 is a sum and product of terms, which are all bounded
above by exp{n!(nd)*P°")(h + 1)}. It follows that

h(zD()), h (y9(u)) < exp{n!(nd)*®°")(h + 1)}.

By inserting this into (6.9), we obtain the upper bound (3.17) in Proposition
3.6 for ¢ > 0.

Now assume ¢ = 0. In this case Ky = Q, Ay = Z and B = Z[f ™!, w],
where w is an algebraic integer with minimal polynomial F(X) = X +
FXP 4. .+ Fpe Z|X] over Q, and f is a non-zero rational integer. In
view of Propositions 3.1 (i) and 3.3 we may assume that

log|f] <hf and  log|Fi| <hi for k=1,...,D,

where hj, h satisfy (5.4). Denote by w®), ... w®) the conjugates of w, and
let K; :=Q(wW) for j :=1,...,D. By a similar argument as in the proof
of Lemma 5.5 of Evertse and Gyéry [9], we have |Ag,| < D*P~1e@P=2hs,
which is the estimate from Lemma 5.2 with ¢ = 0 and max(1, |u|) replaced

by 1. For o € K, we denote by a/) the conjugate of a corresponding to
()
w\).

Instead of Lemma 5.4 we use Lemma 5.1, applied with G = F, m = D
and BY) = z0) resp. y9). Inserting (5.4), this leads to an estimate

(625 max(h(z), A(y)) < (pd)*O7) max max (h(z), h(y?)),

1<j<D
We proceed further with the j for which the maximum is assumed.

Now we can follow the argument for the case ¢ > 0, except that in all
estimates we have to take ¢ = 0, and replace max(1, |u|) by 1, Ky ; by Kj,
f(u) by f, Fy; by FY, where F9 is the binary form obtained by taking
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the j-th conjugates of the coefficients of F, and f(u) by f. This leads to
an estimate

h((@9)), b((yY) < exp{nl(nd)** O (h + 1)},

and combined with (6.25) this gives again (3.17). This completes the proof
of Proposition 3.6. 0

6.2. Hyper- and superelliptic equations.

6.2.1. Results in the number field case. Let L be a number field, and de-
note as usual by dp, Ap, Op, My its degree, discriminant, class number,
regulator, ring of integers, and set of places. Further, let S be a finite set
of places of L containing all infinite places. If S consists only of the infinite
places of L, put P := 2,@) := 2. Otherwise, denote by py,...,p; the prime
ideals corresponding to the finite places of .S, and put

P :=max(N(p1),...,N(ps)), Q= N(pi...pe).

Let
(6.26) F(X)=aX"+a, X" '+ +a, € OsX]

be a polynomial of degree n > 2 and of non-zero discriminant, 6 € Og\ {0},
and m a positive integer. Put

hi= Y dylogmax(L,[6], |aols, ... |anlv),
vVEM,
where d, := [L, : Q,]/[L : Q], with p € Mg the place below v.

Proposition 6.4. Assumen > 2, m > 3. If x,y € Og is a solution to the
equation

(6.27) F(z) = dy™, z,y € Og,
then

h@), h(y) < AP Qe s,

where c5 = (6n.s)14"°s.

Proof. This is Theorem 2.1 in [4]. O
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Proposition 6.5. Let n > 3. If x,y € Og is a solution to
(629 F(z)=dy*,  a,y€Os,
then

h(z), h(y) < ca| Ay Q20" P0n Ll

where ¢y = (4ns)?2s,

Proof. This is Theorem 2.2 in [4]. O
Proposition 6.6. Let n > 2. If x,y, m is a solution to

F(z) = dy™, z,y € Og, m € Z>a,
such that y # 0 and y is not a root of unity, then

9 ~
m S CSIAL|6nPn ellndLh7

where c5 := (10n%s)*0ns,

Proof. This is Theorem 2.3 in [4]. O

6.2.2. Concluding the proofs of Propositions 3.7 and 3.8.

Proof of (3.20) in Proposition 3.7. The computations will be similar to those
in the proof of (3.17) in Proposition 3.6 but with some simplifications.

First we suppose ¢ > 0. Take a solution z,y of (3.18) in B. We use
again the polynomial ‘H := Az - Fp - f from Section 5. Take again u € Z4
with H(u) # 0, choose j € {1,..., D}, and denote by F,;, %) (u), 2\ (u),
y)(u), the images of F,§, x,y under the specialization ¢u,;- In contrast to
our argument for Thue equations, we do not have to deal with the splitting
field of F" now. So we take for S the set of places of K, ;, consisting of all
infinite places, and all finite places lying above the rational prime divisors

of f(u). Then ¢y ;(B) C Og, and

(6.29) Fy(zV(u)) = 69 (w)y? ()", x9(u), y¥(u) € Os.

Note that by the choice of H and H(u) # 0 we have §;(u) # 0 and Fy, ; has
non-zero discriminant. So F,, ; has the same number of zeros and degree as

F', that is, the degree of Fy,; isn > 2if m > 3 and n > 3 if m = 2. Hence
Propositions 6.4 and 6.5 are applicable.
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By precisely the same argument as in the case for Thue equations, there
are u € Z9 and j € {1,...,D} with (6.8) and (6.9). We proceed further
with this u, j.

We estimate the parameters corresponding to those in the bounds from
Propositions 6.4, 6.5. First, we get precisely the same estimates as in (6.12)
and (6.13). These imply

(6.30) h < (n+ D)h(Fa;) + b9 () < (nd)™PO" (b + 1),
Further we have, similarly to (6.15),

(6.31) |Ag, | < exp{(nd)*™P°")(h+1)}.

Next, similar to (6.17),

(6.32) (W) < exp{(nd)**OO (R + 1)},

The set S now consists of places of K, ; instead of the splitting field of F,, ;
over K. So since [Ky; : Q] < D we now have s < D(1 4+ w), where w is the
number of distinct prime divisors of f(u). This gives, instead of (6.18),

(6.33) s = O (Dlog™|f(u)|/log"log" | f(u)]).
By inserting (6.32), and D < d", we obtain for the quantities c3,c4 in
Propositions 6.4 and 6.5 the upper bounds

(6.34) c3, ¢y < exp{(nd)®P°")(h 4 1)}.
Lastly, we have instead of (6.20),
(6.35) P <Q < [f(w)]” < exp{(nd)** 7O (h + 1)},

where we have used (6.32) and D < d".

We now apply Propositions 6.4 and 6.5 to (6.29). Note that we have to
take L = K, ;; so d, < D < d". By inserting this and (6.30), (6.31), (6.34),
(6.35) into the upper bounds from these Propositions, we obtain

(6.36) B (w)), Ay (w) < explm?(nd)*O0)(h + 1)},
By inserting this into (6.9), we obtain (3.20) in the case ¢ > 0.

Now let ¢ = 0. For a € K, write a¥) for the conjugate of o corresponding
to w", and let FU) be the polynomial obtained by taking the j-th conju-
gates of the coefficients of F'. We simply have to follow the above arguments,
replacing everywhere ¢ by 0, max(1, [u|) by 1, Ky, by K9 = Q(w\), F,;
by FU 20 (), y¥)(u) by ), 49 and f(u) by f € Z. Instead of (6.9) we
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have to use (6.25). Thus, we obtain the same estimate as (6.36), but with
2U) 49 instead of z;(u), y;(u). Via (6.25) we obtain (3.20) in the case
g = 0. This completes our proof of Proposition 3.7. O

Proof of Proposition 3.8. Assume for the moment ¢ > 0. Let x € B, y €
BNQ, m € Zsy be a solution of (3.18), such that y # 0 and y is not a
root of unity. Choose again u, j with (6.8), (6.9). Note that ) (u) is a
conjugate of y since y € Q; hence it is not 0 or a root of unity.

We apply Proposition 6.6 to (6.29). By (6.32), (6.33), we have for the
constant ¢5 in Proposition 6.6, that

s < exp{(nd)*P°"(h 4+ 1)}.

Further, we have the upper bounds (6.30) for h, (6.31) for Ak, |, and

(6.35) for P. By inserting these estimates into the upper bound for m from
Proposition 6.6, we obtain m < exp{(nd)*®°)(h +1)}. In the case ¢ = 0,
we obtain the same estimate, by making the same modifications as in the
proof of Proposition 3.7. This finishes our proof of Proposition 3.8. 0
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