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Abstract. We give a survey of our recent effective results on unit equa-

tions in two unknowns and, obtained jointly with A. Bérczes, on Thue

equations and superelliptic equations over an arbitrary domain that is

finitely generated over Z. Further, we outline the method of proof.

1. Introduction

We give a survey of recent effective results for Diophantine equations with

unknowns taken from domains finitely generated over Z. Here, by a domain

finitely generated over Z we mean an integral domain of characteristic 0 that

is finitely generated as a Z-algebra, i.e., of the shape Z[z1, . . . , zr] where the

generators zi may be algebraic or transcendental over Z.

Lang [14] was the first to prove finiteness results for Diophantine equa-

tions over domains finitely generated over Z. Let A be such a domain.

Generalizing work of Siegel [22], Mahler [15] and Parry [17], Lang proved

that if a, b, c are non-zero elements of A, then the equation ax + by = c,

called unit equation, has only finitely many solutions in units x, y of A.

Further, Lang extended Siegel’s theorem [23] on integral points on curves,

i.e., he proved that if f ∈ A[X, Y ] is a polynomial such that f(x, y) = 0 de-

fines a curve C of genus at least 1, then there are only finitely many points

(x, y) ∈ A × A on C. The results of Siegel, Mahler, Parry and Lang were

ineffective, i.e., with their methods of proof it is not possible to determine

in principle the solutions of the equations under consideration.
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K. Győry has been supported by the OTKA-grants no. 67580,75566 and 100339.

June 29, 2013.
1



2 J.-H. EVERTSE AND K. GYŐRY

A major breakthrough in the effective theory of Diophantine equations

was established by A. Baker in the 1960’s. Using his own estimates for linear

forms in logarithms of algebraic numbers, he obtained effective bounds for

the solutions of Thue equations [2] and hyper- and superelliptic equations

[3] over Z. Schinzel and Tijdeman [19] were the first to consider superelliptic

equations f(x) = δym over Z where also the exponent m was taken as an

unknown and gave an effective upper bound for m. Győry [9], [10] showed,

in the case that A is the ring of S-integers in a number field, that the

solutions of unit equations can be determined effectively in principle. Their

proofs also depend on Baker’s linear forms estimates.

The effective results of Baker and of Schinzel and Tijdeman were extended

to equations where the solutions x, y are taken from the ring of S-integers of

an algebraic number field; we mention here Coates [7], Sprindžuk and Kotov

[25] (Thue equations), and Trelina [26], Brindza [5] (hyper- and superelliptic

equations).

In the 1980’s Győry [11], [12] developed a method, which enabled him to

obtain effective finiteness results for certain classes of Diophantine equations

over a restricted class of finitely generated domains. The core of the method

is to reduce the Diophantine equations under consideration to equations over

number fields and over function fields by means of an effective specialization

method, and then to apply Baker type logarithmic form estimates to the

obtained equations over number fields, and results of, e.g., Mason, to the

equations over function fields. Győry applied his method among others

to Thue equations, and later Brindza [6] and Végső [27] to hyper- and

superelliptic equations and the Schinzel-Tijdeman equation.

Recently, the two authors managed to extend Győry’s method to arbi-

trary finitely generated domains. By means of this extended method the

two authors [8] obtained an effective finiteness result for the unit equation

ax+by = c in x, y ∈ A∗, where A is an arbitrary domain that is finitely gen-

erated over Z, and A∗ denotes the unit group of A. By applying the same

method, the authors together with Bérczes [4] obtained effective versions

of certain special cases of Siegel’s theorem over A. Namely, they obtained

effective finiteness results for Thue equations F (x, y) = δ in x, y ∈ A and

hyper/superelliptic equations F (x) = δym in x, y ∈ A, where δ is a non-zero

element of A, F is a binary form, respectively polynomial with coefficients

in A, and m is an integer ≥ 2. All these equations have a great number of
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applications. We note that the approach of the authors can be applied to

various other classes of Diophantine equations as well.

In Section 2 we give an overview of our recent results. In Section 3 we

give a brief outline of the method of proof.

2. Recent results

2.1. Notation. Let again A ⊃ Z be an integral domain which is finitely

generated over Z, say A = Z[z1, . . . , zr]. Put

R := Z[X1, . . . , Xr], I := {f ∈ R : f(z1, . . . , zr) = 0}.

Then I is an ideal of R, which is necessarily finitely generated. Hence

A ∼= R/I, I = (f1, . . . , ft)

for some finite set of polynomials {f1, . . . , ft} ⊂ R. We may view {f1, . . . , ft}
as a representation for A. For instance using Aschenbrenner [1, Prop. 4.10,

Cor. 3.5], it can be checked effectively whether A is a domain containing Z,

that is to say, whether I is a prime ideal of R with I ∩ Z = (0).

Denote by K the quotient field of A. For α ∈ A, we call f a representative

for α, or say that f represents α if f ∈ R and α = f(z1, . . . , zr). Further,

for α ∈ K, we call (f, g) a pair of representatives for α or say that (f, g)

represents α if f, g ∈ R, g 6∈ I and α = f(z1, . . . , zr)/g(z1, . . . , zr). We

say that α ∈ A (resp. α ∈ K) is given if a representative (resp. pair of

representatives) for α is given.

To do explicit computations in A and K, one needs an ideal membership

algorithm for R, that is an algorithm that decides for any given polynomial

and ideal of R whether the polynomial belongs to the ideal. Among the var-

ious algorithms of this sort in the literature we mention only those implied

by work of Simmons [24] and Aschenbrenner [1]. The work of Aschenbren-

ner plays a vital role in our proofs. One can perform arithmetic operations

on A and K by using representatives. Further, one can decide effectively

whether two polynomials f1, f2 ∈ R represent the same element of A, i.e.,

f1 − f2 ∈ I, or whether two pairs of polynomials (f1, g1), (f2, g2) ∈ R × R
represent the same element of K, i.e., f1g2 − f2g1 ∈ I, by using one of the

ideal membership algorithms mentioned above.
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Given f ∈ R, we denote by deg f its total degree, and by h(f) its loga-

rithmic height, i.e., the logarithm of the maximum of the absolute values of

its coefficients. The size of f is defined by

s(f) := max(1, deg f, h(f)).

Clearly, there are only finitely many polynomials in R of size below a given

bound, and these can be determined effectively.

We use the notation O(r) to denote any expression of the type ‘absolute

constant times r’, where at each occurrence of O(r) the constant may be

different.

2.2. Thue equations. We consider the Thue equation over A,

(2.1) F (x, y) = δ in x, y ∈ A,

where

F (X, Y ) = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ A[X, Y ]

is a binary form of degree n ≥ 3 with discriminant DF 6= 0, and δ ∈ A\{0}.
We represent (2.1) by a set of representatives

ã0, ã1, . . . , ãn, δ̃ ∈ Z[X1, . . . , Xr]

for a0, a1, . . . , an, δ, respectively, such that δ̃ /∈ I,DF̃ /∈ I where DF̃ is the

discriminant of F̃ :=
∑n

j=0 ãjX
n−jY j. These last two conditions can be

checked by means of the ideal membership algorithm mentioned above. Let

max(deg f1, . . . , deg ft, deg ã0, deg ã1, . . . , deg ãn, deg δ̃) ≤ d,

max(h(f1), . . . , h(ft), h(ã0), h(ã1), . . . , h(ãn), h(δ̃)) ≤ h,

where d ≥ 1, h ≥ 1.

Theorem 2.1 (Bérczes, Evertse, Győry [4]). Every solution x, y of equation

(2.1) has representatives x̃, ỹ such that

(2.2) s(x̃), s(ỹ) ≤ exp
(
n!(nd)expO(r)(h+ 1)

)
.

This result implies that equation (2.1) is effectively solvable in the sense

that one can compute in principle a finite list, consisting of one pair of

representatives for each solution (x, y) of (2.1). Indeed, let f1, . . . , ft ∈ R
be given such that A is a domain, and let representatives ã0, ã1, . . . , ãn, δ̃ of

a0, . . . , an, δ be given such that DF̃ , δ̃ 6∈ I. Let C be the upper bound from

(2.2). Then one simply has to check, for each pair of polynomials x̃, ỹ ∈
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Z[X1, . . . , Xr] of size at most C whether F̃ (x̃, ỹ)− δ̃ ∈ I and subsequently,

to check for all pairs x̃, ỹ passing this test whether they are equal modulo

I, and to keep a maximal subset of pairs that are different modulo I.

2.3. Hyper- and superelliptic equations. We now consider the equation

(2.3) F (x) = δym in x, y ∈ A,

where

F (X) = a0X
n + a1X

n−1 + · · ·+ an ∈ A[X]

is a polynomial degree n with discriminant DF 6= 0, and where δ ∈ A \ {0}.
We assume that either m = 2 and n ≥ 3, or m ≥ 3 and n ≥ 2. For m = 2,

equation (2.3) is called a hyperelliptic equation, while for m ≥ 3 it is called

a superelliptic equation. Similarly as for the Thue equation, we represent

(2.3) by means of a tuple of representatives

ã0, ã1, . . . , ãn, δ̃ ∈ Z[X1, . . . , Xr]

for a0, a1, . . . , an, δ, respectively, such that δ̃ and the discriminant of F̃ :=∑n
j=0 ãjX

n−j do not belong to I. Let

max(deg f1, . . . , deg ft, deg ã0, deg ã1, . . . , deg ãn, deg δ̃) ≤ d

max(h(f1), . . . , h(ft), h(ã0), h(ã1), . . . , h(ãn), h(δ̃)) ≤ h,

where d ≥ 1, h ≥ 1.

Theorem 2.2 (Bérczes, Evertse, Győry [4]). Every solution x, y of equation

(2.3) has representatives x̃, ỹ such that

s(x̃), s(ỹ) ≤ exp
(
m3(nd)expO(r)(h+ 1)

)
.

Completely similarly as for Thue equations, one can determine effectively

a finite list, consisting of one pair of representatives for each solution (x, y)

of (2.3).

Our next result deals with the Schinzel-Tijdeman equation, which is (2.3)

but with three unknowns x, y ∈ A and m ∈ Z≥2.

Theorem 2.3 (Bérczes, Evertse, Győry [4]). Assume that in (2.3), F has

non-zero discriminant and n ≥ 2. Let x, y ∈ A,m ∈ Z≥2 be a solution of

(2.3). Then

m ≤ exp
(
(nd)expO(r)(h+ 1)

)
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if y ∈ Q, y 6= 0, y is not a root of unity,

and

m ≤ (nd)expO(r) if y /∈ Q.

2.4. Unit equations. Finally, consider the unit equation

(2.4) ax+ by = c in x, y ∈ A∗

where A∗ denotes the unit group of A, and a, b, c are non-zero elements of

A.

Theorem 2.4 (Evertse and Győry [8]). Assume that r ≥ 1. Let ã, b̃, c̃ be

representatives for a, b, c, respectively. Assume that f1, . . . , ft and ã, b̃, c̃ all

have degree at most d and logarithmic height at most h, where d ≥ 1, h ≥ 1.

Then for each solution (x, y) of (2.4), there are representatives x̃, x̃′, ỹ, ỹ′ of

x, x−1, y, y−1, respectively, such that

s(x̃), s(x̃′), s(ỹ), s(ỹ′) ≤ exp
(

(2d)expO(r)(h+ 1)
)
.

Again, similarly as for Thue equation, one can determine effectively a

finite list, consisting of one pair of representatives for each solution (x, y) of

(2.4).

By a theorem of Roquette [18], the unit group of an integral domain

finitely generated over Z is finitely generated. In the case that A = OS is

the ring of S-integers of a number field it is possible to determine effectively

a system of generators for A∗, and this was used by Győry in his effective

finiteness proof for (2.4) with A = OS. However, no general algorithm is

known to determine a system of generators for the unit group of an arbitrary

finitely generated domain A. In our proof of Theorem 2.4, we did not need

any information on the generators of A∗.

Let γ1, . . . , γs be multiplicatively independent elements ofK∗. There exist

algorithms to check effectively the multiplicative independence of elements

of a finitely generated field of characteristic 0; see for instance Lemma 7.2

of [8]. Let again a, b, c be non-zero elements of A and consider the equation

(2.5) aγv11 · · · γvss + bγw1
1 · · · γws

s = c in v1, . . . , vs, w1, . . . , ws ∈ Z.

Theorem 2.5 (Evertse and Győry [8]). Let ã, b̃, c̃ be representatives for

a, b, c and for i = 1, . . . , s, let (gi1, gi2) be a pair of representatives for γi.
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Suppose that f1, . . . , ft, ã, b̃, c̃, and gi1, gi2 (i = 1, . . . , s) all have degree at

most d and logarithmic height at most h, where d ≥ 1, h ≥ 1. Then for

each solution (v1, . . . , ws) of (2.5) we have

max
(
|v1|, . . . , |vs|, |w1|, . . . , |ws|

)
≤ exp

(
(2d)expO(r+s)(h+ 1)

)
.

An immediate consequence of Theorem 2.5 is that for given f1, . . . , ft, a, b, c

and γ1, . . . , γs, the solutions of (2.5) can be determined effectively. Theorem

2.5 is a consequence of Theorem 2.4.

3. A sketch of the method

Let A = Z[z1, . . . , zr] ⊃ Z be a domain that is finitely generated over Z.

Let K be the quotient field of A. As usual we write R := Z[X1, . . . , Xr],

and take f1, . . . , ft ∈ R such that f1, . . . , ft generate the ideal of f ∈ R with

f(z1, . . . , zr) = 0.

The general idea is to reduce our given Diophantine equation over A

to Diophantine equations over function fields and over number fields by

means of a specialization method. We first recall the lemmas which together

constitute our specialization method, and then give a brief explanation how

this can be used to prove the results mentioned in the previous section.

If K is algebraic over Q then no specialization argument is needed. We

assume throughout that K has transcendence degree q > 0 over Q. We as-

sume without loss of generality that z1, . . . , zq are algebraically independent

over Q. Put

A0 := Z[z1, . . . , zq], K0 := Q(z1, . . . , zq).

Thus, A = A0[zq+1, . . . , zr], K = K0(zq+1, . . . , zr) and K is algebraic over

K0. Given a ∈ A0 we let deg a, h(a) be the total degree and logarithmic

height of a viewed as polynomial in the variables z1, . . . , zq.

Let d̂0 be an integer ≥ 1 and ĥ0 a real ≥ 1. Assume that

deg fi ≤ d̂0, h(fi) ≤ ĥ0 for i = 1, . . . , t.

Lemma 3.1. There are w, f with w ∈ A, f ∈ A0 \ {0} such that

A ⊆ B := A0[w, f
−1],

deg f ≤ (2d̂0)
expO(r), h(f) ≤ (2d̂0)

expO(r)(ĥ0 + 1),
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and such that w has minimal polynomial XD +F1X
D−1 + · · ·+FD over K0

of degree D ≤ d̂r−q0 with

Fi ∈ A0, degFi ≤ (2d̂0)
expO(r), h(Fi) ≤ (2d̂0)

expO(r)(ĥ0 + 1)

for i = 1, . . . , D.

Proof. This is a combination of Corollary 3.4 and Lemma 3.6 of [8]. �

Since A0 is a unique factorization domain with unit group {±1}, for every

non-zero α ∈ K there is an up to sign unique tuple Pα,0, . . . , Pα,D−1, Qα ∈ A0

such that

(3.1) α = Q−1α

D−1∑
j=0

Pα,jw
j.

We define

degα := max(degPα,0, . . . , degPα,D−1, degQα),

h(α) := max(h(Pα,0), . . . , h(Pα,D−1), h(Qα)).

We observe here that α ∈ B if and only if Qα divides a power of f .

Lemma 3.2. Let α ∈ A \ {0}.
(i) Let α̃ ∈ R be a representative for α. Put d̂1 := max(d̂0, deg α̃), ĥ1 :=

max(ĥ0, h(α̃)). Then

(3.2) degα ≤ (2d̂1)
expO(r), h(α) ≤ (2d̂1)

expO(r)(ĥ1 + 1).

(ii) Put d̂2 := max(d̂0, degα), ĥ2 := max(ĥ0, h(α)). Then α has a represen-

tative α̃ ∈ R such that

(3.3) deg α̃ ≤ (2d̂2)
expO(r log∗ r)(ĥ2+1), h(α̃) ≤ (2d̂2)

expO(r log∗ r)(ĥ2+1)r+1.

Proof. This is a combination of Lemmas 3.5 and 3.7 of [8]. The proof is

based on effective commutative linear algebra for polynomial rings over

fields (Seidenberg, [21]) and over Z (Aschenbrenner, [1]). �

The next lemma relates degα to certain function field heights. We use

the notation from Lemma 3.1. Let α 7→ α(i) (i = 1, . . . , D) denote the K0-

isomorphic embeddings of K in the algebraic closure of K0. For i = 1, . . . , q,

let ki be the algebraic closure of Q(z1, . . . , zi−1, zi+1, . . . , zq), and Mi =
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ki(zi, w
(1), . . . , w(D)). Thus, K may be viewed as a subfield of M1, . . . ,Mq.

Given α ∈ K, define the height of α with respect to Mi/ki,

HMi/ki
(α) :=

∑
v∈VMi/ki

max(0,−v(α)),

where VMi/ki
is the set of normalized discrete valuations of Mi that are

trivial on ki. Put ∆i := [Mi : ki(zi)].

Lemma 3.3. Let α ∈ K∗. Then

(3.4) degα ≤ qD · (2d̂0)expO(r) +

q∑
i=1

∆−1i

D∑
j=1

HMi/ki
(α(j)),

and

(3.5) max
i,j

∆−1i HMi/ki
(α(j)) ≤ 2Ddegα + (2d̂0)

expO(r).

Proof. The first assertion is Lemma 4.4 of [8], where we have estimated from

above the quantity d1 from that lemma by the upper bound (2d̂0)
expO(r) for

deg f and degFi from Lemma 3.1 of the present paper. The second assertion

is Lemma 4.4 of [4]. �

We define ring homomorphisms B → Q, where B ⊇ A. Let α1, . . . , αk ∈
K∗. For i = 1, . . . , k, choose a pair of representatives (ai, bi) ∈ R×R for αi
and put

d̂3 := max(d̂0, deg a1, deg b1, . . . , deg ak, deg bk),

ĥ3 := max(ĥ0, h(a1), h(b1), . . . , h(ak), h(bk)).

Let g :=
∏k

i=1(Qαi
Qα−1

i
) and define the ring B := A0[w, (fg)−1]. Then by

Lemma 3.1 and (3.1),

(3.6) A ⊆ B, α1, . . . , αk ∈ B∗.

Define

H := ∆F · FD · fg,
where ∆F is the discriminant of F . Clearly, H ∈ A0 and by Lemmas 3.1,

3.2, the additivity of the total degree and the ’almost additivity’ of the

logarithmic height for products of polynomials, we have

(3.7) degH ≤ (k + 1)(2d̂3)
expO(r), h(H) ≤ (k + 1)(2d̂3)

expO(r)(ĥ3 + 1).
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Any u = (u1, . . . , uq) ∈ Zq gives rise to a ring homomorphism ϕu : A0 →
Z by substituting ui for zi, for i = 1, . . . , q, and we write a(u) := ϕu(a) for

a ∈ A0. We extend ϕu to B. Choose u ∈ Zq such that

H(u) 6= 0.

Let Fu := XD + F1(u)XD−1 + · · · + FD(u). By our choice of u, the

polynomial Fu has non-zero discriminant, hence it has D distinct roots,

w(1)(u), . . . , w(D)(u) ∈ Q, which are all non-zero, since also FD(u) 6= 0.

Further, f(u)g(u) 6= 0. Hence the substitutions

z1 7→ u1, . . . , zq 7→ uq, w 7→ w(j)(u) (j = 1, . . . , D)

define ring homomorphisms ϕ
(j)
u : B → Q. We write α(j)(u) := ϕ

(j)
u (α) for

α ∈ B, j = 1, . . . , D. Notice that by (3.6) we have

(3.8) α
(j)
i (u) 6= 0 for i = 1, . . . , k, j = 1, . . . , D.

The image ϕ
(j)
u (B) is contained in the algebraic number fieldK

(j)
u := Q(w(j)(u))

and [K
(j)
u : Q] ≤ D ≤ d̂r−q0 .

In the Lemma below, we denote by habs(ξ) the absolute logarithmic Weil

height of ξ ∈ Q. For u = (u1, . . . , uq) ∈ Zq we write |u| := max(|u1|, . . . , |uq|).

Lemma 3.4. Let α ∈ B \ {0}.
(i) Let u ∈ Zq with H(u) 6= 0 and j ∈ {1, . . . , D}. Then

(3.9) habs(α(j))(u)) ≤ C1(degα, h(α),u),

where C1(degα, h(α),u) :=

(2d̂0)
expO(r)(ĥ0 + 1) + h(α) +

(
(2d̂0)

expO(r) + qdegα
)

log max(1, |u|).

(ii) There exist u ∈ Zq, j ∈ {1, . . . , D} such that

(3.10)

{
|u| ≤ max

(
degα, (2d̂3)

expO(r)
)
, H(u) 6= 0,

h(α) ≤ C2

(
degα, habs(α(j)(u))

)
where C2

(
degα, habs(α(j)(u))

)
:=

(2d̂3)
expO(r)

(
(k + 1)6(ĥ3 + 1)2(degα)4 + (k + 1)(ĥ3 + 1)habs(α(j)(u))

)
.

Proof. This is a combination of Lemmas 5.6 and 5.7 from [8]. Observe

that the quantities D, d0 occurring in Lemmas 5.6 and 5.7 of [8], can be

estimated from above by the upper bounds for D and degFi (i = 1, . . . , D)
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from Lemma 3.1 of the present paper, i.e., by d̂r−q0 and (2d̂0)
expO(r). The

polynomial f from [8] corresponds to fg in the present paper. In [8], the

degree and the logarithmic height of f are estimated from above by d1, h1.

We have to replace these by the upper bounds for deg fg, h(fg) implied

by (3.7) of the present paper. As a consequence, the lower bound for N

in Lemma 5.7 of [8] is replaced by the upper bound for |u| in (3.10) of

the present paper, while the upper bound for h(α) in Lemma 5.7 of [8] is

replaced by C2 in the present paper. �

We now sketch briefly, how to obtain an upper bound for the sizes of rep-

resentatives for solutions x, y ∈ A of the Thue equation F (x, y) = δ, where

F is a binary form in A[X, Y ] of degree n ≥ 3 with non-zero discriminant

and where δ ∈ A \ {0}.

Let x, y ∈ A be a solution. Using Lemma 3.2 one obtains upper bounds

for the deg -values and h-values of the coefficients of F and of δ. Next, by

means of Lemma 3.3 one obtains upper bounds for the HMi/ki
-values of the

coefficients of F and of δ and their conjugates over K0. Using for instance

effective results of Mason [16, Chapter 2] or Schmidt [20, Theorem 1, (ii)] for

Thue equations over function fields, one can derive effective upper bounds

for HMi/ki
(x(j)) and HMi/ki

(y(j)) for all i, j and subsequently, upper bounds

for deg x, deg y from our Lemma 3.3.

Next, let {α1, . . . , αk} consist of the discriminant of F and of δ. Choose

u ∈ Zq, j ∈ {1, . . . , D} such that |u| ≤ max
(
d, (2d̂3)

expO(r)
)
, H(u) 6= 0,

and subject to these conditions, H := max
(
habs(x(j)(u)), habs(x(j)(u))

)
is

maximal; here d is the maximum of the deg -values of x, y, the coefficients

of F and δ. Let F
(j)
u be the binary form obtained by applying ϕ

(j)
u to the

coefficients of F . By (3.8) and our choice of {α1, . . . , αk}, this binary form

is of non-zero discriminant, and also δ(j)(u) 6= 0.

Clearly, F
(j)
u

(
x(j)(u), y(j)(u)

)
= δ(j)(u). Now we can apply an existing

effective result for Thue equations over number fields (e.g, from Győry and

Yu [13]) to obtain an effective upper bound for H. Inequality (3.10) then

implies an effective upper bound for h(x), h(y). Finally, Lemma 3.2 gives

effective upper bounds for the sizes of certain representatives for x, y.
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Obviously, the same procedure applies to equations F (x) = δym. As for

unit equations ax+ by = c, one may apply the above procedure to systems

of equations ax+ by = c, x · x′ = 1, y · y′ = 1 in x, y, x′, y′ ∈ A.
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