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Roth’s Theorem

Define

H(ξ) = max(|p|, |q|), where ξ = p/q, p, q ∈ Z, gcd(p, q) = 1.

Theorem (Roth, 1955)

Let α be a real algebraic number and δ > 0. Then the inequality

(1) |α− ξ| ≤ H(ξ)−2−δ in ξ ∈ Q

has only finitely many solutions.

Roth’s proof, and later proofs of his Theorem, are ineffective, i.e., they
do not give a method to determine the solutions.
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A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible
polynomial F ∈ Z[X ] with coprime coefficients such that F (α) = 0.

We define the height H(α) := max |coeff. of F |.

Theorem (Bombieri, van der Poorten, 1987)

Let δ > 0, K = Q(α), [K : Q] = d . Then for the solutions ξ ∈ Q of

|α− ξ| ≤ H(ξ)−2−δ

we have H(ξ) ≤ max
(
B ineff(δ,K ), H(α)c

eff (δ,d)
)
.

Here ceff , B ineff are constants, effectively, resp. not effectively computable
from the method of proof, depending on the parameters between the paren-
theses.
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B ineff(δ,K ), H(α)c

eff (δ,d)
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Equivalent formulation, ’Roth’s theorem with moving targets’

Let K be a number field of degree d and δ > 0. Then there are only
finitely many pairs (ξ, α) ∈ Q× K such that

|α− ξ| ≤ H(ξ)−2−δ, H(ξ) > H(α)c
eff (δ,d).
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A semi-effective result

The minimal polynomial of an algebraic number α is the irreducible
polynomial F ∈ Z[X ] with coprime coefficients such that F (α) = 0.

We define the height H(α) := max |coeff. of F |.

Theorem (Bombieri, van der Poorten, 1987)

Let δ > 0, K = Q(α), [K : Q] = d . Then for the solutions ξ ∈ Q of

|α− ξ| ≤ H(ξ)−2−δ

we have H(ξ) ≤ max
(
B ineff(δ,K ), H(α)c

eff (δ,d)
)
.

Similar results follow from work of Vojta (1995), Corvaja (1997), McQuillan
(ceff(δ, d) = O(d(1 + δ−2)), published ?).
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Schmidt’s Subspace Theorem

Let Q denote the field of algebraic numbers in C and let

Li (X) = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be linearly independent linear forms with coefficients αij ∈ Q.

For x = (x1, . . . , xn) ∈ Zn, put ‖x‖ := maxi |xi |.

Theorem (W.M. Schmidt, 1972)

Let δ > 0. Then the set of solutions of

(2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ in x ∈ Zn

is contained in finitely many proper linear subspaces of Qn.

There are generalizations where the unknowns are taken from a number
field and various archimedean and non-archimedean absolute values are
involved. (Schmidt, Schlickewei)
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn,

where c1 + · · ·+ cn < 0.
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn,

where c1 + · · ·+ cn < 0.

Idea.

Let x ∈ Zn be a solution of (2). Then

|L1(x)| ≤ ‖x‖c1(x), . . . , |Ln(x)| ≤ ‖x‖cn(x)

with
c(x) := (c1(x), . . . , cn(x)) ∈ bounded set S .

Cover S by a very fine, finite grid. Then x satisfies (3) with
c = (c1, . . . , cn) a grid point very close to c(x).
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn,

where c1 + · · ·+ cn < 0.

Thus, the following is equivalent to the Subspace Theorem:

Theorem

The solutions of (3) lie in finitely many proper linear subspaces of Qn.
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A refinement of the Subspace Theorem

Let again L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn

with coefficients in Q and c1, . . . , cn reals with c1 + · · ·+ cn < 0.
Consider again

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn.

Theorem (Vojta (1989), Schmidt (1993), Faltings-Wüstholz
(1994))

There is an effectively computable, proper linear subspace T exc of Qn

such that (3) has only finitely many solutions outside T exc.

The space T exc belongs to a finite collection, depending only on
L1, . . . , Ln and independent of c1, . . . , cn.

This refinement can be deduced from Schmidt’s basic Subspace Theorem,
so it is in fact equivalent to Schmidt’s basic Subspace Theorem.
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About the exceptional subspace

Assume for simplicity that L1, . . . , Ln have real algebraic coefficients.

For a linear subspace T of Qn, we say that a subset {Li1 , . . . , Lim} of
{L1, . . . , Ln} is linearly independent on T if no non-trivial R-linear
combination of Li1 , . . . , Lim vanishes identically on T .

For a linear subspace T of Qn define c(T ) to be the minimum of the
quantities ci1 + · · ·+ cim , taken over all subsets {Li1 , . . . , Lim} of
{L1, . . . , Ln} of cardinality m = dimT that are linearly independent on T .

T exc is the unique proper linear subspace T of Qn such that

c(Qn)− c(T )

n − dimT
is minimal,

subject to this condition, dimT is minimal.
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About the exceptional subspace
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An effective estimate

Lemma (E., Ferretti, 2013)

Suppose that the coefficients of L1, . . . , Ln have heights ≤ H.

Then T exc has a basis {x1, . . . , xm} ⊂ Zn with

‖xi‖ ≤ (
√
nHn)4

n

(i = 1, . . . ,m).

Open problem

Is there an efficient method to determine T exc in general?

Easy combinatorial expression of T exc in terms of L1, . . . , Ln, c1, . . . , cn?
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Remarks

With the present methods of proof it is not possible to determine
effectively the solutions of

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn

outside T exc.

It is possible to give an explicit upper bound for the minimal number of
proper linear subspaces of Qn whose union contains all solutions of (3).

This bound depends on n, δ := −(c1 + · · ·+ cn) and on the heights and
degrees of the coefficients of L1, . . . , Ln (Schmidt (1989),. . ., E. and
Ferretti (2013)).

With the present methods it is not possible to estimate from above the
number of solutions of (3) outside T exc.
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A semi-effective version of the Subspace Theorem

Let L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn and
c1, . . . , cn reals such that:

• the coefficients of L1, . . . , Ln have heights ≤ H and generate a number
field K of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Theorem

For every solution x of

(4) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ineff(n, δ,K ),Hceff (n,δ,d)

)
.

Proof.

Small modification in the proof of the Subspace Theorem.
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A semi-effective version of the Subspace Theorem

Let L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn and
c1, . . . , cn reals such that:

• the coefficients of L1, . . . , Ln have heights ≤ H and generate a number
field K of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Theorem

For every solution x of

(4) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ineff(n, δ,K ),Hceff (n,δ,d)

)
.

We may take ceff(n, δ, d) = exp
(
106n(1 + δ−3) log 4d log log 4d

)
.
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A semi-effective version of the Subspace Theorem

Let L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn and
c1, . . . , cn reals such that:

• the coefficients of L1, . . . , Ln have heights ≤ H and generate a number
field K of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Theorem

For every solution x of

(4) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ineff(n, δ,K ),Hceff (n,δ,d)

)
.

This may be viewed as a version of the Subspace Theorem with moving
targets, where we have only finitely many tuples (x, L1, . . . , Ln) with (4),
such that the coefficients of L1, . . . , Ln lie in a given number field K and
have small heights with respect to x.
(How to compare this with a result of Ru and Vojta?)
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A conjectural improvement

Keep the assumptions

• L1, . . . , Ln are linearly independent linear forms, whose coefficients have
heights ≤ H and generate a number field of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Conjecture 1

There are an effectively computable constant ceff(n, δ, d) > 0 and a
constant B ′(n, δ, d) > 0 such that for every solution x of

(4) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ′(n, δ, d),Hceff (n,δ,d)

)
.

(In moving targets terms: there are only finitely many tuples (x, L1, . . . , Ln)
with (4) such that the coefficients of L1, . . . , Ln have bounded degree and
have heights small compared with x).
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A conjectural improvement

Keep the assumptions

• L1, . . . , Ln are linearly independent linear forms, whose coefficients have
heights ≤ H and generate a number field of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Conjecture 1

There are an effectively computable constant ceff(n, δ, d) > 0 and a
constant B ′(n, δ, d) > 0 such that for every solution x of

(4) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ′(n, δ, d),Hceff (n,δ,d)

)
.

This is hopeless with B ′ effective. But what if we allow B ′ to be ineffective?
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abc-type inequalities

Let K be an algebraic number field of degree d and discriminant DK .
Let a, b, c be non-zero elements of OK with a + b = c .

Put HK (a, b, c) :=
∏

σ:K ↪→C
max(|σ(a)|, |σ(b)|, |σ(c)|).

Theorem 1 (Effective abc-inequality, Győry, 1978)

We have HK (a, b, c) ≤ (2|NK/Q(abc)|)c1(d)|DK |c2(d) with c1(d), c2(d)
effectively computable in terms of d .

Proof.

Baker-type logarithmic forms estimates.

Theorem 2 (Semi-effective abc-inequality, well-known)

For every δ > 0 we have HK (a, b, c) ≤ C ineff(K , δ)|NK/Q(abc)|1+δ.

Proof.

Roth’s Theorem over number fields.
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A very weak abc-conjecture

Let again K be a number field of degree d and discriminant DK .

Conjecture 2 (Very weak abc-conjecture)

There are a constant C (d , δ) > 0 and an effectively computable constant
ceff(d , δ) > 0 with the following property:
for every non-zero a, b, c ∈ OK with a + b = c and every δ > 0 we have

HK (a, b, c) ≤ C (d , δ)|DK |c
eff (d,δ)|NK/Q(abc)|1+δ.

Conjecture 1 =⇒ Conjecture 2 (idea).

Choose a Z-basis {ω1, . . . , ωd} of OK with conjugates bounded from

above in terms of DK . Write a =
∑d

i=1 xiωi , b =
∑d

i=1 yiωi with
xi , yi ∈ Z. Then x = (x1, . . . , yd) satisfies one of finitely many systems of
inequalities of the type

|Li (x)| ≤ ‖x‖ci (i = 1, . . . , 2d)

where the Li are linear forms whose coefficients lie in the Galois closure
of K and have heights bounded above in terms of |DK |.
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Discriminants of binary forms

Definition

The discriminant of a binary form

F = a0X
n + a1X

n−1Y + · · ·+ anY
n =

n∏
i=1

(αiX − βiY )

is given by D(F ) =
∏

1≤i<j≤n

(αiβj − αjβi )
2.

This is a homogeneous polynomial in Z[a0, . . . , an] of degree 2n − 2.

For a matrix A =
(
a b
c d

)
we define FA(X ,Y ) = F (aX + bY , cX + dY ).

Two binary forms F ,G ∈ Z[X ,Y ] are called equivalent if G = ±FA for
some A ∈ GL(2,Z).

Equivalent binary forms have the same discriminant.
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A finiteness result for binary forms of given
discriminant

Theorem (Lagrange (n = 2, 1773), Hermite (n = 3, 1851), Birch
and Merriman (n ≥ 4, 1972))

For every n ≥ 2 and D 6= 0, there are only finitely many equivalence
classes of binary forms F ∈ Z[X ,Y ] of degree n and discriminant D.

The proofs of Lagrange and Hermite are effective (in that they allow to
compute a full system of representatives for the equivalence classes), that
of Birch and Merriman is ineffective.
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An effective finiteness result

Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ Z[X ,Y ] by

H(F ) := maxi |ai |.

Theorem 3 (E., Győry, recent improvement of result from 1991)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ exp
(

(16n3)25n
2 |D|5n−3

)
.
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Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ Z[X ,Y ] by

H(F ) := maxi |ai |.

Theorem 3 (E., Győry, recent improvement of result from 1991)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ exp
(

(16n3)25n
2 |D|5n−3

)
.

More precise versions of the arguments of Lagrange and Hermite give a
bound H(G ) ≤ constant · |D| in case that F has degree ≤ 3.
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An effective finiteness result

Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ Z[X ,Y ] by

H(F ) := maxi |ai |.

Theorem 3 (E., Győry, recent improvement of result from 1991)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ exp
(

(16n3)25n
2 |D|5n−3

)
.

Proof (idea).

Let L be the splitting field of F . Assume for convenience that
F =

∏n
i=1(αiX − βiY ) with αi , βi ∈ OL ∀i . Put ∆ij := αiβj − αjβi and

apply an explicit version of the effective abc-inequality (Theorem 1) to
the identities

∆ij∆kl + ∆jk∆il = ∆ik∆jl (1 ≤ i , j , k , l ≤ n).
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A semi-effective finiteness result

Theorem 4 (E., 1993)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4, discriminant D 6= 0
and splitting field L. Then F is equivalent to a binary form G for which

H(G ) ≤ C ineff(n, L) · |D|21/(n−1).

Proof (idea).

Apply the semi-effective abc-inequality Theorem 2 to the identities

∆ij∆kl + ∆jk∆il = ∆ik∆jl (1 ≤ i , j , k , l ≤ n).
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A conjecture

Conjecture 3

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ C1(n)|D|ceff2 (n).

Conjecture 2 =⇒ Conjecture 3.

Let L be the splitting field of F . Following the proof of Theorem 4 and
using the very weak abc-conjecture, one obtains that there is G
equivalent to F such that

H(G ) ≤ C3(n)|DL|c
eff
4 (n)|D|21/(n−1).

Use that DL divides Dn!.
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A conjecture

Conjecture 3

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ C1(n)|D|ceff2 (n).

Problem

What is the right value of the exponent on |D|?
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A function field analogue

Let k be an algebraically closed field of characteristic 0, K = k(t),
R = k[t].
Define | · | on k(t) by |f /g | := edeg f−deg g for f , g ∈ R.

Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ R[X ,Y ] by

H(F ) := maxi |ai |.

Call two binary forms F ,G ∈ R[X ,Y ] equivalent if G = uFA for some
u ∈ k∗, A ∈ GL(2,R).

Theorem 5 (W. Zhuang)

Let F ∈ R[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ en
2+4n+14|D|20+7/(n−2).

Proof.

Follow the proof over Z and apply Mason’s abc-theorem for function
fields.
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Thank you for your
attention!


