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Faltings’ Product Theorem

Faltings’ Product Theorem is a powerful non-vanishing result from
algebraic geometry with many applications to Diophantine geometry, in
particular Schmidt’s Subspace Theorem.

It explains the structure of the set of points at which a given
multihomogeneous polynomial has not too small index (weighted
multiplicity).
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The index

Let m, n1, . . . , nm ≥ 2. Write Xi = (Xi1, . . . ,Xi,ni ), and let
F ∈ Q[X1, . . . ,Xm] be homogeneous of degree di in Xi , for i = 1, . . . ,m.

For a tuple a = (aij)i=1,...,m, j=1,...,ni of non-negative integers, define the
partial derivative

Da :=
m∏
i=1

ni∏
j=1

∂aij

∂X
aij
ij

and its weighted order

(a/d) :=
m∑
i=1

1

di

( ni∑
j=1

aij
)
.

Then the index of F at x ∈ Pn1−1 × · · · × Pnm−1 is given by

I (F , x) := max
{
σ : DaF (x) = 0 for all a with (a/d) ≤ σ

}
.
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Heights

For x ∈ Pn(Q), denote by h(x) the (absolute logarithmic Weil) height of
x.

For a polynomial F with coefficients in Q, denote by h(F ) the height of
the vector of coefficients of F .

For an algebraic subvariety X of Pn defined over Q denote by h(X ) the
height of the Chow form of X .



5/43

Statement of Faltings’ Product Theorem

Let F ∈ Q[X1, . . . ,Xm], Xi block of ni variables, degXi
F = di for

i = 1, . . . ,m, and let ε > 0.

Theorem (Faltings’ Product Theorem, 1991)

There are ω1, ω2, ω3 > 0, depending only on M := n1 + · · ·+ nm and ε,
with the following property: assume that

d1/d2, . . . , dm−1/dm > ω1.

Then {
x ∈ Pn1−1 × · · · × Pnm−1 : I (F , x) ≥ ε

}
⊆ Z1 × · · · × Zm

where Z1 × · · · × Zm is a proper product subvariety of
Pn1−1 × · · · × Pnm−1, defined over Q, with

m∑
i=1

dih(Zi ) ≤ ω2 ·
(
d1 + · · ·+ dm + h(F )

)
,

m∏
i=1

degZi ≤ ω3.

van der Put, E., Ferretti, Rémond: quantitative versions of PT with
explicit ω1, ω2, ω3.
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Applications

1. Proof of Lang’s conjecture (Faltings, 1991):
Let A be an abelian variety, and X a subvariety of A, both defined
over a number field K . Assume that X does not contain a translate
of an abelian subvariety of A. Then X (K ) is finite.

2. Extensions to semi-abelian varieties (Vojta, 1996); explicit upper
bound for #X (K ) (Rémond, 2000).

3. New proof of Schmidt’s Subspace Theorem (Faltings and Wüstholz,
1994).

4. Stronger quantitative versions of Roth’s Theorem on the
approximation of algebraic numbers by rationals (E., 1996;
Bugeaud&E., 2008).

5. Stronger quantitative versions of Schmidt’s Subspace theorem (E.,
1996; Schlickewei &E., 2000; Ferretti &E., 2013).
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Roth’s Theorem

For ξ ∈ Q we define H(ξ) = max(|p|, |q|), where ξ = p/q, p, q ∈ Z,
gcd(p, q) = 1.

Theorem (Roth, 1955)

Let α be a real algebraic number and δ > 0. Then there are only finitely
many ξ ∈ Q such that

|α− ξ| ≤ H(ξ)−2−δ.

Quantitative versions (upper bounds for the number of solutions) were
given by Davenport& Roth (1955), Mignotte (1972), Bombieri&van der
Poorten (1987), Schmidt (1988), E. (1996), Bugeaud& E. (2008).
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A quantitative Roth’s Theorem

Let α be a real algebraic number of degree d and 0 < δ < 1.

Define H(α) to be the maximum of the absolute values of the
coefficients of the minimal polynomials of α.

A solution ξ of

(1) |α− ξ| ≤ H(ξ)−2−δ in ξ ∈ Q

is called large if H(ξ) ≥ max(41/δ,H(α)) and small otherwise.

Theorem (Bugeaud, E., 2008)

Inequality (1) has at most

A := 225δ−3 log 4d log(δ−1 log 4d) large solutions, and at most

B := 10δ−1 log
(
δ−1 log(4H(α)

)
small solutions.
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Outline of proof

I Assume that |α− ξ| ≤ H(ξ)−2−δ has ’too many’ large solutions, and
select from those ξ1, . . . , ξm with
h(ξ1), h(ξ2)/h(ξ1), . . . , h(ξm)/h(ξm−1) large (here h = logH).

I Let x = ((ξ1 : 1), . . . , (ξm : 1)) ∈ P1(Q)× · · · × P1(Q).

Let d1, . . . , dm be integers with d1h(ξ1) ≈ · · · ≈ dmh(ξm), and
construct F ∈ Z[X1, . . . ,Xm] of not too large height, such that F
has degree di in Xi = (Xi1,Xi2), and F is divisible by a high power
of Xi1 − αXi2 for i = 1, . . . ,m. Then show that I (F , x)� mδ.

I Apply a strong version of Roth’s Lemma (= Quantitative Product
Theorem over P1 × · · · × P1), and derive a contradiction.
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Roth’s Lemma

Theorem

Let 0 < ε < 1, m ≥ 2. There are ω1, ω2 > 0 depending only on m, ε with
the following property:
Let F ∈ Q[X1, . . . ,Xm] be a multihomogeneous polynomial of degree di
in Xi = (X1i ,X2i ) for i = 1, . . . ,m, and let
x = (x1, . . . , xm) ∈ P1(Q)× · · · × P1(Q) for i = 1, . . . ,m.

Assume that d1/d2, . . . , dm−1/dm > ω1 and that I (F , x) ≥ mε. Then

mini dih(xi ) ≤ ω2 ·
(
d1 + · · ·+ dm + h(F )

)
.

Roth (1955): ω1 = ω2 = (ε−1)c
m

(c > 1)

QPT: ω1 = 2m2/ε, ω2 = (3m2/ε)m.

Application to Roth’s Theorem: m = c1δ
−2 log 2d , ε = c2δ,

Number of large approximants ξ of α: ≤ c3(m logω1 + logω2).
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Schmidt’s Subspace Theorem

Let Q denote the field of algebraic numbers in C and let

Li (X) = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be linearly independent linear forms with coefficients αij ∈ Q.

For x = (x1, . . . , xn) ∈ Zn, put ‖x‖ := max(|x1|, . . . , |xn|).

Theorem (W.M. Schmidt, 1972)

Let δ > 0. Then the set of x ∈ Zn with

|L1(x) · · · Ln(x)| ≤ ‖x‖−δ

is contained in a union of finitely many proper linear subspaces of Qn.
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Methods of proof

Schmidt’s method, 1972

I Geometry of numbers

I Construction of auxiliary polynomial

I Application of Roth’s Lemma

Faltings’ and Wüstholz’ method, 1994

I Inductive argument

I In each step construction of a global section of a line bundle on a
product of projective varieties of large degree and an application of
the Product Theorem.
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Schmidt’s Quantitative Subspace Theorem

Theorem (Schmidt, 1989, slight variation)

Assume that the coefficients of the linear forms Li have heights at most
H and degrees at most D. Put ∆ := | det(L1, . . . , Ln)|.
Then the solutions x ∈ Zn of

(2) |L1(x) · · · Ln(x)| ≤ ∆‖x‖−δ

with
‖x‖ ≥ max

(
H, (n!)10/δ

)
lie in at most (2D)227nδ−2 proper linear subspaces of Qn.

Schmidt’s bound has been improved by E. (1996), Schlickewei& E.
(2002) and Ferretti& E. (2013). These improvements all use the
improvement of Roth’s Lemma following from the QPT.
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Systems of inequalities

By a combinatorial argument, inequality (2) can be reduced to (cn/δ)n

systems of inequalities of the shape

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn,

where c1 + · · ·+ cn ≈ −δ.

The number of subspaces that contain the solutions of an individual
system (3) is much smaller than (cn/δ)n.

Our quantitative results will be formulated for systems (3).
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Technical assumptions

We consider

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn,

where c1, . . . , cn and

Li = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

satisfy the following:

(4)



H(αij) ≤ H, degαij ≤ D ∀i , j ;

∆ = | det(L1, . . . , Ln)| > 0;

c1 + · · ·+ cn ≤ −δ with 0 < δ ≤ 1;

max(c1, . . . , cn) = 1.
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An improved quantitative Subspace Theorem

Assume (4) and consider the system

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

A solution x is called large if

‖x‖ ≥ max
(
nn/δ,H)

and small otherwise.

Theorem 1 (Ferretti, E., 2013)

The large solutions of (3) lie in at most

A := 22n(10n)20δ−3 log δ−1 log 4D log(δ−1 log 4D)

proper linear subspaces of Qn, and the small solutions in at most

B := 103nδ−1 log(δ−1 log 4H)

subspaces.
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A refinement of the Subspace Theorem

Consider again

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn

where c1 + · · ·+ cn < 0.

Theorem (Vojta, 1989; Schmidt, 1993; Faltings&Wüstholz, 1994)

There is an effectively determinable, proper linear subspace T exc of Qn,
that can be chosen from a finite set depending only on L1, . . . , Ln, such
that (3) has only finitely many solutions outside T exc.

Very difficult open problem

Determine an upper bound for the number of solutions outside T exc.
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An interval result for the refinement

Assume (4) (i.e., H(coeffLi ) ≤ H, deg coeffLi ≤ D,
∆ := | det(L1, . . . , Ln)| > 0,

∑
i ci ≤ −δ with 0 < δ ≤ 1 and maxi ci = 1)

and consider again

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

Theorem 2 (Ferretti, E., 2013)

Let
A := 22n(10n)20δ−3 log δ−1 log 4D log(δ−1 log 4D).

Then there are positive reals Q1 < · · · < Q[A]−1 such that for every
solution x ∈ Zn of (3) with x 6∈ T exc we have

‖x‖ < max(nn/δ,H) or

‖x‖ ∈
[
Q1,Q

1+δ/n
1

)
∪ · · · ∪

[
Q[A]−1,Q

1+δ/n
[A]−1

)
.

Q1, . . . ,Q[A]−1 cannot be effectively determined from the proof.
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An interval result for the refinement

Assume (4) and consider

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

Theorem 3 (Ferretti, E., 2013)

Let
A := 22n(10n)20δ−3 log δ−1 log 4D log(δ−1 log 4D).

Then there are positive reals Q1 < · · · < Q[A]−1 such that for every
solution x ∈ Zn of (3) with x 6∈ T exc we have

‖x‖ < max(nn/δ,H) or

‖x‖ ∈
[
Q1,Q

1+δ/n
1

)
∪ · · · ∪

[
Q[A]−1,Q

1+δ/n
[A]−1

)
.

Fact

For every Q ≥ nn/δ, the solutions of (3) with ‖x‖ ∈
[
Q,Q1+δ/n

)
lie in

one proper linear subspace of Qn.
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About the proof of the interval result

The proof follows Schmidt’s method, based on geometry of numbers, a
construction of an auxiliary polynomial, and the sharp version of Roth’s
Lemma that follows from the Quantitative Product Theorem.

But the construction of the auxiliary polynomial is taken from the proof
of Faltings’ and Wüstholz.

With the method of Faltings and Wüstholz it is also possible to prove an
interval result (worked out by Ferretti)
but the resulting upper bound A for the number of intervals is much
larger, because of the algebraic varieties of large degree that occur in the
inductive argument.
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The number of solutions outside the exceptional
space

An observation of Schmidt (1988) suggests, that a general explicit upper
bound for the number of solutions of

|L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn with x 6∈ T exc

would imply very strong effective Diophantine inequalities.

Proving such strong effective Diophantine inequalities is believed to be
very difficult.
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Effective approximation of algebraic numbers by
rationals

Let α be a real algebraic number of degree d ≥ 3.

Theorem (Liouville, 1844)

There is an effectively computable number C (α) > 0 such that

|α− ξ| ≥ C (α) · H(ξ)−d for ξ ∈ Q.

Theorem (A. Baker, Fel’dman, 1971)

There are effectively computable C1(α), ε(α) > 0 such that

|α− ξ| ≥ C1(α)H(ξ)−d+ε(α) for ξ ∈ Q.

Here C1(α), ε(α)→ 0 as d →∞ or H(α)→∞.

General effective improvements with instead of −d + ε(α) something
independent of d or H(α) seem to be out of reach (let alone effective
Roth |α− ξ| ≥ C eff(α, δ)H(ξ)−2−δ).
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Connection with the Subspace Theorem

Let α be a real algebraic number of degree ≥ 4 and δ > 0. Consider the
system of inequalities

|x1 + αx2 + α2x3| ≤ ‖x‖−2−δ, |x2| ≤ ‖x‖, |x3| ≤ ‖x‖(5)

in x = (x1, x2, x3) ∈ Z3.

For this system, T exc = {0}. Hence it has only finitely many solutions.

Proposition (E., 2010)

Let N be an upper bound for the number of solutions of (5) with
gcd(x1, x2, x3) = 1. Then for every ξ ∈ Q we have

|α− ξ| ≥ (1 + |α|)−1(2N)−3−δ · H(ξ)−3−δ.
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Proof

Choose ξ = p/q with p, q ∈ Z, gcd(p, q) = 1 and let

C := |α− ξ| · H(ξ)3+δ.

For any y ∈ Z define x = (x1, x2, x3) by

(1 + yα)(qα− p) = −p + (q − py)α + qyα2 = x1 + x2α + x3α
2

and put A := 1
2

(
(1 + |α|)C

)−1/(3+δ)
.

Considering the integers y with |y | ≤ A we obtain ≥ A tuples x ∈ Z3 for
which gcd(x1, x2, x3) = 1, and

|x1 + x2α + x3α
2| ≤ (1 + |α|)A · q · C max(|p|, |q|)−3−δ

≤ (1 + |α|)A3+δ max(1, |y |)−2−δ · C max(|p|, |q|)−2−δ

≤ (1 + |α|)(2A)3+δC · ‖x‖−2−δ ≤ ‖x‖−2−δ.

Hence A ≤ N, and

C ≥ (1 + |α|)−1(2N)−3−δ.
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A semi-effective version of the Subspace Theorem

Assume (4) (i.e., H(coeffLi ) ≤ H, deg coeffLi ≤ D,
∆ := | det(L1, . . . , Ln)| > 0,

∑
i ci ≤ −δ with 0 < δ ≤ 1 and maxi ci = 1)

and consider again

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

Theorem

Let K be the n.f. generated by the coefficients of L1, . . . , Ln.

There are an effectively computable constant ceff(n, δ,D) > 0 and an
ineffective constant B ineff(n, δ,K ) > 0 such that for every solution
x ∈ Zn of (3) with x /∈ T exc we have

‖x‖ ≤ max
(
B ineff(n, δ,K ),Hceff (n,δ,D)

)
.

Proof.

Small modification in the proof of the Subspace Theorem
(well-known).
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A conjecture

Assume again (4) and consider

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

Conjecture 4

There are an effectively computable constant ceff(n, δ,D) > 0 and a
constant B ′(n, δ,D) > 0 such that for every solution x ∈ Zn of (3) with
x /∈ T exc we have

‖x‖ ≤ max
(
B ′(n, δ,D),Hceff (n,δ,D)

)
.

This is hopeless with B ′ effective. But what if we allow B ′ to be
ineffective?
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abc-type inequalities

Let K be an algebraic number field of degree d , x (i) (i = 1, . . . , d) the
conjugates of x ∈ K , OK the ring of integers and DK the discriminant of
K .

Define HK (a, b, c) :=
d∏

i=1

max(|a(i)|, |b(i)|, |c(i)|) for a, b, c ∈ OK .

Theorem

Let a, b, c be non-zero elements of OK with a + b = c . Then

(i) we have HK (a, b, c) ≤ (2|NK/Q(abc)|)c1(d)|DK |c2(d) with c1(d), c2(d)
effectively computable in terms of d .

(ii) for every δ > 0 we have HK (a, b, c) ≤ C ineff(K , δ)|NK/Q(abc)|1+δ.

Proof.

(i) Baker theory; (ii) Roth’s theorem over number fields.
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abc-type inequalities: application of Conjecture 4

Let again K be a number field of degree d .

Conjecture 5

There are a constant C (d , δ) > 0 and an effectively computable constant
ceff(d , δ) > 0 with the following property:
for any non-zero a, b, c ∈ OK with a + b = c , and any δ > 0 we have

HK (a, b, c) ≤ C (d , δ)|DK |c
eff (d,δ)|NK/Q(abc)|1+δ.

Conjecture 4 =⇒ Conjecture 5 (idea).

Choose a Z-basis {ω1, . . . , ωd} of OK with heights bounded above in
terms of |DK |.

Write a =
∑d

j=1 xjωj , b =
∑d

j=1 yjωj with xj , yj ∈ Z.

Then x = (x1, . . . , yd) satisfies one of a finite number of systems of
inequalities as considered in Conjecture 4 with linear forms with heights
bounded above in terms of d and DK .
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Approximation of algebraic numbers by algebraic
numbers of bounded degree

For ξ ∈ Q ⊂ C, define H(ξ) to be the maximum of the absolute values of
the coefficients of the minimal polynomial of α.

Theorem (Schmidt, 1971)

Let α ∈ Q, d ∈ Z>0 and δ > 0. Then there are only finitely many ξ ∈ Q
of degree d such that

|α− ξ| ≤ H(ξ)−d−1−δ.

Proof.

Consequence of the Subspace Theorem.

Wirsing (1969) proved this earlier with −2d − δ instead of −d − 1− δ,
by a different method.
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Approximation of algebraic numbers by algebraic
numbers of bounded degree: Vojta’s conjecture

For ξ ∈ Q, define D(ξ) to be the discriminant of the number field Q(ξ).

Conjecture (Vojta, 1987)

Let α ∈ Q, d ∈ Z>0 and δ > 0. Then there are only finitely many ξ ∈ Q
of degree d such that

|α− ξ| ≤ |D(ξ)|−1H(ξ)−2−δ.

This implies Wirsing’s Theorem since |D(ξ)| � H(ξ)2d−2.

Restricting to algebraic numbers ξ in a given number field K , we obtain
Roth’s Theorem over number fields.
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Approximation of algebraic numbers by algebraic
numbers of bounded degree: application of
Conjecture 4

Our Conjecture 4 implies the following:

Conjecture 6

Let α ∈ Q, d ∈ Z>0, δ > 0, and put m := [Q(α) : Q]. There is an
effectively computable number ceff(m, d , δ) > 0, such that the inequality

|α− ξ| ≤ |D(ξ)|−c
eff (m,d,δ)H(ξ)−2−δ

has only finitely many solutions in algebraic numbers ξ of degree d .
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The method of Faltings and Wüstholz

Consider the system

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

I Assume (3) has “too many solutions” outside T exc and select from
those x1, . . . , xm with h(x1), h(x2)/h(x1), . . . , h(xm)/h(xm−1) large,
where h(xi ) = log ‖xi‖. Put x = (x1, . . . , xm).

I Let d1, . . . , dm be integers with d1h(x1) ≈ · · · ≈ dmh(xm), and
construct a multi-homogeneous F ∈ Z[X1, . . . ,Xm] of not too large
height such that F has degree di in Xi = (Xi1, . . . ,Xin) and is
divisible by high powers of Lk(Xi ) for k = 1, . . . , n, i = 1, . . . ,m.
For this polynomial, I (F , x) is not too small.

I By Faltings’ Product Theorem, x ∈ Z1 × · · · × Zm for some proper
product subvariety Z1 × · · · × Zm of Pn−1 × · · · × Pn−1 , with explicit
upper bounds for the degrees and heights of the Zi in terms of F .

I Choose suitable projections πi : Zi → Pdim Zi and apply the above
procedure to π1(x1), . . . , πm(xm). We find a proper product
subvariety of Z1 × · · · × Zm containing x. By continuously repeating
this, we obtain a zero-dimensional product variety containing x. This
imposes impossible constraints on the heights of the xi .
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The method of Faltings and Wüstholz
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where h(xi ) = log ‖xi‖. Put x = (x1, . . . , xm).

I Let d1, . . . , dm be integers with d1h(x1) ≈ · · · ≈ dmh(xm), and
construct a multi-homogeneous F ∈ Z[X1, . . . ,Xm] of not too large
height such that F has degree di in Xi = (Xi1, . . . ,Xin) and is
divisible by high powers of Lk(Xi ) for k = 1, . . . , n, i = 1, . . . ,m.
For this polynomial, I (F , x) is not too small.

I By Faltings’ Product Theorem, x ∈ Z1 × · · · × Zm for some proper
product subvariety Z1 × · · · × Zm of Pn−1 × · · · × Pn−1 , with explicit
upper bounds for the degrees and heights of the Zi in terms of F .

I Choose suitable projections πi : Zi → Pdim Zi and apply the above
procedure to π1(x1), . . . , πm(xm). We find a proper product
subvariety of Z1 × · · · × Zm containing x. By continuously repeating
this, we obtain a zero-dimensional product variety containing x. This
imposes impossible constraints on the heights of the xi .
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Schmidt’s method

Consider again

(3) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

I Assume (3) has “too many solutions” outside T exc and select from
those x1, . . . , xm with h(x1), h(x2)/h(x1), . . . , h(xm)/h(xm−1) large.

I Let d1, . . . , dm be positive integers with d1h(x1) ≈ · · · ≈ dmh(xm),
and construct, for some integers N1, . . . ,Nm ≤ 2n, a
multi-homogeneous F ∈ Z[X1, . . . ,Xm] of degree di in
Xi = (Xi1, . . . ,Xi,Ni ) for i = 1, . . . ,m, such that for some not too
small ε,

I (F , x) ≥ ε for all x ∈ V1 × · · · × Vm

where Vi is a hyperplane of PNi−1 over Q with h(Vi )�� h(xi ) for
i = 1, . . . ,m.

I Derive a contradiction by applying the Product Theorem or
Schmidt’s Lemma (next slide).
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Schmidt’s Lemma (next slide).



42/43

Schmidt’s Lemma

Let m, n1, . . . , nm ≥ 2, 0 < ε < 1.

Let F ∈ Q[X1, . . . ,Xm] be homogeneous of degree di in
Xi = (Xi1, . . . ,Xi,ni ) for i = 1, . . . ,m, and let Vi ⊂ Pni−1 be a hyperplane
over Q for i = 1, . . . ,m.

Lemma

There are ω1, ω2 > 0 depending on M := n1 + · · ·+ nm and ε with the
following property:
Assume that d1/d2, . . . , dm−1/dm > ω1, and

I (F , x) ≥ mε for all x ∈ V1 × · · · × Vm.

Then mini dih(Vi ) ≤ ω2

(
d1 + · · ·+ dm + h(F )

)
.

Schmidt (1971): ω1 = ω2 = M(ε−1)c
m

(c > 1),
Quantitative Product Theorem: ω1 = 2m2/ε, ω2 = M · (3m2/ε)m.
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Thank you for your
attention!


