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Roth’s Theorem

For ξ ∈ Q we define

H(ξ) = max(|p|, |q|), where ξ = p/q, p, q ∈ Z, gcd(p, q) = 1.

Theorem (Roth, 1955)

Let α be a real algebraic number and δ > 0. Then the inequality

(1) |α− ξ| ≤ H(ξ)−2−δ in ξ ∈ Q

has only finitely many solutions.

Proof.

Roth machinery: construction of auxiliary polynomial, application of
Roth’s Lemma.
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Roth’s Theorem

For ξ ∈ Q we define

H(ξ) = max(|p|, |q|), where ξ = p/q, p, q ∈ Z, gcd(p, q) = 1.

Theorem (Roth, 1955)

Let α be a real algebraic number and δ > 0. Then the inequality

(1) |α− ξ| ≤ H(ξ)−2−δ in ξ ∈ Q

has only finitely many solutions.

Quantitative versions, i.e., upper bounds for the number of solutions of (1),
were given by Davenport& Roth (1955), Mignotte (1972), Bombieri&van
der Poorten (1987), Schmidt (1988), Ev. (1996), Bugeaud& Ev. (2008).
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A quantitative Roth’s Theorem

Let α be a real algebraic number of degree d and 0 < δ < 1. Denote by
H(α) the absolute, multiplicative height of α.

We call ξ ∈ Q large if H(ξ) ≥ max(41/δ,H(α)) and small otherwise.

Theorem (Bugeaud, Ev., 2008)

The number of large solutions of

|α− ξ| ≤ H(ξ)−2−δ in ξ ∈ Q
is at most

A := 225δ−3 log 4d log(δ−1 log 4d)

and the number of small solutions at most

B := 10δ−1 log
(
δ−1 log(4H(α)

)
.
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Roth’s Lemma

Let F ∈ Z[X1, . . . ,Xm] with degXh
F ≤ dh for h = 1, . . . ,m.

Put H(F ) := max(|coeff. of F|).

Define the index of F at x w.r.t. d = (d1, . . . , dm) by

I (F ; x,d) := max
{ m∑

h=1

ih
dh

:
∂ i1+···+imF

∂X i1
1 · · · ∂X im

m

(x) = 0
}

.

Theorem (Roth, 1955)

Let 0 < ε < 1. There are numbers ω1, ω2 > 0 depending on m, ε, such
that if F and x = (ξ1, . . . , ξm) ∈ Qm satisfy

d1/d2, d2/d3, . . . , dm−1/dm > ω1,

H(ξh)dh ≥
(
ed1+···+dmH(F )

)ω2 for h = 1, . . . ,m,

then I (F ; x,d) < mε.

Sharpest version (Ev., 1995): ω1 = 2m2/ε, ω2 = (3m2/ε)m.
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Outline of the proof of Roth’s Theorem

I Assume |α− ξ| < H(ξ)−2−δ has more than A large solutions ξ ∈ Q.

I Choose ε small in terms of δ and m large in terms of ε and select
solutions ξ1 = p1/q1, . . . , ξm = pm/qm with H(ξ1) large and
H(ξh+1) > H(ξh)ω1 for h = 1, . . . ,m − 1.

I Using Siegel’s Lemma, construct an auxiliary polynomial
F ∈ Z[X1, . . . ,Xm] of degree at most dh at Xh for h = 1, . . . ,m with
H(ξ1)d1 ≈ · · · ≈ H(ξm)dm such that F has large index at (α, . . . , α).

Then F and x = (ξ1, . . . , ξm) satisfy the conditions of Roth’s
Lemma.

I Show for all (i1, . . . , im) with
∑m

h=1(ih/dh) ≤ mε that the integer

qd1
1 · · · qdm

m

∣∣∣∣ 1
i1!···im!

∂ i1+···+im

∂X
i1
1 ···∂X

im
m

F (x)

∣∣∣∣ < 1, hence = 0,

and derive a contradiction with Roth’s Lemma.
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Schmidt’s Subspace Theorem

Let Q denote the field of algebraic numbers in C and let

Li (X) = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be linearly independent linear forms with coefficients αij ∈ Q.

For x = (x1, . . . , xn) ∈ Zn, put ‖x‖ := maxi |xi |.

Theorem (W.M. Schmidt, 1972)

Let δ > 0. Then the set of solutions of

(2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ in x ∈ Zn

is contained in a union of finitely many proper linear subspaces of Qn.

There are generalizations involving p-adic absolute values (Schlickewei’s
p-adic Subspace Theorem) and versions over number fields involving both
archimedean and non-archimedean absolute values (Schmidt, Schlickewei)
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Subspace Theorem =⇒ Roth’s Theorem

Let α be a real algebraic number and δ > 0, and consider the solutions
x1/x2 with x1, x2 ∈ Z of

|α− x1/x2| < H(x1/x2)−2−δ = max(|x1|, |x2|)−2−δ.

These satisfy
|(x1 − αx2)x2| < max(|x1|, |x2|)−δ.

By the Subspace Theorem, the pairs (x1, x2) lie in finitely many
one-dimensional subspaces of Q2.

These give rise to finitely many fractions x1/x2.
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ C‖x‖c1 , . . . , |Ln(x)| ≤ C‖x‖cn in x ∈ Zn,

where C > 0, c1 + · · ·+ cn < 0.

Thus, the following is equivalent to the Subspace Theorem:

Theorem

The solutions of (3) lie in a finite union of proper linear subspaces of Qn.
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ C‖x‖c1 , . . . , |Ln(x)| ≤ C‖x‖cn in x ∈ Zn,

where C > 0, c1 + · · ·+ cn < 0.

Idea.

if x ∈ Zn satisfies (2) then

c(x) :=
( log |L1(x)|

log ‖x‖
, . . . ,

log |Ln(x)|
log ‖x‖

)
∈ S ,

where S is a bounded set independent of x. Cover S by a sufficiently fine
finite grid. Then x satisfies (3) with c = (c1, . . . , cn) a grid point close to
c(x).

We proceed further with systems (3).
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A refinement of the Subspace Theorem

Let again L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn

with coefficients in Q and C , c1, . . . , cn reals with C > 0,
c1 + · · ·+ cn < 0. Consider again

(3) |L1(x)| ≤ C‖x‖c1 , . . . , |Ln(x)| ≤ C‖x‖cn in x ∈ Zn.

Theorem (Vojta (1989), Schmidt (1993), Faltings-Wüstholz
(1994))

There is an effectively computable, proper linear subspace T exc of Qn

such that (3) has only finitely many solutions outside T exc.

The space T exc can be chosen from a finite collection, depending only on
L1, . . . , Ln and independent of c1, . . . , cn.

This refinement can be deduced from Schmidt’s basic Subspace Theorem.
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About the exceptional subspace

Assume for simplicity that L1, . . . , Ln have real algebraic coefficients.

For a linear subspace T of Qn, we say that a subset {Li1 , . . . , Lim} of
{L1, . . . , Ln} is linearly independent on T if there are no reals αi1 , . . . , αim ,
not all 0, such that αi1Li1 + · · ·+ αimLim vanishes identically on T .

For a linear subspace T of Qn define c(T ) to be the minimum of the
quantities ci1 + · · ·+ cim , taken over all subsets {Li1 , . . . , Lim} of
{L1, . . . , Ln} of cardinality m = dim T that are linearly independent on T .

T exc is the unique proper linear subspace T of Qn such that

c(Qn)− c(T )

n − dim T
is minimal,

subject to this condition, dim T is minimal.
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About the exceptional subspace



17/36

An effective estimate

Lemma (Ev., Ferretti ,2013)

Suppose that the coefficients of L1, . . . , Ln have absolute (multiplicative)
heights ≤ H.

Then T exc has a basis {x1, . . . , xm} ⊂ Zn with

‖xi‖ ≤ (
√

nHn)4
n

(i = 1, . . . ,m).

Open problem

Is there an efficient method to determine T exc in general?
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Example

Let α2, . . . , αn be real algebraic numbers, and c1, . . . , cn reals with

c1 + · · ·+ cn < 0, 0 ≤ c2, . . . , cn ≤ 1

and consider

(4) |x1 + α2x2 + · · ·+ αnxn| ≤ ‖x‖c1 , |x2| ≤ ‖x‖c2 , . . . , |xn| ≤ ‖x‖cn

in x ∈ Zn.

Exercise: T exc = {x ∈ Qn : x1 + α2x2 + · · ·+ αnxn = 0}.

Corollary (Schmidt, 1970)

(4) has only finitely many solutions with x1 + α2x2 + · · ·+ αnxn 6= 0.
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Methods of proof

1. Schmidt’s method (1972)

I Geometry of numbers

I Construction of an auxiliary polynomial and application of Roth’s
Lemma

2. The method of Faltings and Wüstholz (1994)

I Inductive argument, which involves Diophantine approximation on
projective varieties of large degree

I In the induction step a construction of an auxiliary polynomial (i.e.,
global section of appropriate line bundle) on a product of large
degree projective varieties and an application of Faltings’ Product
Theorem (a deep generalization of Roth’s Lemma)
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Quantitative versions

The Quantitative Subspace Theorem gives an upper bound for the
number of subspaces, containing the solutions of

(3) |L1(x)| ≤ C‖x‖c1 , . . . , |Ln(x)| ≤ C‖x‖cn in x ∈ Zn.

The first such bound was given by Schmidt (1989).
His bounds were improved by Ev. (1995), Ev.& Schlickewei (2002),
Ev.& Ferretti (2013).

With the present methods it is possible only to give an explicit upper
bound for the number of subspaces containing the solutions.
Estimating the number of solutions outside T exc is out of reach.

Schmidt’s method gives much better upper bounds for the number of
subspaces, since it involves only linear varieties, whereas in the method of
Faltings and Wüstholz one has to work with non-linear varieties of large
degree.
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The Quantitative Subspace Theorem

Let L1, . . . , Ln be linear forms in X1, . . . ,Xn with coefficients in Q, and
C , c1, . . . , cn reals such that

• the coefficients of L1, . . . , Ln have abs. heights ≤ H and degrees ≤ D;
• 0 < C ≤ | det(L1, . . . , Ln)|1/n;
• c1 + · · ·+ cn ≤ −δ with 0 < δ < 1, max(c1, . . . , cn) = 1.

Call a solution x ∈ Zn of

(3) |L1(x)| ≤ C‖x‖c1 , . . . , |Ln(x)| ≤ C‖x‖cn

large if ‖x‖ ≥ max(nn/δ,H) and small otherwise.

Theorem (Ev., Ferretti, 2013)

The large solutions x ∈ Zn of (3) lie in at most

A := 22n(10n)20δ−3 log δ−1 log 4D log(δ−1 log 4D)

proper linear subspaces of Qn, and the small solutions in at most

B := 103nδ−1 log(δ−1 log 4H)

subspaces.
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Outline of the proof: Geometry of numbers

Consider again

(3) |L1(x)| ≤ C‖x‖−c1 , . . . , |Ln(x)| ≤ C‖x‖−cn in x ∈ Zn.

Using geometry of numbers, for every solution x we can construct, for
some N ≤ 2n, a parallelepiped

Π(x) :=
{

z ∈ RN : |Mi (z)| ≤ Ai (x) (i = 1, . . . ,N)
}

such that Π(x) ∩ ZN generates a linear subspace T (x) of QN of
dimension N − 1.

Here M1, . . . ,MN are linearly independent linear forms in N variables
with real algebraic coefficients, which are independent of x. The Ai (x)
are positive reals that do depend on x.
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Outline of the proof: Construction of an auxiliary
polynomial

I Suppose the refinement of the Subspace Theorem is false and that
there are infinitely many solutions outside T exc.
Select solutions x1, . . . , xm outside T exc with ‖x1‖ large and
log ‖xh+1‖/ log ‖xh‖ large for h = 1, . . . ,m − 1.

I For h = 1, . . . ,m, construct the parallelepipeds
Π(xh) = {z ∈ RN : |Mi (z)| ≤ Ai (xh) (i = 1, . . . ,N)} from the
previous slide, and let Th = T (xh) be the (N − 1)-dimensional space
spanned by Π(xh) ∩ ZN .

I Let d1, . . . , dm be positive integers with ‖x1‖d1 ≈ · · · ≈ ‖xm‖dm and
construct F ∈ Z[X1, . . . ,Xm] in the blocks of N variables
X1, . . . ,Xm, which is homogeneous of degree dh in block Xh for
h = 1, . . . ,m, and such that F is divisible by high powers of
M1(Xh), . . . ,MN(Xh), for h = 1, . . . ,m.
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Outline of the proof: Application of Roth’s Lemma

I Extrapolation: all partial derivatives of F of not too large order
vanish identically on T1 × · · · × Tm.

Sketch: For h = 1, . . . ,m, i = 1, . . . ,N, F is divisible by a high
power of Mi (Xh).
For h = 1, . . . ,m, Π(xh) ∩ ZN spans Th, therefore |Mi (zh)| is very
small for many points zh ∈ Th.
This implies that the values of the partial derivatives of F of not too
large order at the points (z1, . . . , zm) ∈ T1 × · · · × Tm have absolute
values < 1, hence must be 0.
So the partial derivatives of F of not too small order vanish at many
points of T1 × · · · × Tm, hence are identically 0 on T1 × · · · × Tm.

I Derive a contradiction with Roth’s Lemma.
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A semi-effective version of the Subspace Theorem

Let again L1, . . . , Ln be linear forms in X1, . . . ,Xn with coefficients in Q,
and C , c1, . . . , cn reals such that

• the coefficients of L1, . . . , Ln have abs. heights ≤ H and degrees ≤ D;
• 0 < C ≤ | det(L1, . . . , Ln)|1/n;
• c1 + · · ·+ cn ≤ −δ with 0 < δ < 1, max(c1, . . . , cn) = 1.

Theorem

Let K be the n.f. generated by the coefficients of L1, . . . , Ln.

There are an effectively computable constant ceff(n, δ,D) > 0 and an
ineffective constant B ineff(n, δ,K ) > 0 such that for every solution
x ∈ Zn of

|L1(x)| ≤ C‖x‖c1 , . . . , |Ln(x)| ≤ C‖x‖cn with x /∈ T exc

we have ‖x‖ ≤ max
(

B ineff(n, δ,K ),Hceff (n,δ,D)
)

.

Proof.

Small modification in the proof of the Subspace Theorem.
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A conjecture

Keep the assumptions

• the coefficients of L1, . . . , Ln have abs. heights ≤ H and degrees ≤ D;
• 0 < C ≤ | det(L1, . . . , Ln)|1/n;
• c1 + · · ·+ cn ≤ −δ with 0 < δ < 1, max(c1, . . . , cn) = 1.

Conjecture 1

There are an effectively computable constant ceff(n, δ,D) > 0 and a
constant B ′(n, δ,D) > 0 such that for every solution x ∈ Zn of

|L1(x)| ≤ C‖x‖c1 , . . . , |Ln(x)| ≤ C‖x‖cn with x /∈ T exc

we have ‖x‖ ≤ max
(

B ′(n, δ,D),Hceff (n,δ,D)
)

.

This is hopeless with B ′ effective. But what if we allow B ′ to be
ineffective?
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abc-type inequalities

Let K be an algebraic number field of degree d , x (i) (i = 1, . . . , d) the
conjugates of x ∈ K , OK the ring of integers and DK the discriminant of
K .

Define HK (a, b, c) :=
d∏

i=1

max(|a(i)|, |b(i)|, |c(i)|) for a, b, c ∈ OK .

Theorem

Let a, b, c be non-zero elements of OK with a + b = c. Then

(i) we have HK (a, b, c) ≤ (2|NK/Q(abc)|)c1(d)|DK |c2(d) with c1(d), c2(d)
effectively computable in terms of d.

(ii) for every δ > 0 we have HK (a, b, c) ≤ C ineff(K , δ)|NK/Q(abc)|1+δ.

Proof.

(i) Baker theory; (ii) Roth’s theorem over number fields.
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abc-type inequalities: application of Conjecture 1

Let again K be a number field of degree d .

Conjecture 2

There are a constant C (d , δ) > 0 and an effectively computable constant
ceff(d , δ) > 0 with the following property:
for any non-zero a, b, c ∈ OK with a + b = c, and any δ > 0 we have

HK (a, b, c) ≤ C (d , δ)|DK |c
eff (d,δ)|NK/Q(abc)|1+δ.

Conjecture 1 =⇒ Conjecture 2 (idea).

Choose a Z-basis {ω1, . . . , ωd} of OK with heights bounded above in
terms of |DK |.

Write a =
∑d

j=1 xjωj , b =
∑d

j=1 yjωj with xj , yj ∈ Z.

Then x = (x1, . . . , yd) satisfies one of a finite number of systems of
inequalities as considered in Conjecture 1 with linear forms with heights
bounded above in terms of d and DK .
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Approximation of algebraic numbers by algebraic
numbers of bounded degree

For ξ ∈ Q, define the naive height Hn(ξ) to be the maximum of the
absolute values of the minimal polynomial of ξ.

Theorem (Schmidt, 1971)

Let α ∈ Q, d ∈ Z>0 and δ > 0. Then there are only finitely many ξ ∈ Q
of degree d such that

|α− ξ| ≤ Hn(ξ)−d−1−δ.

Proof.

Consequence of the Subspace Theorem.

Wirsing (1969) proved this earlier with −2d − δ instead of −d − 1− δ,
by a different method.
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Approximation of algebraic numbers by algebraic
numbers of bounded degree: Vojta’s conjecture

For ξ ∈ Q, define D(ξ) to be the discriminant of the number field Q(ξ).

Conjecture (Vojta, 1987)

Let α ∈ Q, d ∈ Z>0 and δ > 0. Then there are only finitely many ξ ∈ Q
of degree d such that

|α− ξ| ≤ |D(ξ)|−1Hn(ξ)−2−δ.

This implies Wirsing’s Theorem since |D(ξ)| � Hn(ξ)2d−2.

Restricting to algebraic numbers ξ in a given number field K , we obtain
Roth’s Theorem over number fields.
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Approximation of algebraic numbers by algebraic
numbers of bounded degree: application of
Conjecture 1

Our Conjecture 1 implies the following:

Conjecture 3

Let α ∈ Q, d ∈ Z>0, δ > 0, and put m := [Q(α) : Q]. There is an
effectively computable number ceff(m, d , δ) > 0, such that the inequality

|α− ξ| ≤ |D(ξ)|−c
eff (m,d,δ)Hn(ξ)−2−δ

has only finitely many solutions in algebraic numbers ξ of degree d.
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Thank you for your
attention!


