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Dirichlet’s Theorem

Define the height of ξ ∈ Q by

H(ξ) = max(|x |, |y |),

where x , y are coprime integers with ξ = x/y .

Theorem (Dirichlet, 1842, small variation)

For every irrational real number α there is c(α) > 0 such that the
inequality

|α− ξ| ≤ c(α)H(ξ)−2

has infinitely many solutions in ξ ∈ Q.

Proof.

Dirichlet’s box principle.
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Roth’s Theorem

Theorem (Roth, 1955)

Let α be a real algebraic number and δ > 0. Then the inequality

(1) |α− ξ| ≤ H(ξ)−2−δ

has only finitely many solutions in ξ ∈ Q.

Roth’s proof, and later proofs of his theorem, are ineffective, i.e., they do
not give a method to determine the solutions.

Roth’s proof and the later ones allow to give an explicit upper bound for
the number of approximants ξ.

There is a semi-effective version of Roth’s Theorem, which gives an
upper bound for the heights H(ξ) of the approximants ξ that is effective
in terms of the height of α but ineffective in other parameters.
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Number of approximants

The minimal polynomial of an algebraic number α is the irreducible
polynomial F ∈ Z[X ] with coprime coefficients such that F (α) = 0.

We define the height H(α) := max |coeff. of F |.

Theorem (Bugeaud and Ev., 2008)

Let α be a real algebraic number of degree d and height H and
0 < δ ≤ 1. Then the number of ξ ∈ Q with

(1) |α− ξ| ≤ H(ξ)−2−δ

is at most 225
(
δ−1 log log 4H + δ−3 log δ−1 log 4d log log 4d

)
.

Results of this type with larger upper bounds in terms of δ, d , H were
obtained earlier by Davenport and Roth (1955), Mignotte (1974), Bombieri
and van der Poorten (1987), and Corvaja (1996).



5/46

Number of approximants

The minimal polynomial of an algebraic number α is the irreducible
polynomial F ∈ Z[X ] with coprime coefficients such that F (α) = 0.

We define the height H(α) := max |coeff. of F |.

Theorem (Bugeaud and Ev., 2008)

Let α be a real algebraic number of degree d and height H and
0 < δ ≤ 1. Then the number of ξ ∈ Q with

(1) |α− ξ| ≤ H(ξ)−2−δ

is at most 225
(
δ−1 log log 4H + δ−3 log δ−1 log 4d log log 4d

)
.

Theorem (Mueller and Schmidt, 1989)

There are infinitely many real algebraic numbers α of degree ≤ d such
that (1) has at least

1
2δ
−1(log log 4H(α) + log 4d)

solutions ξ ∈ Q.
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A semi-effective Roth’s Theorem

Theorem (Bombieri and van der Poorten, 1987)

Let δ > 0, α a real algebraic number, K = Q(α) and [K : Q] = d . Then
for every ξ ∈ Q with

(1) |α− ξ| ≤ H(ξ)−2−δ

we have H(ξ) ≤ max
(
B ineff(δ,K ), H(α)c

eff (δ,d)
)
.

Here ceff , B ineff are constants, effectively, resp. not effectively
computable from the method of proof, depending on the parameters
between the parentheses.

Equivalent formulation (“Roth’s Theorem with moving targets”)

(1) has only finitely many solutions (ξ, α) ∈ Q× K with

H(ξ) > H(α)c
eff (δ,d).

Similar results follow from work of Vojta (1995), Corvaja (1997),
McQuillan (ceff(δ, d) = O(d(1 + δ−2)), published ?).
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Schmidt’s Subspace Theorem

Let Q denote the field of algebraic numbers in C and let

Li (X) = αi1X1 + · · ·+ αinXn (i = 1, . . . , n)

be linearly independent linear forms with coefficients αij ∈ Q.

For x = (x1, . . . , xn) ∈ Zn, put ‖x‖ := maxi |xi |.

Subspace Theorem (W.M. Schmidt, 1972)

Let δ > 0. Then the set of solutions of

(2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ in x ∈ Zn

is contained in finitely many proper linear subspaces of Qn.

There are generalizations where the unknowns are taken from a number
field and various archimedean and non-archimedean absolute values are
involved. (Schmidt, Schlickewei)
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Subspace Theorem =⇒ Roth’s Theorem

Let α be a real algebraic number and δ > 0, and consider the solutions
x1/x2 with x1, x2 ∈ Z of

|α− x1/x2| < H(x1/x2)−2−δ = max(|x1|, |x2|)−2−δ.

These satisfy
|(x1 − αx2)x2| < max(|x1|, |x2|)−δ.

By the Subspace Theorem, the pairs (x1, x2) lie in finitely many
one-dimensional subspaces of Q2.

These give rise to finitely many fractions x1/x2.
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn,

where c1 + · · ·+ cn < 0.
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn,

where c1 + · · ·+ cn < 0.

Proof (idea).

There is a bounded subset S of Rn such that if x ∈ Zn is a solution of
(2), then

|L1(x)| ≤ ‖x‖c1(x), . . . , |Ln(x)| ≤ ‖x‖cn(x),

with c(x) = (c1(x), . . . , cn(x)) ∈ S.

Cover S by a very fine, finite grid. Then x satisfies (3) with
c = (c1, . . . , cn) a grid point very close to c(x).
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Systems of inequalities

By a combinatorial argument, the inequality (2) |L1(x) · · · Ln(x)| ≤ ‖x‖−δ
can be reduced to finitely many systems of inequalities of the shape

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn,

where c1 + · · ·+ cn < 0.

Thus, the following is equivalent to the Subspace Theorem:

Theorem

The solutions of (3) lie in finitely many proper linear subspaces of Qn.
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A refinement of the Subspace Theorem

Let again L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn

with coefficients in Q and c1, . . . , cn reals with c1 + · · ·+ cn < 0.
Consider again

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn.

Theorem (Vojta (1989), Schmidt (1993), Faltings-Wüstholz
(1994))

There is an effectively computable, proper linear subspace T exc of Qn

such that (3) has only finitely many solutions outside T exc.

The space T exc belongs to a finite collection, which depends only on
L1, . . . , Ln and is independent of c1, . . . , cn.

This refinement can be deduced from Schmidt’s basic Subspace Theorem,
asserting that the solutions of (3) lie in only finitely many subspaces.

So it is in fact equivalent to Schmidt’s basic Subspace Theorem.
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About the exceptional subspace

Assume for simplicity that L1, . . . , Ln have real algebraic coefficients.

For a linear subspace T of Qn, we say that a subset {Li1 , . . . , Lim} of
{L1, . . . , Ln} is linearly independent on T if no non-trivial R-linear
combination of Li1 , . . . , Lim vanishes identically on T .

For a linear subspace T of Qn define c(T ) to be the minimum of the
quantities ci1 + · · ·+ cim , taken over all subsets {Li1 , . . . , Lim} of
{L1, . . . , Ln} of cardinality m = dimT that are linearly independent on T .

T exc is the unique proper linear subspace T of Qn such that

c(Qn)− c(T )

n − dimT
is minimal,

subject to this condition, dimT is minimal.
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About the exceptional subspace
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An effective estimate

Lemma (Ev., Ferretti, 2013)

Suppose that the coefficients of L1, . . . , Ln have heights ≤ H.

Then T exc has a basis {x1, . . . , xm} ⊂ Zn with

‖xi‖ ≤ (
√
nHn)4n

(i = 1, . . . ,m).

Open problem

Is there an efficient method to determine T exc in general?

Easy combinatorial expression of T exc in terms of L1, . . . , Ln, c1, . . . , cn?



19/46

Examples

Let n ≥ 3, 0 < δ < 1/(n − 1) and let α1, . . . , αn−1 ∈ Q such that
1, α1, . . . , αn−1 are linearly independent over Q. Consider the systems{

|α1x1 + · · ·+ αn−1xn−1 + xn| ≤ ‖x‖1−n−δ,

|x1| ≤ ‖x‖, . . . , |xn−1| ≤ ‖x‖,
(4)

{
|αixn − xi | ≤ ‖x‖−(1+δ)/(n−1) (i = 1, . . . , n − 1),

|xn| ≤ ‖x‖
(5)

in x ∈ Zn.

For both systems, T exc = {0}.

Corollary (Schmidt, 1970)

Both systems (4) and (5) have only finitely many solutions.
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Remarks

With the present methods of proof it is not possible to determine
effectively the solutions of

(3) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn in x ∈ Zn

outside T exc.

There is a semi-effective version of the Subspace Theorem comparable to
that of Roth’s Theorem.

The present methods of proof do not allow to give an explicit upper
bound for the number of solutions of (3) outside T exc.

However, it is possible to give an explicit upper bound for the minimal
number of proper linear subspaces of Qn containing the solutions of (3)
(Schmidt (1989), Ev. (1995), Ev. and Schlickewei (2002), Ev. and
Ferretti (2013)).
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On the number of subspaces

Let L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn with
complex algebraic coefficients and c1, . . . , cn reals such that

• the coefficients of L1, . . . , Ln have heights ≤ H and generate a number
field K of degree d ;
• ci ≤ 1 for i = 1, . . . , n, c1 + · · ·+ cn = −δ with 0 < δ ≤ 1.

Put ∆ := | det(L1, . . . , Ln)| and consider

(6) |L1(x)| ≤ ∆1/n‖x‖c1 , . . . , |Ln(x)| ≤ ∆1/n‖x‖cn in x ∈ Zn.

Theorem (Ev. and Ferretti, 2013)

The set of solutions of (6) is contained in the union of at most

235n
(
δ−1 log log 4H + δ−3

(
log(4δ−1)

)2 · log 4d log log 4d
)

proper linear subspaces of Qn.
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On the number of solutions

Let n ≥ 3, δ > 0 and α1, . . . , αn−1 ∈ Q such that 1, α1, . . . , αn−1 are
linearly independent over Q.

Call x ∈ Zn primitive if its coordinates have gcd 1.

Proposition (variation on Schmidt, 1990)

Let w = (w1, . . . ,wn) ∈ Zn be a primitive solution to

(7) |αiwn − wi | ≤ ‖w‖−(2+δ)/(n−2) (i = 1, . . . , n − 1).

Then the inequality

(8) |α1x1 + · · ·+ αn−1xn−1 + xn| ≤ ‖x‖1−n−δ

has �eff ‖w‖1/(n−2)(n−1) primitive solutions x ∈ Zn lying in the subspace

w1x1 + · · ·+ wnxn = 0.

So an upper bound for the number of primitive solutions of (8) would
imply an upper bound for the sizes of the primitive solutions of (7), i.e.,
we would be able to determine all primitive solutions of (7) effectively.
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A semi-effective version of the Subspace Theorem

Let L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn with
complex algebraic coefficients and c1, . . . , cn reals such that:

• the coefficients of L1, . . . , Ln have heights ≤ H and generate a number
field K of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Theorem

For every solution x of

(9) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ineff(n, δ,K ),Hceff (n,δ,d)

)
.

Proof.

Small modification of the proof of the Subspace Theorem.
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A semi-effective version of the Subspace Theorem

Let L1, . . . , Ln be linearly independent linear forms in X1, . . . ,Xn with
complex algebraic coefficients and c1, . . . , cn reals such that:

• the coefficients of L1, . . . , Ln have heights ≤ H and generate a number
field K of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Theorem

For every solution x of

(9) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ineff(n, δ,K ),Hceff (n,δ,d)

)
.

We may take ceff(n, δ, d) = exp
(
106n(1 + δ−3) log 4d log log 4d

)
.



26/46

A conjectural improvement

Keep the assumptions

• L1, . . . , Ln are linearly independent linear forms in X1, . . . ,Xn whose
coefficients have heights ≤ H and generate a number field of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Conjecture 1

There are an effectively computable constant ceff(n, δ, d) > 0 and a
constant B ′(n, δ, d) > 0 such that for every solution x of

(9) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ′(n, δ, d),Hceff (n,δ,d)

)
.

So the ineffective constant B depending on the number field generated by
the coefficients of L1, . . . , Ln is replaced by a constant B ′ depending on
the degree of this field.
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A conjectural improvement

Keep the assumptions

• L1, . . . , Ln are linearly independent linear forms in X1, . . . ,Xn whose
coefficients have heights ≤ H and generate a number field of degree d ;
• c1 + · · ·+ cn = −δ < 0.

Conjecture 1

There are an effectively computable constant ceff(n, δ, d) > 0 and a
constant B ′(n, δ, d) > 0 such that for every solution x of

(9) |L1(x)| ≤ ‖x‖c1 , . . . , |Ln(x)| ≤ ‖x‖cn with x ∈ Zn \ T exc

we have ‖x‖ ≤ max
(
B ′(n, δ, d),Hceff (n,δ,d)

)
.

This is hopeless with B ′ effective. Can this be proved with B ′ ineffective?
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abc-inequalities

Let K be an algebraic number field of degree d and discriminant DK .
Let a, b, c ∈ OK \ {0} with a + b = c .

Define HK (a, b, c) :=
∏
σ:K ↪→C max(|σ(a)|, |σ(b)|, |σ(c)|).

Theorem 1 (Effective abc-inequality, Győry, 1978)

HK (a, b, c) ≤ (2|NK/Q(abc)|)c1(d)|DK |c2(d)

with c1(d), c2(d) effectively
computable in terms of d .

Proof.

Baker-type logarithmic forms estimates.

Theorem 2 (Semi-effective abc-inequality, well-known)

For every δ > 0 we have HK (a, b, c) ≤ C ineff(K , δ)|NK/Q(abc)|1+δ.

Proof.

Roth’s Theorem over number fields.
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A very weak abc-conjecture

Let again K be a number field of degree d and discriminant DK .

Conjecture 2 (Very weak abc-conjecture)

There are a constant C (d , δ) > 0 and an effectively computable constant
ceff(d , δ) > 0 such that for all a, b, c ∈ OK \ {0} with a + b = c and all
δ > 0 we have

HK (a, b, c) ≤ C (d , δ)|DK |c
eff (d,δ)|NK/Q(abc)|1+δ.
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A very weak abc-conjecture

Let again K be a number field of degree d and discriminant DK .

Conjecture 2 (Very weak abc-conjecture)

There are a constant C (d , δ) > 0 and an effectively computable constant
ceff(d , δ) > 0 such that for all a, b, c ∈ OK \ {0} with a + b = c and all
δ > 0 we have

HK (a, b, c) ≤ C (d , δ)|DK |c
eff (d,δ)|NK/Q(abc)|1+δ.

abc-conjecture over number fields

There is C (d , δ) > 0 such that for all a, b, c ∈ OK \ {0} with a + b = c
and all δ > 0 the following holds:

Let d := (a, b, c) and R := NK/Q(
∏

p), where the product is over all
prime ideals p of OK with p ⊃ abcd−3. Then

HK (a, b, c) ≤ C (d , δ)NK/Q(d)|DK |1+δ · R1+δ

≤ C (d , δ)|DK |1+δ · |NK/Q(abc)|1+δ.
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A very weak abc-conjecture

Let again K be a number field of degree d and discriminant DK .

Conjecture 2 (Very weak abc-conjecture)

There are a constant C (d , δ) > 0 and an effectively computable constant
ceff(d , δ) > 0 such that for all a, b, c ∈ OK \ {0} with a + b = c and all
δ > 0 we have

HK (a, b, c) ≤ C (d , δ)|DK |c
eff (d,δ)|NK/Q(abc)|1+δ.

Conjecture 1 =⇒ Conjecture 2 (idea).

Choose a Z-basis {ω1, . . . , ωd} of OK with conjugates with absolute

values bounded from above in terms of DK . Write a =
∑d

i=1 xiωi ,

b =
∑d

i=1 yiωi with xi , yi ∈ Z. Then x = (x1, . . . , yd) satisfies one of
finitely many systems of inequalities of the type

|Li (x)| ≤ ‖x‖ci (i = 1, . . . , 2d)

where the Li are linear forms whose coefficients lie in the Galois closure
of K and have heights bounded above in terms of |DK |.
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Discriminants of binary forms

Definition

The discriminant of a binary form

F = a0X
n + a1X

n−1Y + · · ·+ anY
n =

n∏
i=1

(αiX − βiY )

is given by D(F ) =
∏

1≤i<j≤n

(αiβj − αjβi )
2.

This is a homogeneous polynomial in Z[a0, . . . , an] of degree 2n − 2.

For a matrix A =
(
a b
c d

)
we define FA(X ,Y ) = F (aX + bY , cX + dY ).

Two binary forms F ,G ∈ Z[X ,Y ] are called equivalent if G = ±FA for
some A ∈ GL(2,Z).

Equivalent binary forms have the same discriminant.
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A finiteness result for binary forms of given
discriminant

Theorem (Lagrange (n = 2, 1773), Hermite (n = 3, 1851), Birch
and Merriman (n ≥ 4, 1972))

For every n ≥ 2 and D 6= 0, there are only finitely many equivalence
classes of binary forms F ∈ Z[X ,Y ] of degree n and discriminant D.

The proofs of Lagrange and Hermite are effective (in that they allow to
compute a full system of representatives for the equivalence classes), that
of Birch and Merriman is ineffective.
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An effective finiteness result

Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ Z[X ,Y ] by

H(F ) := maxi |ai |.

Theorem 3 (Ev., Győry, recent improvement of result from 1991)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ exp
(

(16n3)25n2 |D|5n−3
)

.
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Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ Z[X ,Y ] by

H(F ) := maxi |ai |.

Theorem 3 (Ev., Győry, recent improvement of result from 1991)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ exp
(

(16n3)25n2 |D|5n−3
)

.

More precise versions of the arguments of Lagrange and Hermite give a
bound H(G ) ≤ constant · |D| in case that F has degree ≤ 3.
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An effective finiteness result

Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ Z[X ,Y ] by

H(F ) := maxi |ai |.

Theorem 3 (Ev., Győry, recent improvement of result from 1991)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ exp
(

(16n3)25n2 |D|5n−3
)

.

Proof (idea).

Let L be the splitting field of F . Assume for convenience that
F =

∏n
i=1(αiX − βiY ) with αi , βi ∈ OL ∀i . Put ∆ij := αiβj − αjβi and

apply an explicit version of the effective abc-inequality (Theorem 1) to
the identities

∆ij∆kl + ∆jk∆il = ∆ik∆jl (1 ≤ i , j , k , l ≤ n).
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A semi-effective finiteness result

Theorem 4 (Ev., 1993)

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4, discriminant D 6= 0
and splitting field L. Then F is equivalent to a binary form G for which

H(G ) ≤ C ineff(n, L) · |D|21/(n−1).

Proof (idea).

Apply the semi-effective abc-inequality Theorem 2 to the identities

∆ij∆kl + ∆jk∆il = ∆ik∆jl (1 ≤ i , j , k , l ≤ n).



40/46

A conjecture

Conjecture 3

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ C1(n)|D|ceff2 (n).

Conjecture 2 =⇒ Conjecture 3.

Let L be the splitting field of F . Following the proof of Theorem 4 and
using the very weak abc-conjecture, one obtains that there is G
equivalent to F such that

H(G ) ≤ C3(n)|DL|c
eff
4 (n)|D|21/(n−1).

Use that DL divides Dn!.
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A conjecture

Conjecture 3

Let F ∈ Z[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ C1(n)|D|ceff2 (n).

Problem

What is the right value of the exponent on |D|?
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A function field analogue

Let k be an algebraically closed field of characteristic 0, K = k(t),
R = k[t].
Define | · | on k(t) by |f /g | := edeg f−deg g for f , g ∈ R.

Define the height of F = a0X
n + a1X

n−1Y + · · ·+ anY
n ∈ R[X ,Y ] by

H(F ) := maxi |ai |.

Call two binary forms F ,G ∈ R[X ,Y ] equivalent if G = uFA for some
u ∈ k∗, A ∈ GL(2,R).

Theorem 5 (W. Zhuang)

Let F ∈ R[X ,Y ] be a binary form of degree n ≥ 4 and discriminant
D 6= 0. Then F is equivalent to a binary form G for which

H(G ) ≤ en
2+4n+14|D|20+7/(n−2).

Proof.

Follow the proof over Z and apply Mason’s abc-theorem for function
fields.



43/46

Approximation of algebraic numbers by algebraic
numbers of bounded degree

Theorem (Schmidt, 1971)

Let α ∈ Q, d ∈ Z>0 and δ > 0. Then there are only finitely many ξ ∈ Q
of degree d such that

|α− ξ| ≤ H(ξ)−d−1−δ.

Proof.

Consequence of the Subspace Theorem.

Wirsing (1969) proved this earlier with −2d − δ instead of −d − 1− δ,
by a different method.
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Approximation of algebraic numbers by algebraic
numbers of bounded degree: Vojta’s conjecture

For ξ ∈ Q, define D(ξ) to be the discriminant of the number field Q(ξ).

Conjecture (Vojta, 1987)

Let α ∈ Q, d ∈ Z>0 and δ > 0. Then there are only finitely many ξ ∈ Q
of degree d such that

|α− ξ| ≤ |D(ξ)|−1H(ξ)−2−δ.

This implies Wirsing’s Theorem since |D(ξ)| � H(ξ)2d−2.

Restricting to algebraic numbers ξ in a given number field K , we obtain
Roth’s Theorem over number fields.
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Approximation of algebraic numbers by algebraic
numbers of bounded degree: application of
Conjecture 1

Our Conjecture 1 implies the following:

Conjecture 4

Let α ∈ Q, d ∈ Z>0, δ > 0, and put m := [Q(α) : Q]. There is an
effectively computable number ceff(m, d , δ) > 0, such that the inequality

|α− ξ| ≤ |D(ξ)|−c
eff (m,d,δ)H(ξ)−2−δ

has only finitely many solutions in algebraic numbers ξ of degree d .
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Thank you for your
attention!


