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Mahler’'s Lemma

Let f =ao[[/—;(X — o) € Z[X] of degree n > 2 with ag € Z and

distinct aq, . .

sep(f)
M(f)

D(f)

,a, € C and define

‘= min_|a; — ;| (minimal root distance of f),

1<i<j<n

= |ag Hmax(l, |a;]) (Mahler measure of f),
i=1

= a2 H (i — j)? (discriminant of f).

1<i<j<n

Lemma 1 (Mahler, 1964)
sep(f) > c(n)|D(F)[*/>M(F)1=" (with c(n) = /3 - n=(n+2)/2),



Mahler’'s Lemma

Let f =ao[[/—;(X — o) € Z[X] of degree n > 2 with ag € Z and

distinct aq,...,a, € C and define
sep(f) = 1<n_1ir_1< |ai — | (minimal root distance of f),
<i<y<n
M(f) = laof Hmax(l, |a;]) (Mahler measure of f),
i=1
D(f) = a"? H (i — j)? (discriminant of f).
1<i<j<n

Lemma 1 (Mahler, 1964)
sep(f) > c(n)|D(F)[*/>M(F)1=" (with c(n) = /3 - n=(n+2)/2),

Proof (ignoring value of c(n)).

|ai — oy 1/2 1—n
sep(f) >, H max(L o) max (L, Jor]) >, D) M(F) " O

1<i<j<n



Mahler’s Lemma (I1)

Lemma 1 (Mabhler, 1964)

Let f € Z[X] be a separable polynomial of degree n > 2. Then
sep(f) > c(n)|D(f)|*2M(f)*=" with c(n) > 0.

Since D(f) € Z \ {0}, this implies

Corollary

sep(f) > c(n)M(f)=".

Can this be improved to an inequality with something larger in terms of
M(f) on the right-hand side?



Mahler’s Lemma (I1)

Lemma 1 (Mabhler, 1964)

Let f € Z[X] be a separable polynomial of degree n > 2. Then
sep(f) > c(n)|D(f)|*2M(f)*=" with c(n) > 0.

Since D(f) € Z \ {0}, this implies

Corollary
sep(f) = c(n)M(f)~".

Can this be improved to an inequality with something larger in terms of
M(f) on the right-hand side?

NO if n = 2,3 YES if n > 4.



Polynomials of degree at most 3

For a polynomial f(X) of degree n > 2 and U :(? Z) define
fu(X) = (cX + d)"F( L),

cX+d
Call two polynomials f, g € Z[X] equivalent if g = fy for some
Ue GLQ(Z)
Theorem 1

Let f € Z[X] be a separable polynomial of degree n € {2,3}. In case
that n = 3, assume that f has a real, irrational zero. Then there are
infinitely many polynomials g € Z[X] such that g is equivalent to f and

sep(g) <r M(g)' ™"

For n = 2 the proof is straightforward, for n = 3 this is a result of
Schénhage (2006). His proof uses the convergents of a real irrational
zero of f.

Theorem 1 is false for cubic f with three rational roots or one rational
and two non-real roots.



An alternative proof of Schonhage’s Theorem

Lemma 2

Let n >3 and let ay,...,a, € C be distinct, with oy € R\ Q. Then Z?
has infinitely many bases {z1 = (a, b),z2 = (¢, d)} such that

la— asbl, |c — ard| < max(|al, 5], |l,|d]) %,
|a— aib| < |c —a;d| fori=2,... n.

Here the implied constants depend on ag, ..., ap,.

Proof (idea).

Apply Minkowski's Theorem on successive minima to the convex bodies
Co={(xy) ER?: [x —any| < Q7% [y| < Q} (Q=1). O



An alternative proof of Schonhage’s Theorem (ctd)

Let f = ao(X — Oél)(X — (XQ)(X — 043) S Z[X] with aq, ap, as distinct

and s € R\ Q.
Choose a basis {z; = (a, b), zo = (¢, d)} of Z? according to Lemma 2
and let
3 a—aib
g(X) = aOH ((C - O[,d)X - (a - Oé,'b)), Bi = c— a,-d (I = 1a273)

i=1

Then g is equivalent to f.
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and s € R\ Q.
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i=1
Then g is equivalent to f.
Put A; := max(|a — a;b|, |c — a;d|) (i =1,2,3). Then
Ay <¢ max(|al, ||, e, |d]) 7t <F AT AT,
A <r |c—aid| fori=23,
M(g) = |ao| ‘A1A2A3,



An alternative proof of Schonhage’s Theorem (ctd)

Let f = ao(X — Oél)(X — QQ)(X — 043) S Z[X] with aq, ap, as distinct

and s € R\ Q.
Choose a basis {z; = (a, b), zo = (¢, d)} of Z? according to Lemma 2
and let
3 a—aib
g(X) = aOH ((C - O[,d)X - (a - Oé,'b)), Bi = c— a,-d (I = 1a273)

i=1
Then g is equivalent to f.
Put A; := max(|a — a;b|, |c — a;d|) (i =1,2,3). Then
Ay <¢ max(|al, ||, e, |d]) 7t <F AT AT,
A <r |c—aid| fori=23,
M(g) = |30| ‘A1A2A3,

lad — bc]|
|C—C¥2d| . |C—O[3d|

hence sep(g) < |B2— B3| =

<f (A2A3)_1 <f (A1A2A3)_2 <f M(g)_2 OJ



Polynomials of degree at least 4

For polynomials f € Z[X] of degree < 3, Mahler's inequality is best
possible in terms of M(f).

For polynomials of degree > 4 we can do slightly better.

Theorem 2 (Ev. and Gyo6ry)
Let f € Z[X] be a separable polynomial of degree n > 4. Then

sep(f) > c(n)M(f)*~"(log 2M(f))*/(0n=6),

where c(n) > 0 is effectively computable.



Polynomials of degree at least 4

For polynomials f € Z[X] of degree < 3, Mahler's inequality is best
possible in terms of M(f).

For polynomials of degree > 4 we can do slightly better.

Theorem 2 (Ev. and Gyo6ry)
Let f € Z[X] be a separable polynomial of degree n > 4. Then

sep(f) > c(m)M(f)'~"(log 2M(f))*/(107°),
where c(n) > 0 is effectively computable.
Conjecture
For f € Z[X] a separable polynomial of degree n > 4 we have
sep(f) > cy(n)M(f)L ="+l

with ¢1(n) > 0, c(n) > 0.



Polynomials with small minimal root distance

Mignotte, Bugeaud and Mignotte, and Bugeaud and Dujella gave explicit
examples of polynomials f € Z[X] of arbitrary degree n > 4 such that
sep(f) is small compared with M(f). We recall the best results to date.

Theorem (Bugeaud and Dujella, 2011, 2014)

Let n > 4, € > 0. Then there are infinitely many irreducible f € Z[X] of
degree n such that

n—2

sep(f) < M(F)=2*e with a(n) = g T

and also infinitely many reducible, separable f € Z[X] of degree n such

that o1
sep(f) < M(f)~PM+< with b(n) = n3— .




On the proof of Theorem 2

> Recall Mahler's Lemma sep(f) >, |D(f)|Y/?M(f)}=", n = deg f.

To get a lower bound for sep(f) better than M(f)*~" in terms of
M(f), we need a non-trivial lower bound for |D(f)].

» |D(f)| can not be estimated from below in terms of M(f):

Recall that two polynomials f, g € Z[X] of degree n are called

equivalent if there is U € GL(2,Z) such that g = fy, i.e., if
X+b

U=(215) then g(X) = (cX + d)"F(ZE5).

Equivalent polynomials have the same discriminant.

So by varying f in an equivalence class one can make M(f)

arbitrarily large while fixing D(f).

> But by means of Baker theory we can show that there is g € Z[X]
equivalent to f with small Mahler measure in terms of |D(f)|.

This provides a useful lower bound for |D(f)|.



Polynomials of small Mahler measure in an

equivalence class

Theorem 3 (Ev. and Gyéry, recent improvement of result from
1991)

Let f € Z[X] be a separable polynomial of degree n > 4. Then there is
g € Z[X] such that g is equivalent to f and

M(g) < exp ((177) | D(F)"~3).



Polynomials of small Mahler measure in an

equivalence class

Theorem 3 (Ev. and Gyéry, recent improvement of result from
1991)

Let f € Z[X] be a separable polynomial of degree n > 4. Then there is
g € Z[X] such that g is equivalent to f and

M(g) < exp ((177) | D(F)"~3).

For polynomials of degree < 3 much sharper results follow from classical
work of Lagrange, Gauss and Hermite.



The main tool

Let K be a number field. Denote by Ok its ring of integers, by Dk its
discriminant and d its degree. For non-zero a, b, c € Ok define

Hk(a,b,c):= [ max(lo(a)l,lo(b)],lo(c)]).

o:K—C

Proposition 4 (Gyoéry, 1978)
There are effectively computable c¢i(d), c(d) > 0 such that for all
a,b,c € Ok with a+ b= c, abc # 0 we have

Hk(a, b, c) < (2|NK/Q(abC)|)Cl(d)‘DK‘c2(d).

Proof.

Baker type lower bounds for linear forms in logarithms. The sharpest,
completely explicit version of Proposition 4 to date is due to Gyoéry and
Yu (2006). O



Idea of proof of Theorem 3

Theorem 3

Let f € Z[X] be a separable polynomial of degree n > 4. Then there is
g € Z[X] such that g is equivalent to f and

M(g) < exp ((17n°)=7|D(F)"2).

Proof (idea).

Let K be the splitting field of f and write f = []"_,(3:X — ) with 53;,
“almost” in Ok. Put Aj; := Biv; — Bjyi and apply Gydry's and Yu's
explicit version of Proposition 4 to

N+ ANy = DAjp Vi, j, k1.



Idea of proof of Theorem 3

Theorem 3
Let f € Z[X] be a separable polynomial of degree n > 4. Then there is
g € Z[X] such that g is equivalent to f and

M(g) < exp ((17n°)=7|D(F)"2).

Proof (idea).
Let K be the splitting field of f and write f = []"_,(3:X — ) with 53;,
“almost” in Ok. Put Aj; := Biv; — Bjyi and apply Gydry's and Yu's
explicit version of Proposition 4 to

DAy + DAy = DAy Njp Vi, j, k, I

Together with geometry of numbers, this implies that there is g
equivalent to f with an upper bound for M(g) which is polynomial in
|D(f)| but with |Dk| in the exponent.

Estimating |Dk| in terms of D(f), this leads to an upper bound for M(g)
which is exponential in |D(f)]. O



Proof of Theorem 2

Theorem 2
Let f € Z[X] be a separable polynomial of degree n > 4. Then

sep(f) > C(n)M(f')lfn(k)g2M(f))1/(10n76),
where c(n) > 0 is effectively computable.

This is proved by combining Theorem 3 with the following improvement
of Mahler's Lemma.

Lemma (Ev., 1993)

Let f € Z[X] be a separable polynomial of degree n > 4 and let g € Z[X]
be equivalent to f. Then

sep(f) > c(n)|D(F)[VM(F) " M(g)*",

where c(n) > 0 is effectively computable.



Proof of Theorem 2

Theorem 2
Let f € Z[X] be a separable polynomial of degree n > 4. Then

sep(f) > c(n)M(f)*~"(log 2M(f))1/(10n76),

where c(n) > 0 is effectively computable.

Proof of Theorem 2.
Choose g equivalent to f of minimal Mahler measure. Then

sep(f) > |D()2M(F) ™ M(g)*"
>n M(F)M(g)* " (log2M(g)) !

>, M(F)"(log 2M(£)) /)

10n—6)



Clusters of p-adic roots

We generalize the previous results to other absolute values and also to
estimates for clusters of roots.

Let Mg := {oo} U {primes}, | - |o ordinary absolute value, | - |, p-adic
absolute value with |p|, = p~* for p a prime.

For p € Mg we extend | - |, to Qp, where Qo = R, Qo = C.
Let f € Z[X] be a separable polynomial of degree n and p € Mg.

Write f(X) = ag H(X — ajp) with a9 € Z, aj , € Q, and define
i=1

sepp(f) = sepy p(F) = 1<rl_n<ijr_1<n |ip = jplp (n=2),
sepip(f) = min T] foip = aely (k=200 k),
— {igel
where the minimum is taken over all k-element subsets / of {1,...,n}

and the product over all 2-element subsets of /.



A generalization of Mahler’'s Lemma

Recall se f) := min Qjp,— for f(X) = a — Qjp).
Pk P( ): 1=k {:EICI| P j.plp OH »)

Lemma 3

Let S = {co,p1,...,pt}, k € Z>y, and f € Z[X] a separable polynomial
of degree n > k. Then

Hmm ,5€Dy p (f)) = <(n) (H |D(f)|p ) -M(F)

peS peS
where c(n) > 0 is effectively computable.



A generalization of Mahler’'s Lemma

Recall sepy ,(f) == ‘nlwl_n H |aip — jplp for £(X) = aOH — Qjp).
{igyct
Lemma 3

Let S = {co,p1,...,pt}, k € Z>y, and f € Z[X] a separable polynomial
of degree n > k. Then

H min (1,sep, ,(f)) > c(n) (H |D(f )1/2 M)

peS peS
where c(n) > 0 is effectively computable.

Corollary

H min (1,sepk’p(f)) > c(n)/\/l(f)l_”

peS

Can this be improved in terms of M(f)?



A generalization of Mahler’'s Lemma

Recall sepy ,(f) == ‘nlwl_n H |aip — jplp for £(X) = aOH — Qjp).
{igyct
Lemma 3

Let S = {co,p1,...,pt}, k € Z>y, and f € Z[X] a separable polynomial
of degree n > k. Then

H min (1,sep, ,(f)) > c(n) (H |D(f )1/2 M)

peS peS
where c(n) > 0 is effectively computable.

Corollary

H min (1,sepk’p(f)) > c(n)/\/l(f)l_”

peS

Can this be improved in terms of M(f)?
NO if n € {k, k+1}; YES if n > k+ 2.



A generalization of Schonhage’s Theorem

A polynomial f € Z[X] is called primitive if its coefficients have ged 1.

We call two polynomials f, g € Z[X] GL2(Q)-equivalent if g = Afy for
some A € Q*, U € GL(Q).

Theorem 5

Let p € My, k € Z>» and f € Z[X] a primitive, separable polynomial of
degree n € {k,k +1}. In case that n = k + 1, assume that f has a zero
in Q, \ Q.

Then there are infinitely many g € Z[X], such that g is primitive,
GL(2,Q)-equivalent to f, and

sepr.p(8) <pr M(g)t—".

Proof.

Adelic geometry of numbers. O]



A generalization of Schonhage’s Theorem

A polynomial f € Z[X] is called primitive if its coefficients have ged 1.

We call two polynomials f, g € Z[X] GL2(Q)-equivalent if g = Afy for
some A € Q*, U € GL(Q).

Theorem 5

Let p € My, k € Z>» and f € Z[X] a primitive, separable polynomial of
degree n € {k,k +1}. In case that n = k + 1, assume that f has a zero
in Q, \ Q.

Then there are infinitely many g € Z[X], such that g is primitive,
GL(2,Q)-equivalent to f, and

sepr.p(8) <pr M(g)t—".

Pejkovic (2012, PhD-thesis) constructed in another way, for every prime
p. an infinite class of separable cubic g € Z[X] with sep,(g) < M(g)~2.



Polynomials of degree at least k + 2

Theorem 6

Let k€ Z>po, n> k+2,S={co,p1,...,p:}. There is an effectively
computable number c(n, S) > 0 such that for every separable polynomial
f € Z[X] of degree n we have

[T min (1,sep, ,(£)) > c(n, S)M()*~"(log 2M(£))*/C0n=).

peS

Proof.

p-adic generalization of arguments sketched above. O



A conditional result

Theorem 7

Assuming the abc-conjecture over number fields, the following holds:

Let S = {oco,p1,...,pt}, k € Z>5, f € Z[X] a separable polynomial of
degree n > k + 2. Then

[T min(L, sepe 5 (F) = c(n, SYM(F)L="1 /",
pES

where c(n, S) > 0 depends only on n,S, and v > 0 is an absolute
constant.

This lower bound is probably far from the truth.



Congratulations Kalman!



