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Abstract. Let S = {q1, . . . , qs} be a finite, non-empty set of distinct
prime numbers. For a non-zero integer m, write m = qr11 . . . qrss M ,
where r1, . . . , rs are non-negative integers and M is an integer relatively
prime to q1 . . . qs. We define the S-part [m]S of m by [m]S := qr11 . . . qrss .
Let (un)n≥0 be a linear recurrence sequence of integers. Under certain
necessary conditions, we establish that for every ε > 0, there exists
an integer n0 such that [un]S ≤ |un|ε holds for n > n0. Our proof
is ineffective in the sense that it does not give an explicit value for
n0. Under various assumptions on (un)n≥0, we also give effective, but
weaker, upper bounds for [un]S of the form |un|1−c, where c is positive
and depends only on (un)n≥0 and S.

1. Introduction and results

Let k be a positive integer, and let a1, . . . , ak and u0, . . . , uk−1 be integers such that
ak is non-zero and u0, . . . , uk−1 are not all zero. Put

un = a1un−1 + . . .+ akun−k, for n ≥ k. (1.1)

The sequence (un)n≥0 is a linear recurrence sequence of integers of order k. Its character-
istic polynomial

G(X) := Xk − a1Xk−1 − . . .− ak

can be written as

G(X) =

t∏
i=1

(X − αi)`i ,

where α1, . . . , αt are distinct algebraic numbers and `1, . . . , `t are positive integers. It is
then well-known (see e.g. Chapter C in [11]) that there exist polynomials f1(X), . . . , ft(X)
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of degrees less than `1, . . . , `t, respectively, and with coefficients in the algebraic number
field K := Q(α1, . . . , αt), such that

un = f1(n)αn1 + . . .+ ft(n)αnt , for n ≥ 0. (1.2)

The recurrence sequence (un)n≥0 is said to be degenerate if there are integers i, j with
1 ≤ i < j ≤ t such that αi/αj is a root of unity.

We keep the above notation throughout the present paper. The case t = 1, that is, of
sequences (f(n)an)n≥0 where f(X) is an integer polynomial and a a non-zero integer, can
be treated using the work of [4, 1]. Thus, in all what follows, we assume that t ≥ 2, the
polynomials f1(X), . . . , ft(X) are non-zero, and (un)n≥0 is non-degenerate.

By means of a p-adic generalization of the Thue–Siegel theorem, Mahler [6] proved
that every non-degenerate binary recurrence sequence (un)n≥0 tends in absolute value
to infinity as n tends to infinity. This was extended to every non-degenerate recurrence
sequence by van der Poorten and Schlickewei [9] and, independently, Evertse [2]. They
proved the following stronger result. For an integer m, let P [m] denote its greatest prime
factor, with the convention that P [0] = P [±1] = 1. By means of a p-adic version of the
Schmidt Subspace Theorem, they established that P [un] tends to infinity as n tends to
infinity.

This result is ineffective, but an effective version of it was proved by Stewart [12, 13],
under an additional assumption. Without loss of generality, assume that

|α1| ≥ |α2| ≥ . . . ≥ |αt| > 0.

Then, if |α1| > |α2| (this assumption is often called the dominant root assumption) and
un 6= f1(n)αn1 , there are positive numbers c1 and c2, which are effectively computable in
terms of (un)n≥0 (which exactly means, in terms of a1, . . . , ak and u0, . . . , uk−1), such that

P [un] > c1 log n
log log n

log log log n
, for n > c2; (1.3)

see also [14, 15] for stronger results for binary recurrence sequences.
In the present note, we investigate the following related problem. Let S = {q1, . . . , qs}

be a finite, non-empty set of distinct prime numbers. For a non-zero integer m, write
m = qr11 . . . qrss M , where r1, . . . , rs are non-negative integers and M is an integer relatively
prime to q1 . . . qs. We define the S-part [m]S of m by

[m]S := qr11 . . . qrss .

We ask for a non-trivial upper bound for the S-part of the n-th term of a non-degenerate
recurrence sequence of integers.

A first result on this question was obtained by Mahler [7] in 1966 for a special family of
binary recurrence sequences. We keep the above notation and assume that k = 2, a2 ≤ −2,
−4a2 > a21, and that a1 and a2 are coprime. By means of a p-adic extension of the Roth
theorem established by Ridout [10], Mahler showed that, if n is large enough, then we have
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[un]S < |un|ε. He observed that his result implies that P [un] tends to infinity as n tends
to infinity, a statement which was new at that time.

Before stating our first theorem, which extends Mahler’s result to every non-degenerate
recurrence sequence of integers, we need to introduce some additional notation. Choose
embeddings of K in C and of K in Qp, for every prime p. These embeddings define
extensions to K of the ordinary absolute value | · | and of the p-adic absolute value | · |p for
every prime p, normalized such that |p|p = p−1. Define the quantity

δ := −
∑
p∈S log max{|α1|p, . . . , |αt|p}

log max{|α1|, · · · , |αt|}
. (1.4)

By our assumptions on the sequence (un)n≥0, α1, . . . , αt are algebraic integers which
are not all roots of unity and whose product is a non-zero rational integer. Therefore,
maxi |αi| > 1, and maxi |αi|p ≤ 1 for p ∈ S. Hence, δ is well-defined and δ ≥ 0. Further-
more, we observe that δ < 1 since t ≥ 2. Indeed, letting A := maxi |αi|, Ap := maxi |αi|p
for p ∈ S and a := α1 · · ·αt, we have

(1− δ) logA = logA+
∑
p∈S

logAp ≥ t−1
(

log |a|+
∑
p∈S

log |a|p
)
≥ 0,

where both inequality signs are equality signs if and only if |α1|p = · · · = |αt|p for p ∈
S ∪ {∞} and |α1|p = · · · = |αt|p = 1 for all prime numbers p outside S, that is, if all
quotients αi/αj are roots of unity, which is against our assumption. So the left-hand side
of the above inequality is > 0, thus δ < 1.

Our first result is an easy consequence of work of Evertse, see e.g., [2], Theorem 2, or
Proposition 6.2.1 of [3].

Theorem 1.1. Let (un)n≥0 be a non-degenerate recurrence sequence of integers defined
in (1.1). Let S := {q1, . . . , qs} be a finite, non-empty set of prime numbers, and δ be as in
(1.4). Further, let ε > 0. Then for every sufficiently large n we have

|un|δ−ε ≤ [un]S ≤ |un|δ+ε. (1.5)

In particular, if gcd(q1 · · · qs, a1, . . . , ak) = 1, we have for every sufficiently large n,

[un]S ≤ |un|ε.

Observe that the assumption gcd(q1 · · · qs, a1, . . . , ak) = 1 implies that δ = 0. Indeed,
suppose δ > 0. Then, there is a prime number p in S such that maxi |αi|p < 1. Since
a1, . . . , ak are up to sign the elementary symmetric functions in the αi taken `i times, we
must then have |ai|p < 1 for i = 1, . . . , k. This is clearly impossible.

The proof of Theorem 1.1 depends ultimately on the p-adic Schmidt Subspace Theo-
rem, therefore we cannot compute the set of n for which (1.5) does not hold. It seems to
be difficult to bound its cardinality, even by means of the strongest available versions of
the quantitative Subspace Theorem.

Our main effective theorem is the following.
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Theorem 1.2. Let (un)n≥0 be a non-degenerate recurrence sequence of integers having
a dominant root. Let S be a finite, non-empty set of prime numbers. Then, there exist
effectively computable positive numbers c1 and c2, depending only on (un)n≥0 and S, such
that

[un]S ≤ |un|1−c1 ,

for every n ≥ c2.

Removing the dominant root assumption seems to be very difficult. However, this can
be done for non-degenerate binary recurrence sequences of integers.

Theorem 1.3. Let (un)n≥0 be a non-degenerate binary recurrence sequence of integers.
Assume that un = aαn+bβn for n ≥ 0, with abαβ 6= 0. Let S be a finite, non-empty set of
prime numbers. Then, there exist effectively computable positive numbers c1, depending
only on (un)n≥0, and c2, depending only on (un)n≥0 and S, such that

[un]S ≤ |un|1−c1 , for every n ≥ c2.

We stress that, in Theorem 1.3, the number c1 is independent of the set S of prime
numbers. Clearly, when α and β are complex conjugates, there is no dominant root.

Our next statement is a p-adic analogue to Theorem 1.2.
Let p be a prime number. We say that the recurrence sequence (un)n≥0 as in (1.2) has

a p-adic dominant root if there exists j such that 1 ≤ j ≤ t and |αj |p = 1, while |αi|p < 1
for 1 ≤ i ≤ t with i 6= j.

Theorem 1.4. Let p be a prime number. Let (un)n≥0 be a non-degenerate recurrence
sequence of integers having a p-adic dominant root. Let S be a finite, non-empty set of
prime numbers. Then, there exist positive numbers c1 and c2, depending only on (un)n≥0
and S, such that

[un]S ≤ |un|1−c1 ,

for every n ≥ c2. Furthermore, for every positive real number ε, there exists an effectively
computable integer c3, depending only on (un)n≥0 and ε, such that

P [un] > (1− ε) log n
log log n

log log log n
, for n > c3.

The last statement of Theorem 1.4 seems to be new.
The proof of Theorem 1.2 allows us to establish the following statement.

Theorem 1.5. Let θ > 1 be a real algebraic number such that all of its Galois conjugates
are less than θ in modulus. Let λ be a non-zero real algebraic number. Let S be a finite set
of prime numbers. If θ` 6∈ Z for every integer ` ≥ 1, then there exist effectively computable
positive numbers c1 and c2, depending only on λ, θ, and S, such that

[bλθnc]S ≤ |λθn|1−c1 , for every n ≥ c2.

Theorem 1.5 applies to the sequence of integer parts of (3/2)n. Lower bounds for the
greatest prime factor of bθnc, where θ > 1 is an algebraic number such that θ` is not an
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integer for every integer ` ≥ 1, have been obtained by Luca and Mignotte [5]. They are
similar to (1.3).

It would be interesting to see under which assumption on the algebraic numbers λ
and θ we get

[bλθnc]S ≤ |λθn|ε,

for every ε > 0 and every sufficiently large integer n.

2. Proof of Theorem 1.1

Recall that we have set K := Q(α1, . . . , αt). Denote by MK the set of places of K.
For v in MK , we choose a normalized absolute value | · |v such that if v is an infinite place,
then

|x|v = |x|[Kv:R]/[K:Q], for x ∈ Q,

while if v is finite and lies above the prime p, then

|x|v = |x|[Kv :Qp]/[K:Q]
p , for x ∈ Q.

These absolute values satisfy the product formula∏
v∈MK

|x|v = 1, for every non-zero x ∈ K.

Moreover, if x ∈ Q, then
∏
v|∞ |x|v = |x| and

∏
v|p |x|v = |x|p, where the products are

taken over all infinite places of K, respectively all places of K lying above the prime
number p.

Let T be a finite set of places of K, containing all infinite places. Define the ring of
T -integers and the group of T -units of K by

OT := {x ∈ K : |x|v ≤ 1 for v ∈MK \ T},

O∗T := {x ∈ K : |x|v = 1 for v ∈MK \ T},

respectively. Further define

HT (x1, . . . , xn) :=
∏
v∈T

max{|x1|v, . . . , |xn|v}, for x1, . . . , xn ∈ OT .

Our main tool is the following result, which is Proposition 6.2.1 of [3] and which is essen-
tially the same as Theorem 2 of [2].

Proposition 2.1. Let U be a subset of T , t ≥ 2 and ε > 0. Then for all x1, . . . , xt ∈ OT
such that every non-empty subsum of x1 + · · ·+ xt is non-zero, we have

t∏
i=1

∏
v∈T
|xi|v ·

∏
v∈U
|x1 + · · ·+ xt|v �

∏
v∈U

max{|x1|v, . . . , |xt|v} ·HT (x1, . . . , xt)
−ε,
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where the implied constant depends on K,T, t and ε.

The proof of this result depends on the p-adic Schmidt Subspace Theorem, therefore
the implied constant is ineffective.

Proof of Theorem 1.1. We introduce the following notation. First, by O(1) we denote
constants depending on (un)n≥0 and S. Second, we choose a real number ε′ > 0 which will
later be taken sufficiently small in terms of ε; then constants implied by the Vinogradov
symbols �, � will depend on (un)n≥0, S and ε′. Lastly, we put

A := max{|α1|, . . . , |αt|}, Ap := max{|α1|p, . . . , |αt|p} for p ∈ S,

and
Av := max{|α1|v, . . . , |αt|v} for v ∈MK .

Then by our choice of the absolute values on K, we have∏
v|∞

Av = A,
∏
v|p

Av = Ap for p ∈ S.

We choose a finite set of places T of K, containing all infinite places and all places lying
above the primes in S, such that α1, . . . , αt ∈ O∗T and the coefficients of f1(X), . . . , ft(X)

are in OT . Let for the moment U be any subset of T . Each subsum of un =
∑t
i=1 fi(n)αni

is a non-degenerate linear recurrence sequence of algebraic numbers in K. So by the
Skolem-Mahler-Lech Theorem, there are only finitely many non-negative integers n for
which at least one of the subsums of un vanishes. Then by Proposition 2.1 we have for the
remaining positive integers n,

t∏
i=1

∏
v∈T
|fi(n)αni |v ·

∏
v∈U
|un|v �

∏
v∈U

max
1≤i≤t

|fi(n)αni |v ·
( ∏
v∈T

max
1≤i≤t

|fi(n)αni |v
)−ε′/2

.

Since
∏
v∈T |αi|v = 1 for i = 1, . . . , t, the left-hand side of this inequality is

� (2n)O(1)
∏
v∈U
|un|v,

while the right-hand side is

� (2n)−O(1)
( ∏
v∈U

Av

)n
·
( ∏
v∈T

Av

)−nε′/2
� (2n)−O(1)

( ∏
v∈U

Av

)n
·A−nε

′/2,

where we have used Av ≤ 1 if v is finite and
∏
v|∞Av = A. Thus,

∏
v∈U
|un|v � (2n)−O(1)

( ∏
v∈U

Av

)n
·A−nε

′/2.
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On the other hand, we have a trivial upper bound∏
v∈U
|un|v ≤ (2n)O(1)

( ∏
v∈U

Av

)n
.

Since A > 1, this implies that for every sufficiently large n,( ∏
v∈U

Av

)n
·A−nε

′
≤
∏
v∈U
|un|v ≤

( ∏
v∈U

Av

)n
·Anε

′
.

We apply this with two choices of U . First let U consist of the infinite places of K. Then,∏
v∈U
|un|v = |un| and

∏
v∈U

Av = A,

implying that for all sufficiently large n,

An(1−ε
′) ≤ |un| ≤ An(1+ε

′).

Next, let U consist of the places of K lying above the primes in S. Then∏
v∈U
|un|v =

∏
p∈S
|un|p = [un]−1S

and ∏
v∈U

Av =
∏
p∈S

Ap = A−δ,

hence
An(δ−ε

′) ≤ [un]S ≤ An(δ+ε
′)

for every sufficiently large n. By taking ε′ sufficiently small in terms of ε, Theorem 1.1
easily follows.

3. Proofs of Theorems 1.2 and 1.3

As usual, h(α) denotes the (logarithmic) Weil height of the algebraic number α.
Our first auxiliary result is an immediate corollary of a theorem of Matveev [8].

Theorem 3.1. Let n ≥ 2 be an integer, let α1, . . . , αn be non-zero algebraic numbers and
let b1, . . . , bn be integers. Further, let D be the degree over Q of a number field containing
the αi, and let A1, . . . , An be real numbers with

logAi ≥ max
{

h(αi),
| logαi|
D

,
0.16

D

}
, 1 ≤ i ≤ n.

Set

B := max
{

1,max
{
|bj |

logAj
logAn

: 1 ≤ j ≤ n
}}

.

Then, we have

log |αb11 . . . αbnn − 1| > −4× 30n+4 (n+ 1)5.5Dn+2 log(eD) log(enB) logA1 . . . logAn.

The key point for our main theorem is the factor logAn in the denominator in the
definition of B.

Our second auxiliary result is extracted from [16].
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Theorem 3.2. Let p be a prime number, K an algebraic number field of degree D and
| · |p an absolute value on K with |p|p = p−1. Further, let α1, . . . , αn be elements of K,
and let A1, . . . , An be real numbers with

logAi ≥ max
{

h(αi),
1

16e2D2

}
, 1 ≤ i ≤ n.

Let b1, . . . , bn denote nonzero rational integers and let B and Bn be real numbers such
that

B ≥ max{|b1|, . . . , |bn|, 3} and B ≥ Bn ≥ |bn|.

Assume that
|bn|p ≥ |bj |p, j = 1, . . . , n.

Let δ be a real number with 0 < δ ≤ 1/2. With the above notation, we have

log |αb11 . . . αbnn − 1|p > − (16eD)2(n+1)n3/2 (log(2nD))2Dn pD

log p
×

×max
{

(logA1) · · · (logAn)(log T ),
δB

Bnc0(n,D)

}
,

where
T = Bnδ

−1c1(n,D)p(n+1)D(logA1) · · · (logAn−1)

and

c0(n,D) = (2D)2n+1 log(2D) log3(3D), c1(n,D) = 2e(n+1)(6n+5)D3n log(2D).

Proof of Theorem 1.2. We establish a slightly more general result.
We consider a sequence of integers (vn)n≥0 with the property that there are θ in (0, 1)

and C > 0 such that
|vn − f(n)αn| ≤ C |α|θn, n ≥ 0, (3.1)

where f(X) is a non-zero polynomial whose coefficients are algebraic numbers and α is an
algebraic number with |α| > 1 Clearly, a recurrence sequence having a dominant root α
has the above property. We prove a similar statement as Theorem 1.2 for the sequence
(vn)n≥0.

The constants c1, c2, . . . below are positive, effectively computable and depend at
most on (vn)n≥0. The constants C1, C2, . . . below are positive, effectively computable and
absolute.

Let q1, q2, . . . , qs be distinct prime numbers written in increasing order. Let n be a
positive integer such that f(n)vn is non-zero and vn 6= f(n)αn. There exist non-negative
integers r1, . . . , rs and a non-zero integer M coprime with q1 . . . qs such that

vn = qr11 · · · qrss M.
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Observe that there exist positive real numbers c1 and c2 such that

rj log qj ≤ c1n, j = 1, . . . , s, (3.2)

and

Λ := |qr11 · · · qrss (Mf(n)−1)α−n − 1| ≤ c2|f(n)|−1 |α|(θ−1)n.

Since θ < 1, we get by (3.1) that

log |Λ| ≤ −c3 n.

Setting

Q := (log q1) · · · (log qs) and logA := max{h(Mf(n)−1), 2},

Theorem 3.1 and (3.2) imply that

log |Λ| ≥ −c4Cs1 Q (logA) log
n

logA
.

Comparing both estimates, we obtain that

n ≤ c5 Cs2 Q (logQ) (logA). (3.3)

Observe that

logA ≤ log |M |+ c6 log n.

We distinguish two cases.
If |M | ≥ nc6 , then A ≤M2, and, by (3.3),

n ≤ c7 Cs2 Q (logQ) (log |M |).

We derive that

|vn|
[vn]S

= |M | ≥ 2c8n(C
s
2 Q (logQ))−1

≥ |vn|c9(C
s
2 Q (logQ))−1

,

since |vm| ≤ |α1|2m for m sufficiently large.
If |M | < nc6 , then logA ≤ 2c6 log n and, by (3.3),

n ≤ c10 Cs2 Q (logQ) (log n),

thus,

n ≤ c11 Cs3 Q (logQ)2. (3.4)

This completes the proof of Theorem 1.2.
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Remark. Let ε be a positive real number. In the particular case where M = ±1 and
q1, . . . , qs are the first s prime numbers p1, . . . , ps, we get from (3.4) and the Prime Number
Theorem that

log n ≤ c12 + sC4 + (1 + ε)
s∑

k=1

log log pk ≤ (1 + 2ε)ps
log log ps

log ps
,

if n is sufficiently large in terms of ε. This gives

P [vn] ≥ (1− 3ε) log n
log log n

log log log n
,

if n is sufficiently large in terms of ε, and we recover Stewart’s result (1.3).

Proof of Theorem 1.3. The constants c1, c2, . . . below are positive, effectively computable
and depend at most on (un)n≥0.

Let q1, q2, . . . , qs be distinct prime numbers written in increasing order. Let n ≥ 2 be
an integer. There exist non-negative integers r1, . . . , rs and a non-zero integer M coprime
with q1 . . . qs such that

un = qr11 · · · qrss M.

It follows from inequality (20) of [12] that for i = 1, . . . , s we have

ri ≤ c1
q2i

log qi
(log n)2.

By Lemma 6 of [12], we get
log |un| > c2n.

Consequently, setting

Q :=
s∑
i=1

q2i ,

we obtain
c2n < log |M |+ c1Q (log n)2.

We distinguish two cases.
If log |M | > c1Q (log n)2, then c2n < 2 log |M |, thus

|M | > |un|c3 .

If log |M | ≤ c1Q (log n)2, then
n < c4Q (log n)2,

and n is bounded in terms of a, b, α, β, and S. This completes the proof of the theorem.
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Proof of Theorem 1.4. We establish a slightly more general result. Let p be a prime
number, K a number field and | · |p an absolute value on K with |p|p = p−1. We consider
a sequence of integers (vn)n≥0 with the property that there are θ in (0, 1) and C > 0 such
that

|vn − f(n)αn|p ≤ C p−θn, n ≥ 0, (3.5)

where f(X) is a non-zero polynomial with coefficients in K and α an element of K with
|α|p = 1. We also assume that there exist β > 1 and n0 such that

vn 6= f(n)αn, |vn| < βn, for every integer n > n0. (3.6)

Clearly, every non-degenerate recurrence sequence having a p-adic dominant root satisfies
both properties. We prove a statement analogous to Theorem 1.4 for the sequence (vn)n≥0.

Let q1, q2, . . . , qs be distinct prime numbers written in increasing order. Let n ≥ 3
be an integer such that f(n)vn is non-zero and vn 6= f(n)αn. There exist non-negative
integers r1, . . . , rs and a non-zero integer M coprime with q1 . . . qs such that

vn = qr11 · · · qrss M.

The constants c1, c2, . . . below are positive, effectively computable and depend at most
on (vn)n≥0 and p. The constants C1, C2, . . . below are positive, effectively computable and
absolute.

Consider the quantity

Λ := qr11 · · · qrss (Mf(n)−1)α−n − 1

and observe that, by (3.5), we have

log |Λ|p < −c1n.

Set
Q := (log q1) · · · (log qs) and logA := max{h(Mf(n)−1), 2}.

It follows from Theorem 3.2 applied with

B := max{r1, . . . , rs, n} and δ =
Q(logA)

B

that
B < 2Q logA, if δ > 1/2, (3.7)

and, otherwise,

log |Λ|p > −c1Cs1Q(logA) max
{

log
( B

logA

)
, 1
}
. (3.8)

If (3.7) holds, then we have
n ≤ B < 2Q logA. (3.9)
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If (3.8) holds, then, using
B ≤ c3n,

which follows from (3.6), we obtain an upper bound similar to (3.3), namely

n ≤ c4Cs2Q(logQ)(logA). (3.10)

In view of (3.9) and (3.10), we conclude as in the proof of Theorem 1.2. The last statement
of the theorem corresponds to the remark following the proof of Theorem 1.2.
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