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Discriminants of binary forms

The discriminant of a binary form

FIX,Y)=aX"+a X" 'Y+ +a,Y" = [[(iX = BY)
i=1

is given by D(F) = H (aiffj — Oéjﬁi)z-

1<i<j<n

For U = ( i 5 ) we define Fy(X, Y) = F(aX + bY, cX + dY).

Properties:

(I) D(F) € Z[QO,-.-,Q,-,];

(i) D(NFy) = \2"=2(det U)"("=YD(F) for every scalar A and
2 X 2-matrix U.



GL(2, A)-equivalence of binary forms

Definition

Let A be a non-zero commutative ring. Two binary forms

F,G € A[X, Y] are called GL(2, A)-equivalent if there are ¢ € A* and
U € GL(2,A) such that G = eFy.

Let F,G € A[X, Y] be two GL(2, A)-equivalent binary forms. Then
D(G) = nD(F) for some n € A*.

Thus, the solutions of the “discriminant equation”
D(F) € 6A" .= {dn: n € A"} in binary forms F € A[X, Y]

can be divided into GL(2, A)-equivalence classes.



Finiteness results over the S-integers

Let K be an algebraic number field and S a finite set of places of K,
containing all infinite places. Denote by Os the ring of S-integers of K.

Theorem (Birch and Merriman, 1972)

Let n>2 and § € Os \ {0}. Then there are only finitely many
GL(2, Os)-equivalence classes of binary forms F € Os[X, Y] with

D(F) € 605, degF =n.

The proof of Birch and Merriman is ineffective, i.e., it does not give a
method to determine the equivalence classes.

E. and Gydry (1991) gave an effective proof (based on Baker type lower
bounds for logarithmic forms and on geometry of numbers).



The number of equivalence classes

The splitting field of a binary form F € K[X, Y] over a field K is the
smallest extension of K over which F factors into linear forms.

Theorem (Bérczes, E., Gydry, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K, n > 3 and § € Os \ {0}.

Then the number of GL(2, Os)-equivalence classes of binary forms
F € Os[X, Y] such that

(1) D(F) € 605, degF =n, F has splitting field L over K
is at most
C(n, K, #5,€) - (#0s/50s)/r(=)F¢ for all e > 0,

where C° is effectively computable in terms of n, K, #S, €.



The number of equivalence classes

Theorem (Bérczes, E., Gyory, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K, n > 3 and 6 € Os \ {0}.
Then the number of GL(2, Os)-eq. classes of binary forms F € Os[X, Y]
with

(1) D(F) € 603, degF =n, F has splitting field L over K

is at most C(n, K, #S,¢) - (#0s/50s)X/"(=1)+¢ for all € > 0.

The result is almost optimal in terms of §:

For every K, S and n > 2 there are L and § € Os\ {0} with #0s/§Os arbi-
trarily large, such that (1) is satisfied by > (#0s/30s)*/"("=1) GL(2, Os)-
eq. classes of binary forms F € Os[X, Y].



The number of equivalence classes

Theorem (Bérczes, E., Gyory, 2004)

Let K be a number field, S a finite set of places of K containing all
infinite places, L a finite normal extension of K, n > 3 and 6 € Os \ {0}.

Then the number of GL(2, Os)-eq. classes of binary forms F € Os[X, Y]
with
(1) D(F) € 603, degF =n, F has splitting field L over K

is at most C(n, K, #S,¢) - (#0s/50s)X/"(=1)+¢ for all € > 0.

Open problem: Can we get a similar upper bound without fixing the
splitting field L of the binary forms under consideration?

For this, we need a very good upper bound for the number of L for which
(1) is solvable.



The invariant order of a binary form

Let A be a non-zero commutative ring. An A-order of rank n is a
commutative ring O whose additive structure is a free A-module of rank
n, i.e., O has a basis {1,ws,...,w,—1} such that every element of O can
be written uniquely as xg + xqwi + + -+ + Xp_1wn_1 With x; € A and such
that wjw; is an A-linear combination of 1,wy,...,wy—1 forall 7, ;.

One can attach to every binary form F € A[X, Y] of degree n an A-order
of rank n, its invariant A-order AFr.

This was introduced and studied by Nakagawa (1989) and Simon (2001)
(over Z) and Wood (2011) (in general).

We will consider “equations”

Ar = O (as A-algebras)

to be solved in binary forms F € A[X, Y], where O is a given A-order.



Definition of the invariant order A

Let for the moment A be an integral domain with quotient field K, and
F(X,Y)=aoX"+a X" 'Y +---+2a,Y" € A[X, Y] a binary form that
is irreducible over K.

Let 6 be a zero of F(X,1). Define Ap C K(0) to be the free A-module
with basis {1,w1,...,w,—1} where

wii=apl + a0+ +a;_10 (i=1,...,n=1),

and let w, := —a,. Thenfor 1 <i,j<n-1,
(*) wiwj=— Z Ajtj—kWk + Z Qjtj—kWk-
max(i+j—n,1)<k<i J<k<min(i+j,n)

Thus Afg is an A-order, the invariant A-order of F.

Now for arbitrary non-zero commutative rings A and binary forms
F=3%",aX"""Y" € A[X, Y] we define Ar to be the free A-module
with basis {1, w1, ..., w,—1} with multiplication table (*).

This is an A-order (commutative and associative).



Properties of the invariant order

(i) Let A be any non-zero commutative ring and F, G € A[X, Y] two
GL(2, A)-eq. binary forms. Then Ar = A¢ (as A-algebras).

(ii) Let A be an integral domain and F € A[X, Y] a binary form.
Then Afr determines D(F) up to a factor from A*, i.e., there is
§ € A depending only on Af such that D(F) € 6A*
(in fact, if 1,wq,...,wp—1 is the basis of Ag from the definition,
then D(F) = DAF/A(].,OJl, . ,w,,_l)).

(iii) Let A be an integral domain with quotient field K of characteristic 0
and F € A[X, Y] a binary form. Then

F irreducible over K <= Af integral domain;
D(F) # 0 <= Af reduced (without nilpotents).



Orders of rank 3

Theorem (Delone and Faddeev; Gan, Gross and Savin; Deligne)

Let A be an arbitrary non-zero commutative ring. Then for every A-order
O of rank 3 there is precisely one GL(2, A)-equivalence class of binary
cubic forms F € A[X, Y] with Ar = O.

Delone and Faddeev (1940) proved this for A = Z, O an integral domain;
Gan, Gross and Savin (2002) and Deligne extended this.

The proof uses only elementary algebra.



Orders of rank > 4

Let K be a number field and S a finite set of places of K, containing the
infinite places. Denote by Os ¢ the invariant Os-order of a binary form
Fe Os[X, Y].

Let O be a reduced Os-order of rank > 4.
Then every binary form F € Os[X, Y] with Os r = O satisfies
D(F) € §0O¢ for some non-zero § depending only on O.

By the result of Birch and Merriman, the binary forms F € Os[X, Y]
with Os F 2 O lie in only finitely many GL(2, Os)-equivalence classes.

The condition Os ¢ =2 O is much more restrictive than D(F) € §O%.
So we expect a much better upper bound for the number of eq. classes
of binary forms F with Os r = O.



Quantitative results for orders of rank > 4

Let K be a number field and S a finite set of places of K, containing the
infinite places. Denote by hy(Os) the number of ideal classes of Os of
order dividing 2.

Theorem 1 (Bérczes, E. and Gyodry, 2004; E. and Gyéry, 2016)

Let O be a reduced Os-order of rank n > 4. Then the number of
GL(2, Os)-eq. classes of binary forms F € Os[X, Y] with

(2) OsF=0
has a uniform upper bound c(n, Os) depending only on Os and n.
For c(n, Os) we may take

25n2#5 if n is odd, 25"2#5 - ho(Os) if n is even.

BEG proved this with O an integral domain and with a larger upper bound;
EG proved the general result.



Quantitative results for orders of rank > 4

Let K be a number field and S a finite set of places of K, containing the
infinite places. Denote by hy(Os) the number of ideal classes of Os of
order dividing 2.

Theorem 1 (Bérczes, E. and Gyodry, 2004; E. and Gyéry, 2016)

Let O be a reduced Os-order of rank n > 4. Then the number of
GL(2, Os)-eq. classes of binary forms F € Os[X, Y] with

(2) OsF=0

has a uniform upper bound c(n, Os) depending only on Os and n.
For c(n, Os) we may take

250 H#S if s odd,  257#S . ha(Os) if n is even.

The factor hy(Os) is necessary.

For every K,S and every even n > 4 there are Os-orders O of rank n
such that (2) is satisfied by >, hy(Os) GL(2, Os)-eq. cl. of binary forms
F e Os[X, Y].



Generalizations to other integral domains

Various finiteness results for Diophantine equations to be solved in
S-integers of number fields have been extended to equations with
solutions taken from integral domains of characteristic 0 that are finitely
generated as a Z-algebra, i.e., domains A =Z[z, ..., z] with possibly
some of the z; transcendental.

Question

Given such a domain A, a non-zero § € A, and a reduced A-order O of
rank n, do the binary forms F € A[X, Y] of degree n with

D(F) € 6A*, resp. AFr =0

lie in only finitely many GL(2, A)-equivalence classes?



Generalizations to other integral domains

Various finiteness results for Diophantine equations to be solved in
S-integers of number fields have been extended to equations with
solutions taken from integral domains of characteristic 0 that are finitely
generated as a Z-algebra, i.e., domains A =Z[z, ..., z] with possibly
some of the z; transcendental.

Question

Given such a domain A, a non-zero § € A, and a reduced A-order O of
rank n, do the binary forms F € A[X, Y] of degree n with

D(F) € 6A*, resp. AFr =0

lie in only finitely many GL(2, A)-equivalence classes?

NO IN GENERAL for D(F) € 6A*;
YES for A = O (if A is integrally closed).



D(F) € §A*

Assume that A has non-zero elements b such that A/bA is infinite (e.g.,
A = Z][z] with z transcendental and b = z).

Take such b and choose a binary form F* € A[X, Y] of degree n with
D(F*) # 0.

Then the binary forms Fr,(X, Y) := F*(bX,mX + Y) (m € A) have
degree n and discriminant

D(Fm) = b""VD(F*) =: 6

and do not lie in finitely many GL(2, A)-equivalence classes.



Theorem 2 (E.)

Let A be an integral domain of characteristic 0. Assume that A is finitely
generated as a Z-algebra and that A is integrally closed.

Further, let O be a reduced A-order of rank n > 4.
Then the binary forms F € A[X, Y] with Ar = O lie in at most
exp (c(A)n°)

GL(2, A)-equivalence classes, where c(A) depends on A only.



The main tool

The main tool in the proof of Theorem 2 is:

Theorem (Beukers and Schlickewei, 1996)

Let I be a field of characteristic 0 and let I be a multiplicative subgroup
of F* of finite rank r. Then the equation

x+y=1

has at most 2'%("+1) solutions in x,y € T.



A brief outline of the proof of Theorem 2

Let K be the quotient field of A. Take a binary form F € A[X, Y] with
n
Af = 0. Write F = [ J(c;X — B;Y) over the splitting field of F over K

i=1
and put Apq := apfBq — agfp. Then

(*)

DAy Dply .. .
=1, (i,J, k, I distinct).
DNy Ay (g )

» Show that \j(F) := AjAw/AiAj belongs to a multiplicative
group (O) depending only on O of rank < ¢;(A)n*.

» Apply the theorem of BS to (*) and deduce an upper bound
exp(c2(A)n*) for the number of possible values for Ajx/(F), Vi,j, k, .

» Deduce from this an upper bound exp(c(A)n°) for the number of
GL(2, A)-eq. classes of binary forms F € A[X, Y] with A =2 O
(requires some work).



Thanks for your attention.



